InterBase 5

Data Definition
Guide

ko W

InterBase

SOFTWARE CORPORATION

100 Enterprise Way, Suite B2~ Scotts Valley, CA 95066 http://www.interbase.com

InterBase Software Corp. and INPRISE Corporation may have patents and/or pending patent applications
covering subject matter in this document. The furnishing of this document does not convey any license to these
patents.

Copyright 1998 InterBase Software Corporation. All rights reserved. All InterBase products are trademarks or
registered trademarks of InterBase Software Corporation. All Borland products are trademarks or registered
trademarks of INPRISE Corporation, Borland and Visibroker Products. Other brand and product names are
trademarks or registered trademarks of their respective holders.

1INTO050WW21003 5E4R0898

9899000102-987654321

Table of Contents

ListofTables ix
Listof Figures xi
Chapter 1 Using the Data Definition Guide
What is data definition? 14
Who should use this guide 14
Related InterBase documentation 15
Topics covered in this guide 15
Usingisql 16
Using a data definition file 17
Chapter 2 Designing Databases
Overview of design issues 19
Database versus data model 20
Designgoals 21
Design framework 21
Analyzing requirements 22
Collecting and analyzing data 22
Identifying entities and attributes 23
Designing tables 26
Determining unique attributes 26
Developing a setof rules 27
Specifying a datatype 27
Choosing international character sets . . 28
Specifying domains 29
Setting default values and NULL status . 29
Defining integrity constraints 29
Defining CHECK constraints 30

Establishing relationships between objects 30

Enforcing referential integrity 31

DATA DEFINITION GUIDE

Normalizing the database
Choosing indexes

Increasing cache size.

Creating a multi-file, distributed database .

38

Planning security

Chapter 3 Creating Databases

What you should know

Creating a database
Using a data definition file.
Using CREATE DATABASE.

Altering a database

Dropping a database

Creating a database shadow
Advantages of shadowing
Limitations of shadowing
Before creating a shadow
Using CREATE SHADOW.

Dropping a shadow

Expanding the size of a shadow

Using isql to extract data definitions
Extracting an InterBase 4.0 database. . .

Extracting a 3.x database

Chapter4 Specifying Datatypes

About InterBase datatypes
Where to specify datatypes
Defining numeric datatypes

Integer datatypes

56
58
59
59

Fixed-decimal datatypes. 60

Floating-point datatypes. 63
The DATE datatype 65
Converting to the DATE datatype 65
InterBase and the year 2000 66
Character datatypes 66
Specifying a character set. 67
Fixed-length character data. 69
Variable-length character data 70
Defining BLOB datatypes 71
BLOB columns 71
BLOB segment length 72
BLOB subtypes. 73
BLOBfilters. 74
Defining arrays 74
Multi-dimensional arrays 75
Specifyingsubscriptrangesforarraydimensions
76
Converting datatypes 77
Implicit type conversions 77
Explicit type conversions 77

Chapter 5 Working with Domains

Creating domains 79
Using CREATE DOMAIN 80
Specifying the domain datatype 80
Specifying domain defaults 83
Specifying NOTNULL 83
Specifying domain CHECK constraints . 84
Using the VALUE keyword 84
Specifying domain collation order 85
Altering domains with ALTER DOMAIN . . 86
Dropping adomain 87

Chapter 6 Working with Tables

Before creating atable 89
Creating tables 90
Defining columns. 90
Defining integrity constraints 97
Defining a CHECK constraint 102
Using the EXTERNAL FILE option. . . . 104
Altering tables 108
Before using ALTER TABLE 108
Using ALTER TABLE 110
Dropping tables 113
Droppingatable 113
DROP TABLE syntax 114

Chapter 7 Working with Indexes

Indexbasics 115
Whentoindex 116
Creating indexes 116
Using CREATE INDEX 117
When to use a multi-column index . . . 118

Examples using multi-column indexes . 119

Improving index performance 120
Using ALTERINDEX 120
Using SET STATISTICS 121
Using DROP INDEX. 122

Chapter 8 Working with Views

Introduction 123
Advantages of views 125
Creating views 125
Specifying view column names 126
Using the SELECT statement. 126
Using expressions to define columns. . 127

Types of views: read-only and updatable 127

INTERBASE 5

Inserting data through a view 128
Dropping views 130

Chapter9 Working with Stored Procedures

Overview of stored procedures 131
Working with procedures 132
Using a data definition file 133
Calling stored procedures. 133
Privileges for stored procedures 134
Creating procedures 134
CREATE PROCEDURE syntax. 135
Procedure and trigger language 136
The procedure header. 140
The procedurebody 141
Altering stored procedures 151
Dropping procedures 151
Using stored procedures 152
Using executable procedures in isql . . 153
Using select procedures inisql 153

Viewing arrays with stored procedures 157

Exceptions 159
Creating exceptions 160
Altering exceptions 160
Dropping exceptions. 160

Raising an exception in a stored procedure.
161

Handling errors 161
Handling exceptions. 162
Handling SQL errors. 162
Handling InterBase errors 163

Examples of error behavior and handling. .

163

DATA DEFINITION GUIDE

Chapter 10 Creating Triggers

Working with triggers 170
Using a data definition file 170
Creating triggers 171

CREATE TRIGGER syntax 171

InterBase procedure and trigger language.
173

The trigger header 175
The triggerbody 176
Altering triggers 179
Altering a trigger header. 180
Altering a trigger body 180
Dropping triggers 181
Using triggers 181
Triggers and transactions 182
Triggers and security. 182
Triggers as event alerters 183
Updating views with triggers 183
Exceptions 185
Raising an exception in a trigger 185
Error handling in triggers 186
Chapter 11 Declaring User-Defined
Functions and BLOB Filters
Creating user-defined functions 190
Declaring the external function. 190
UDF library placement 191

DECLARE EXTERNAL FUNCTION example.
192
Declaring Blob filters 192

Chapter 12 Working with Generators

About generators 195
Creating generators 196
Setting or resetting generator values . . . 196

v

Using generators 197

Chapter 13 Planning Security

Overview of SQL access privileges 200
Default security and access 200
Privileges available 201
SQLROLES 201

Granting privileges 202

Granting privileges to a whole table. . 202
Granting access to columns in a table . 204

Grantingprivilegestasstoredprocedureottrigger
204

Multiple privileges and multiple grantees . 205
Granting multiple privileges 205
Granting all privileges. 205
Granting privileges to multiple users . 206

Granting privileges to a list of procedures .
207

Using roles to grant privileges 207
Granting privileges toarole 208
Granting aroletousers 208

Granting users the right to grant privileges 209
Grant authority restrictions. 209
Grant authority implications 210

Granting privileges to execute stored procedures
211

Granting access to views 211
Updatable views 212
Read-only views 213

Revoking user access 214
Revocation restrictions 215
Revoking multiple privileges 215
Revoking all privileges 216

Revoking privileges for a list of users . 216

Vi

Revoking privileges for arole. 216

Revoking a role from users 217
Revoking EXECUTE privileges. 217
Revoking privileges from objects 218
Revoking privileges for all users 218
Revoking grant authority 218
Using views to restrict data access 219

Chapter 14 Character Sets and

Collation Orders

InterBase character sets and collation orders
222

Character set storage requirements. . . 225

ParadoxanddBASEcharactersetsandcollations
225

Character sets for DOS. 226
Character sets for Microsoft Windows . 226
Additional character sets and collations 227
Specifying defaults 227

Specifyingadefaultcharactersetforadatabase
227

Specifyingacharactersetforacolumninatable
228

Specifyingacharactersetforaclientconnection
228
Specifying collation order for a column 229
Specifyingollatiomrdeimomparisomperation
229
SpecifyingcollationorderinanORDERBYclause
230
SpecifyingcollationorderinaGROUPBYclause
230

INTERBASE 5

Appendix A InterBase Document

Conventions

The InterBase documentation set 232
Printing conventions 233
Syntax conventions 234

DATA DEFINITION GUIDE vii

‘- -
'y W e
w w
W

List of Tables

Table 1.1
Table 2.1
Table 2.2
Table 2.3
Table 2.4
Table 2.5
Table 2.6
Table 2.7
Table 2.8
Table 2.9
Table 2.10
Table 2.11
Table 3.1
Table 4.1
Table 5.1
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 9.1
Table 9.2
Table 9.3
Table 10.1
Table 10.2
Table 11.1
Table 13.1
Table 14.1
Table 14.2
Table A.1
Table A.2
Table A.3

Chapter list for the Data Definition Guide 15
List of entities and attributes L. 24
EMPLOYEE table 26
PROJECT table 31
EMPLOYEE table 31
DEPARTMENT table 33
DEPARTMENT table 33
DEPT_LOCATIONS table 34
PROJECT table . . . o o o oo e e 34
PROJECT table 35
PROJECT table . . . o v v oo e e 35
EMPLOYEE table 36
Auto vs. manual shadows oL 50
Datatypes supported by InterBase 57
Datatypes supported by InterBase 81
Datatypes supported by InterBase 92
The EMPLOYEEtable 97
The PROJECT table 98
The EMPLOYEE table 98
Referential integrity check options 99
Arguments of the CREATE PROCEDURE statement 136
Procedure and trigger language extensions 137
SUSPEND, EXIT, and END 149
Arguments of the CREATE TRIGGER statement 172
Procedure and trigger language extensions 173
Arguments to DECLARE EXTERNAL FUNCTION 190
SQL access privileges 201
Character sets and collation orders 222
Character sets corresponding to DOS code pages 226
Books in the InterBase 5 documentationset 232
Text conventionso 233
Syntax conventions 234

DATA DEFINITION GUIDE iX

‘- -
'y W e
w w
W

List of Figures

Figure 2.1 Identifying relationships between objects

Figure 4.1 BLOB relationships
Figure 6.1 Circular references

DATA DEFINITION GUIDE

Xi

‘- -
'y W e
w w
W

CHAPTER

Using the Data
Definition Guide

The InterBase Data Definition Guide provides information necessary for creating a
database and database objects with SQL. This chapter also describes:

® Who should read this book.
® Other InterBase documentation that will help you define a database.

= A brief overview of the contents of this book.

DATA DEFINITION GUIDE 13

CHAPTER 1 USING THE DATA DEFINITION GUIDE

What is data definition?

An InterBase database is created and populated using SQL statements, which can be
divided into two major categories: data definition language (DDL) statements and data
manipulation language (DML) statements.

The underlying structures of the database—its tables, views, and indexes—are created
using DDL statements. Collectively, the objects defined with DDL statements are known
as metadata. Dala definition is the process of creating, modifying, and deleting
metadata. Conversely, DML statements are used to populate the database with data, and
to manipulate existing data stored in the structures previously defined with DDL
statements. The focus of this book is how to use DDL statements. For more information
on using DML statements, see the Language Reference.

DDL statements that create metadata begin with the keyword CREATE, statements that
modify metadata begin with the keyword ALTER, and statements that delete metadata
begin with the keyword DROP. Some of the basic data definition tasks include:

Creating a database (CREATE DATABASE).

Creating tables (CREATE TABLE).

Altering tables (ALTER TABLE).

Dropping tables (DROP TABLE).

In InterBase, metadata is stored in system tables, which are a set of tables that is
automatically created when you create a database. These tables store information about
the structure of the database. All system tables begin with “RBD$”. Examples of system
tables include RDB$RELATIONS, which has information about each table in the database,
and RDB$FIELDS, which has information on the domains in the database. For more
information about the system tables, see the Language Reference.

IMPORTANT You can directly modify columns of a system table, but unless you understand all of the
interrelationships between the system tables, modifying them directly can adversely
affect other system tables and disrupt your database.

Who should use this guide

The Data Definition Guide is a resource for programmers, database designers, and users
who create or change an InterBase database or its elements.

This book assumes the reader has:

® Previous understanding of relational database concepts.

14 INTERBASE 5

RELATED INTERBASE DOCUMENTATION

= Read the isql sections in the InterBase Getting Started book.

Related InterBase documentation

The Language Reference is the main reference companion to the Data Definition Guide.
It supplies the complete syntax and usage for SQL data definition statements. For a
complete list of books in the InterBase documentation set, see Appendix A, “InterBase
Document Conventions.”

Topics covered in this guide

The following table lists and describes the chapters in the Data Definition Guide:

Chapter

Description SQL statements

Chapter 1, “Using the Data
Definition Guide”

Chapter 2, “Designing Databases”

Chapter 3, “Creating Databases”

Chapter 4, “Specifying Datatypes”

Chapter 5, “Working with Domains”

Chapter 6, “Working with Tables”

Chapter 7, “Working with Indexes”

Overview of InterBase Data
Definition features. Using isql,
the SQL Data Definition Utility.

Planning and designing a
database. Understanding data
integrity rules and using them
in a database. Planning physical
storage.

Creating an InterBase database. CREATE/ALTER/DROP DATABASE
CREATE/ALTER/DROP SHADOW

Choosing a datatype. CREATE/ALTER TABLE CREATE/ALTER DOMAIN

Creating, altering, and dropping CREATE/ALTER/DROP DOMAIN
domains.

Creating and altering database ~ CREATE/ALTER/DROP TABLE
tables, columns, and domains.
Setting up referential integrity.

Creating and dropping indexes. CREATE/ALTER/DROP INDEX

TABLE1.1 Chapter list for the Data Definition Guide

DATA DEFINITION GUIDE

15

Chapter

Description

CHAPTER 1 USING THE DATA DEFINITION GUIDE

SQL statements

Chapter 8, “Working with Views”

Chapter 9, “Working with
Stored Procedures”

Chapter 10, “Creating Triggers”

Chapter 11, “Declaring User-Defined

Functions and BLOB Filters”

Chapter 12, “Working with
Generators”

Chapter 13, “Planning Security”

Chapter 14, “Character Sets and
Collation Orders”

Appendix A, “InterBase Document

Conventions”

Creating and dropping views.
Using WITH CHECK OPTION.

Using stored procedures. What
you can do with stored
procedures.

Using triggers. What you can do
with triggers.

Defining user-defined functions
and Blob filters.

Creating, setting, and resetting
generators.

Securing data and system
catalogs with SQL: tables, views,
triggers, and procedures.

Specifying character sets and
collation orders.

Lists typefaces and special
characters used in this book to
describe syntax and identify
object types.

CREATE/DROP VIEW

CREATE/ALTER/DROP PROCEDURE
CREATE/ALTER/DROP EXCEPTION

CREATE/ALTER/DROP TRIGGER
CREATE/ALTER/DROP EXCEPTION

DECLARE/DROP EXTERNAL FUNCTION
DCELARE/DROP FILTER
CREATE GENERATOR/SET GENERATOR

GRANT, REVOKE

CHARACTER SET COLLATE

TABLE1.1

Chapter list for the Data Definition Guide (continued)

Using isql

You can use isql to interactively create, update, and drop metadata, or you can input a file
to isql that contains data definition statements, which is then executed by isql without
prompting the user. It is usually preferable to use a data definition file because it is easier
to modify the file than to retype a series of individual SQL statements, and the file
provides a record of the changes made to the database.

The isql interface can be convenient for simple changes to existing data, or for querying
the database and displaying the results. You can also use the interactive interface as a

learning tool. By creating one or more sample databases, you can quickly become more
familiar with InterBase.

16

INTERBASE 5

USING A DATA DEFINITION FILE

Using a data definition file

A data definition file can include statements to create, alter, or drop a database, or any
other SQL statement. To issue SQL statements through a data definition file, follow these
steps:

1. Use a text editor to create the data definition file. Each DDL statement should
be followed by a COMMIT to ensure its visibility to all subsequent DDL
statements in the data definition file.

2. Save the file.

3. Input the file into isql. For information on how to input the data definition
file using Windows ISQL, see the Operations Guide. For information on how
to input the data definition file using command-line isql, see the Operations
Guide.

DATA DEFINITION GUIDE 17

18

CHAPTER 1

USING THE DATA DEFINITION GUIDE

INTERBASE 5

CHAPTER

Designing Databases

This chapter provides a general overview of how to design an InterBase database—it is
not intended to be a comprehensive description of the principles of database design. This
chapter includes:

® An overview of basic design issues and goals
= A framework for designing the database
® InterBase-specific suggestions for designing your database

® Suggestions for planning database security

Overview of design issues

A database describes real-world organizations and their processes, symbolically
representing real-world objects as tables and other database objects. Once the
information is organized and stored as database objects, it can be accessed by

applications or a user interface displayed on desktop workstations and computer
terminals.

DATA DEFINITION GUIDE 19

CHAPTER 2 DESIGNING DATABASES

The most significant factor in producing a database that performs well is good database
design. Logical database design is an iterative process which consists of breaking down
large, heterogeneous structures of information into smaller, homogenous data objects.
This process is called normalization. The goal of normalization is to determine the
natural relationships between data in the database. This is done by splitting a table into
two or more tables with fewer columns. When a table is split during the normalization
process, there is no loss of data because the two tables can be put back together with a
join operation. Simplifying tables in this manner allows the most compatible data
elements and attributes to be grouped into one table.

Database versus data model

It is important to distinguish between the description of the database, and the database
itself. The description of the database is called the data model and is created at design
time. The model is a template for creating the tables and columns; it is created before the
table or any associated data exists in the database. The data model describes the logical
structure of the database, including the data objects or entities, datatypes, user
operations, relationships between objects, and integrity constraints.

In the relational database model, decisions about logical design are completely
independent of the physical structure of the database. This separation allows great
flexibility.

You do not have to define the physical access paths between the data objects at design
time, so you can query the database about almost any logical relationship that exists in it.

The logical structures that describe the database are not affected by changes in the
underlying physical storage structures. This capability ensures cross-platform portability.
You can easily transport a relational database to a different hardware platform because
the database access mechanisms defined by the data model remain the same regardless
of how the data is stored.

The logical structure of the database is also independent of what the end-user sees. The
designer can create a customized version of the underlying database tables with views. A
view displays a subset of the data to a given user or group. Views can be used to hide
sensitive data, or to filter out data that a user is not interested in. For more information
on views, see Chapter 8, “Working with Views.”

INTERBASE 5

DESIGN FRAMEWORK

Design goals

Although relational databases are very flexible, the only way to guarantee data integrity
and satisfactory database performance is a solid database design—there is no built-in
protection against poor design decisions. A good database design:

= Satisfies the users’ content requirements for the database. Before you can design the
database, you must do extensive research on the requirements of the users and how the
database will be used.

= Ensures the consistency and integrity of the data. When you design a table, you define
certain attributes and constraints that restrict what a user or an application can enter into
the table and its columns. By validating the data before it is stored in the table, the
database enforces the rules of the data model and preserves data integrity.

= Provides a natural, easy-to-understand structuring of information. Good design makes
queries easier to understand, so users are less likely to introduce inconsistencies into the
data, or to be forced to enter redundant data. This facilitates database updates and
maintenance.

= Satisfies the users’ performance requirements. Good database design ensures better
performance. If tables are allowed to be too large, or if there are too many (or too few)
indexes, long waits can result. If the database is very large with a high volume of
transactions, performance problems resulting from poor design are magnified.

Design framework

The following steps provide a framework for designing a database:

1. Determine the information requirements for the database by interviewing
prospective users.

2. Analyze the real-world objects that you want to model in your database.
Organize the objects into entities and attributes and make a list.

3. Map the entities and attributes to InterBase tables and columns.
4. Determine an attribute that will uniquely identify each object.

5. Develop a set of rules that govern how each table is accessed, populated, and
modified.

6. Establish relationships between the objects (tables and columns).

7. Plan database security.

DATA DEFINITION GUIDE 21

CHAPTER 2 DESIGNING DATABASES

The following sections describe each of these steps in more detail.

Analyzing requirements

The first step in the design process is to research the environment that you are trying to
model. This involves interviewing prospective users in order to understand and document
their requirements. Ask the following types of questions:

= Will your applications continue to function properly during the implementation phase?
Will the system accommodate existing applications, or will you need to restructure
applications to fit the new system?

® Whose applications use which data? Will your applications share common data?

= How do the applications use the data stored in the database? Who will be entering the
data, and in what form? How often will the data objects be changed?

® What access do current applications require? Do your applications use only one database,
or do they need to use several databases which might be different in structure? What
access do they anticipate for future applications, and how easy is it be to implement new
access paths?

® Which information is the most time-critical, requiring fast retrieval or updates?

Collecting and analyzing data

22

Before designing the database objects—the tables and columns—you need to organize
and analyze the real-world data on a conceptual level. There are four primary goals:

= |dentify the major functions and activities of your organization. For example: hiring
employees, shipping products, ordering parts, processing paychecks, and so on.

= |dentify the objects of those functions and activities. Building a business operation or
transaction into a sequence of events will help you identify all of the entities and
relationships the operation entails. For example, when you look at a process like “hiring
employees,” you can immediately identify entities such as the JOB, the EMPLOYEE, and the
DEPARTMENT.

= |dentify the characteristics of those objects. For example, the
EMPLOYEE entity might include such information as EMPLOYEE_ID, FIRST_NAME,
LAST_NAME, JOB, SALARY, and so on.

INTERBASE 5

IDENTIFYING ENTITIES AND ATTRIBUTES

= |dentify certain relationships between the objects For example, how do the EMPLOYEE,
JOB, and DEPARTMENT entities relate to each other? The employee has one job title and
belongs to one department, while a single department has many employees and jobs.
Simple graphical flow charts help to identify the relationships.

FIGURE2.1 Identifying relationships between objects

Department
Employee Employee Employee
Job Job

Identifying entities and attributes

Based on the requirements that you collect, identify the objects that need to be in the
database—the entities and attributes. An entity is a type of person, object, or thing that
needs to be described in the database. It might be an object with a physical existence,
like a person, a car, or an employee, or it might be an object with a conceptual existence,
like a company, a job, or a project. Each entity has properties, called attributes, that
describe it. For example, suppose you are designing a database that must contain
information about each employee in the company, departmental-level information,
information about current projects, and information about customers and sales. The
example below shows how to create a list of entities and attributes that organizes the
required data.

DATA DEFINITION GUIDE 23

Entities

Attributes

EMPLOYEE

Employee Number
Last Name

First Name
Department Number
Job Code

Phone Extension

Salary

DEPARTMENT

Department Number
Department Name
Department Head Name

Department Head Employee
Number

Budget
Location

Phone Number

PROJECT

Project ID

Project Name
Project Description
Team Leader

Product

TABLE2.1 List of entities and attributes

24

CHAPTER 2 DESIGNING DATABASES

INTERBASE 5

IDENTIFYING ENTITIES AND ATTRIBUTES

Entities

Attributes

CUSTOMER

Customer Number
Customer Name
Contact Name
Phone Number

Address

SALES

PO Number
Customer Number
Sales Rep

Order Date

Ship Date

Order Status

TABLE2.1 List of entities and attributes (continued)

By listing the entities and associated attributes this way, you can begin to eliminate

redundant entries. Do the entities in your list work as tables? Should some columns be

moved from one group to another? Does the same attribute appear in several entities?

Each attribute should appear only once, and you need to determine which entity is the

primary owner of the attribute. For example, DEPARTMENT HEAD NAME should be
eliminated because employee names (FIRST NAME and LAST NAME) already exist in the

EMPLOYEE entity. DEPARTMENT HEAD EMPLOYEE NUM can then be used to access all of the
employee-specific information by referencing EMPLOYEE NUMBER in the EMPLOYEE entity.

For more information about accessing information by reference, see “Establishing
relationships between objects” on page 30.

The next section describes how to map your lists to actual database objects—entities to
tables and attributes to columns.

DATA DEFINITION GUIDE

25

CHAPTER 2 DESIGNING DATABASES

Designing tables

In a relational database, the database object that represents a single entity is a fable,
which is a two-dimensional matrix of rows and columns. Each column in a table
represents an attribute. Each row in the table represents a specific instance of the entity.
After you identify the entities and attributes, create the data model, which serves as a
logical design framework for creating your InterBase database. The data model maps
entities and attributes to InterBase tables and columns, and is a detailed description of
the database—the tables, the columns, the properties of the columns, and the
relationships between tables and columns.

The example below shows how the EMPLOYEE entity from the entities/attributes list has
been converted to a table.

EMP_NO LAST_NAME FIRST_NAME DEPT_NO JOB_CODE PHONE_EXT SALARY
24 Smith John 100 Eng 4968 64000
48 Carter Catherine 900 Sales 4967 72500
36 Smith Jane 600 Admin 4800 37500

TABLE22 EMPLOYEE table

Each row in the EMPLOYEE table represents a single employee. EMP_NO, LAST_NAME,
FIRST_NAME, DEPT_NO, JOB_CODE, PHONE_EXT, and SALARY are the columns that represent
employee attributes. When the table is populated with data, rows are added to the table,
and a value is stored at the intersection of each row and column, called a field. In the
EMPLOYEE table, “Smith” is a data value that resides in a single field of an employee
record.

Determining unique attributes

26

One of the tasks of database design is to provide a way to uniquely identify each
occurrence or instance of an entity so that the system can retrieve any single row in a
table. The values specified in the table’s primary key distinguish the rows from each
other. A PRIMARY KEY or UNIQUE constraint ensures that values entered into the column
or set of columns are unique in each row. If you try to insert a value in a PRIMARY KEY or
UNIQUE column that already exists in another row of the same column, InterBase prevents
the operation and returns an error.

INTERBASE 5

DEVELOPING A SET OF RULES

For example, in the EMPLOYEE table, EMP_NO is a unique attribute that can be used to
identify each employee in the database, so it is the primary key. When you choose a value
as a primary key, determine whether it is inherently unique. For example, no two social
security numbers or driver’s license numbers are ever the same. Conversely, you should
not choose a name column as a unique identifier due to the probability of duplicate
values. If no single column has this property of being inherently unique, then define the
primary key as a composite of two or more columns which, when taken together, are
unique.

A unique key is different from a primary key in that a unique key is not the primary
identifier for the row, and is not typically referenced by a foreign key in another table.
The main purpose of a unique key is to force a unique value to be entered into the
column. You can have only one primary key defined for a table, but any number of
unique keys.

Developing a set of rules

When designing a table, you need to develop a set of rules for each table and column that
establishes and enforces data integrity. These rules include:

= Specifying the datatype

® Choosing international character sets

® Creating a domain-based column

= Setting default values and NULL status

® Defining integrity constraints and cascading rules

® Defining CHECK constraints

Specifying a datatype

Once you have chosen a given attribute as a column in the table, you can choose a
datatype for the attribute. The datatype defines the set of valid data that the column can
contain. The datatype also determines which operations can be performed on the data,
and defines the disk space requirements for each data item.

The general categories of SQL datatypes include:
® Character datatypes.
® Whole number (integer) datatypes.

DATA DEFINITION GUIDE 27

28

CHAPTER 2 DESIGNING DATABASES

® Fixed and floating decimal datatypes.
® A DATE datatype to represent date and time.

= A Blob datatype to represent unstructured binary data, such as graphics and digitized
voice.

For more information about datatypes supported by InterBase, see Chapter 4,
“Specifying Datatypes.”

Choosing international character sets

When you create the database, you can specify a default character set. A default character
set determines:

What characters can be used in CHAR, VARCHAR, and BLOB text
columns.

The default collation order that is used in sorting a column.

The collation order determines the order in which values are sorted. The COLLATE clause
of CREATE TABLE allows users to specify a particular collation order for columns defined
as CHAR and VARCHAR text datatypes. You must choose a collation order that is supported
for the column’s given character set. The collation order set at the column level overrides
a collation order set at the domain level.

Choosing a default character set is primarily intended for users who are interested in
providing a database for international use. For example, the following statement creates
a database that uses the ISO8859_1 character set, typically used to support European
languages:

CREATE DATABASE "enpl oyee. gdb"
DEFAULT CHARACTER SET | SC8859 1,

You can override the database default character set by creating a different character set
for a column when specifying the datatype. The datatype specification for a CHAR,
VARCHAR, or BLOB text column definition can include a CHARACTER SET clause to specify
a particular character set for a column. If you do not specify a character set, the column
assumes the default database character set. If the database default character set is
subsequently changed, all columns defined after the change have the new character set,
but existing columns are not affected.

INTERBASE 5

DEVELOPING A SET OF RULES

If you do not specify a default character set at the time the database is created, the
character set defaults to NONE. This means that there is no character set assumption for
the columns; data is stored and retrieved just as it was originally entered. You can load
any character set into a column defined with NONE, but you cannot load that same data
into another column that has been defined with a different character set. No
transliteration will be performed between the source and the destination character sets.

For a list of the international character sets and collation orders that InterBase supports,
see Chapter 14, “Character Sets and Collation Orders.”

Specifying domains

When several tables in the database contain columns with the same definitions and
datatypes, you can create domain definitions and store them in the database. Users who
create tables can then reference the domain definition to define column attributes locally.

For more information about creating and referencing domains, see Chapter 5, “Working
with Domains.”

Setting default values and NULL status

You can set an optional default value that is automatically entered into a column when
you do not specify an explicit value. Defaults can save data entry time and prevent data
entry errors. For example, a possible default for a DATE column could be today’s date, or
in a Y/N flag column for saving changes, “Y” could be the default. Column-level defaults
override defaults set at the domain level.

Assign a NULL status to insert a NULL in the column if the user does not enter a value.
Assign NOT NULL to force the user to enter a value, or to define a default value for the
column. NOT NULL must be defined for PRIMARY KEY and UNIQUE key columns.

Defining integrity constraints

Integrity constraints are rules that govern column-to-table and table-to-table
relationships, and validate data entries. They span all transactions that access the
database and are maintained automatically by the system. Integrity constraints can be
applied to an entire table or to an individual column. A PRIMARY KEY or UNIQUE constraint
guarantees that no two values in a column or set of columns are the same.

DATA DEFINITION GUIDE 29

CHAPTER 2 DESIGNING DATABASES

Data values that uniquely identify rows (a primary key) in one table can also appear in
other tables. A foreign key is a column or set of columns in one table that contain values
that match a primary key in another table. The ON UPDATE and ON DELETE referential
constraints allow you to specify what happens to the referencing foreign key when the
primary key changes or is deleted.

For more information on using PRIMARY KEY and FOREIGN KEY constraints, see Chapter
6, “Working with Tables.” For more information on the reasons for using foreign keys,
see “Establishing relationships between objects” on page 30.

Defining CHECK constraints

Along with preventing the duplication of values using UNIQUE and PRIMARY KEY
constraints, you can specify another type of data entry validation. A CHECK constraint
places a condition or requirement on the data values in a column at the time the data is
entered. The CHECK constraint enforces a search condition that must be true in order to
insert into or update the table or column.

Establishing relationships between objects

The relationship between tables and columns in the database must be defined in the
design. For example, how are employees and departments related? An employee can have
only one department (a one-to-one relationship), but a department has many employees
(a one-to-many relationship). How are projects and employees related? An employee can
be working on more than one project, and a project can include several employees (a
many-to-many relationship). Each of these different types of relationships has to be
modeled in the database.

30 INTERBASE 5

ESTABLISHING RELATIONSHIPS BETWEEN OBJECTS

TABLE23

TABLE2.4

The relational model represents one-to-many relationships with primary key/foreign key
pairings. Refer to the following two tables. A project can include many employees, so to
avoid duplication of employee data, the PROJECT table can reference employee
information with a foreign key. TEAM_LEADER is a foreign key referencing the primary key,
EMP_NO, in the EMPLOYEE table.

TEAM_LEA
PROJ_ID DER PROJ_NAME PROJ_DESC PRODUCT
DGPII 44 Automap blob data hardware
VBASE 47 Video database blob data software
HWRII 24 Translator upgrade blob data software

PROJECT table

LAST_NA FIRST_NA DEPT_

EMP_NO ME ME NO JOB_CODE PHONE_EXT SALARY
24 Smith John 100 Eng 4968 64000
48 Carter Catherine 900 Sales 4967 72500
36 Smith Jane 600 Admin 4800 37500
EMPLOYEE table

For more information on using PRIMARY KEY and FOREIGN KEY constraints, see
Chapter 6, “Working with Tables.”

Enforcing referential integrity

The primary reason for defining foreign keys is to ensure that the integrity of the data is
maintained when more than one table references the same data—rows in one table must
always have corresponding rows in the referencing table. InterBase enforces referential
integrity in the following ways:

= Before a foreign key can be added, the unique or primary keys that the foreign key
references must already be defined.

DATA DEFINITION GUIDE 31

32

CHAPTER 2 DESIGNING DATABASES

= If information is changed in one place, it must be changed in every other place that it
appears. InterBase does this automatically when you use the ON UPDATE option to the
REFERENCES clause when defining the constraints for a table or its columns. You can
specify that the foreign key value be changed to match the new primary key value
(CASCADE), or that it be set to the column default (SET DEFAULT), or to null (SET NULL). If
you choose NO ACTION as the ON UPDATE action, you must manually ensure that the
foreign key is updated when the primary key changes. For example, to change a value in
the EMP_NO column of the EMPLOYEE table (the primary key), that value must also be
updated in the TEAM_LEADER column of the PROJECT table (the foreign key).

® When a row containing a primary key in one table is deleted, the meaning of any rows
in another table that contain that value as a foreign key is lost unless appropriate action
is taken. InterBase provides the ON DELETE option to the REFERENCES clause of CREATE
TABLE and ALTER TABLE so that you can specify whether the foreign key is deleted, set to
the column default, or set to null when the primary key is deleted. If you choose NO
ACTION as the ON DELETE action, you must manually delete the foreign key before deleting
the referenced primary key.

InterBase also prevents users from adding a value in a column defined as a foreign key
that does not reference an existing primary key value. For example, to change a value in
the TEAM_LEADER column of the PROJECT table, that value must first be updated in the
EMP_NO column of the EMPLOYEE table.

For more information on using PRIMARY KEY and FOREIGN KEY constraints, see Chapter
6, “Working with Tables.”

Normalizing the database

After your tables, columns, and keys are defined, look at the design as a whole and
analyze it using normalization guidelines in order to find logical errors. As mentioned in
the overview, normalization involves breaking down larger tables into smaller ones in
order to group data together that is naturally related.

Note A detailed explanation of the normal forms are out of the scope of this document.
There are many excellent books on the subject on the market.

When a database is designed using proper normalization methods, data related to other
data does not need to be stored in more than one place—if the relationship is properly
specified. The advantages of storing the data in one place are:

= The data is easier to update or delete.

® When each data item is stored in one location and accessed by reference, the possibility
for error due to the existence of duplicates is reduced.

INTERBASE 5

ESTABLISHING RELATIONSHIPS BETWEEN OBJECTS

TABLE2)5

TABLE 2.6

® Because the data is stored only once, the possibility for introducing inconsistent data is
reduced.
In general, the normalization process includes:

® Eliminating repeating groups.

® Removing partially-dependent columns.

® Removing transitively-dependent columns.

An explanation of each step follows.

» Eliminating repeating groups
When a field in a given row contains more than one value for each occurrence of the

primary key, then that group of data items is called a repeating group. This is a violation
of the first normal form, which does not allow multi-valued attributes.

Refer to the DEPARTMENT table. For any occurrence of a given primary key, if a column
can have more than one value, then this set of values is a repeating group. Therefore, the
first row, where DEPT_NO = “100,” contains a repeating group in the DEPT_LOCATIONS
column.

DEPT_NO DEPARTMENT HEAD_DEPT BUDGET DEPT_LOCATIONS

100 Sales 000 1000000 Monterey, Santa Cruz, Salinas
600 Engineering 120 1100000 San Francisco

900 Finance 000 400000 Monterey

DEPARTMENT table

In the next example, even if you change the attribute to represent only one location, for
every occurrence of the primary key “100,” all of the columns contain repeating
information except for DEPT_LOCATION, so this is still a repeating group.

DEPT_NO DEPARTMENT HEAD_DEPT BUDGET DEPT_LOCATION
100 Sales 000 1000000 Monterey

100 Sales 000 1000000 Santa Cruz
DEPARTMENT table

DATA DEFINITION GUIDE 33

34

TABLE 2.6

TABLE2.7

TABLE2.8

CHAPTER 2 DESIGNING DATABASES

DEPT_NO DEPARTMENT HEAD_DEPT BUDGET DEPT_LOCATION
600 Engineering 120 1100000 San Francisco
100 Sales 000 1000000 Salinas

DEPARTMENT table (continued)

To normalize this table, we could eliminate the DEPT_LOCATION attribute from the

DEPARTMENT table, and create another table called DEPT_LOCATIONS. We could then create
a primary Kkey that is a combination of DEPT_NO and DEPT_LOCATION. Now a distinct row
exists for each location of the department, and we have eliminated the repeating groups.

DEPT_NO DEPT_LOCATION
100 Monterey

100 Santa Cruz

600 San Francisco
100 Salinas

DEPT_LOCATIONS table

» Removing partially-dependent columns

Another important step in the normalization process is to remove any non-key columns
that are dependent on only part of a composite key. Such columns are said to have a
partial key dependency. Non-key columns provide information about the subject, but do
not uniquely define it.

For example, suppose you wanted to locate an employee by project, and you created the
PROJECT table with a composite primary key of EMP_NO and PROJ_ID.

EMP_NO PROJ_ID LAST_NAME PROJ_NAME PROJ_DESC PRODUCT
44 DGPII Smith Automap blob data hardware
47 VBASE Jenner Video database blob data software
24 HWRII Stevens Translator upgrade blob data software
PROJECT table
INTERBASE 5

ESTABLISHING RELATIONSHIPS BETWEEN OBJECTS

TABLE2.9

TABLE2.10

The problem with this table is that PROJ_NAME, PROJ_DESC, and PRODUCT are attributes of
PROJ_ID, but not EMP_NO, and are therefore only partially dependent on the
EMP_NO/PROJ_ID primary key. This is also true for LAST_NAME because it is an attribute of
EMP_NO, but does not relate to PROJ_ID. To normalize this table, we would remove the
EMP_NO and LAST_NAME columns from the PROJECT table, and create another table called
EMPLOYEE_PROJECT that has EMP_NO and PROJ_ID as a composite primary key. Now a
unique row exists for every project that an employee is assigned to.

» Removing transitively-dependent columns

The third step in the normalization process is to remove any non-key columns that
depend upon other non-key columns. Each non-key column must be a fact about the
primary key column. For example, suppose we added TEAM_LEADER_ID and PHONE_EXT
to the PROJECT table, and made PROJ_ID the primary key. PHONE_EXT is a fact about
TEAM_LEADER_ID, a non-key column, not about PROJ_ID, the primary key column.

TEAM_LEADER PHONE_E

PROJ.ID _ID XT PROJ_NAME PROJ_DESC PRODUCT
DGPII 44 4929 Automap blob data hardware
VBASE 47 4967 Video database blob data software
HWRII 24 4668 Translator upgrade blob data software
PROJECT table

To normalize this table, we would remove PHONE_EXT, change
TEAM_LEADER_ID to TEAM_LEADER, and make TEAM_LEADER a foreign key referencing
EMP_NO in the EMPLOYEE table.

TEAM_LEAD PROJ_DES
PROJ_ID ER PROJ_NAME C PRODUCT
DGPII 44 Automap blobdata hardware
VBASE 47 Video database blob data software
HWRII 24 Translator upgrade blobdata software
PROJECT table

DATA DEFINITION GUIDE 35

TABLE2.M

CHAPTER 2 DESIGNING DATABASES

EMP_NO LAST_NAME FIRST_NAME DEPT_NO JOB_CODE PHONE_EXT SALARY

24 Smith John 100 Eng 4968 64000
48 Carter Catherine 900 Sales 4967 72500
36 Smith Jane 600 Admin 4800 37500
EMPLOYEE table

» When to break the rules

You should try to correct any normalization violations, or else make a conscious decision
to ignore them in the interest of ease of use or performance. Just be sure that you
understand the design trade-offs that you are making, and document your reasons. It
might take several iterations to reach a design that is a desirable compromise between
purity and reality, but this is the heart of the design process.

For example, suppose you always want data about dependents every time you look up
an employee, so you decide to include DEP1_NAME, DEP1_BIRTHDATE, and so on for DEP1
through DEP30, in the EMPLOYEE table. Generally speaking, that is terrible design, but the
requirements of your application are more important than the abstract purity of your
design. In this case, if you wanted to compute the average age of a given employee’s
dependents, you would have to explicitly add field values together, rather than asking for
a simple average. If you wanted to find all employees with a dependent named “Jennifer,”
you would have to test 30 fields for each employee instead of one. If those are not
operations that you intend to perform, then go ahead and break the rules. If the efficiency
attracts you less than the simplicity, you might consider defining a view that combines
records from employees with records from a separate DEPENDENTS table.

While you are normalizing your data, remember that InterBase offers direct support for
array columns, so if your data includes, for example, hourly temperatures for twenty
cities for a year, you could define a table with a character column that contains the city
name, and a 24 by 366 matrix to hold all of the temperature data for one city for one year.
This would result in a table containing 20 rows (one for each city) and two columns, one
NAME column and one TEMP_ARRAY column. A normalized version of that record might
have 366 rows per city, each of which would hold a city name, a Julian date, and 24
columns to hold the hourly temperatures.

INTERBASE 5

ESTABLISHING RELATIONSHIPS BETWEEN OBJECTS

Choosing indexes

Once you have your design, you need to consider what indexes are necessary. The basic
trade-off with indexes is that more distinct indexes make retrieval by specific criteria
faster, but updating and storage slower. One optimization is to avoid creating several
indexes on the same column. For example, if you sometimes retrieve employees based
on name, department, badge number, or department name, you should define one index
for each of these columns. If a query includes more than one column value to retrieve,
InterBase will use more than one index to qualify records. In contrast, defining indexes
for every permutation of those three columns will actually slow both retrieval and update
operations.

When you are testing your design to find the optimum combination of indexes, remember
that the size of the tables affects the retrieval performance significantly. If you expect to
have tables with 10,000 to 100,000 records each, do not run tests with only 10 to 100
records.

Another factor that affects index and data retrieval times is page size. By increasing the
page size, you can store more records on each page, thus reducing the number of pages
used by indexes. If any of your indexes are more than 4 levels deep, you should consider
increasing the page size. If indexes on volatile data (data that is regularly deleted and
restored, or data that has index key values that change frequently) are less than 3 levels
deep, you should consider reducing your page size. In general, you should use a page
size larger than your largest record, although InterBase’s data compression will generally
shrink records that contain lots of string data, or lots of numeric values that are 0 or
NULL. If your records have those characteristics, you can probably store records on pages
which are 20% smaller than the full record size. On the other hand, if your records are
not compressible, you should add 5% to the actual record size when comparing it to the
page size.

For more information on creating indexes, see Chapter 7, “Working with Indexes.”

Increasing cache size

When InterBase reads a page from the database onto disk, it stores that page in its cache,
which is a set of buffers that are reserved for holding database pages. Ordinarily, the
default cache size of 256 buffers is adequate. If your application includes joins of 5 or
more tables, InterBase automatically increases the size of the cache. If your application
is well localized, that is, it uses the same small part of the database repeatedly, you might
want to consider increasing the cache size so that you never have to release one page
from cache to make room for another.

DATA DEFINITION GUIDE 37

CHAPTER 2 DESIGNING DATABASES

You can use the gfix utility to increase the default number of buffers for a specific database
using the following command:

gfix -buffers n database_nane

You can also change the default cache size for an entire server either by setting the value
of DATABASE_CACHE_PAGES in the configuration file or by changing is on the IB Settings
page of the InterBase Server Properties dialog on Windows platforms. This setting is not
recommended because it affects all databases on the server and can easily result in
overuse of memory or in unusably small caches. It’s is better to tune your cache on a
per-database basis using gfix -buffers.

For more information about cache size, see the Programmer’s Guide. For more
information about using gfix -buffers, see the Operations Guide.

Creating a multi-file, distributed database

If you feel that your application performance is limited by disk bandwidth, you might
consider creating a multi-file database and distributing it across several disks. Multi-file
databases were designed to avoid limiting databases to the size of a disk on systems that
do not support multi-disk files.

Planning security

38

Planning security for a database is important. When implementing the database design,
you should answer the following questions:

® Who will have authority to use InterBase?
= Who will have authority to open a particular database?

= Who will have authority to create and access a particular database object within a given
database?

For more information about database security, see Chapter 13, “Planning Security.”

INTERBASE 5

CHAPTER

Creating Databases

This chapter describes how to:
® Create a database with CREATE DATABASE.
® Enlarge the database with ALTER DATABASE.
® Delete a database with DROP DATABASE.

= Create an in-sync, online duplication of the database for recovery purposes with CREATE
SHADOW.

® Stop database shadowing with DROP SHADOW.
® Increase the size of a shadow.

® Extract metadata from an existing database.

What you should know

Before creating the database, you should know:

® Where to create the database. Users who create databases need to know only the logical
names of the available devices in order to allocate database storage. Only the system
administrator needs to be concerned about physical storage (disks, disk partitions,
operating system files).

DATA DEFINITION GUIDE 39

CHAPTER 3 CREATING DATABASES

= The tables that the database will contain.

® The record size of each table, which affects what database page size you choose. A record
that is too large to fit on a single page requires more than one page fetch to read or write
to it, so access could be faster if you increase the page size.

® How large you expect the database to grow. The number of records also affects the page
size because the number of pages affects the depth of the index tree. Larger page size
means fewer total pages. InterBase operates more efficiently with a shallow index tree.

® The number of users that will be accessing the database.

Creating a database

Create a database in isql with an interactive command or with the CREATE DATABASE
statement in an isql script file. For a description of creating a database interactively with
Windows ISQL, see the Operations Guide.

Although you can create, alter, and drop a database interactively, it is preferable to use a
data definition file because it provides a record of the structure of the database. It is easier
to modify a source file than it is to start over by retyping interactive SQL statements.

Using a data definition file

A data definition file contains SQL statements, including those for creating, altering, or
dropping a database. To issue SQL statements through a data definition file, follow these
steps:

1. Use a text editor to write the data definition file.
2. Save the file.
3. Process the file with isql.

Use -input in command-line isql or use File | Run in an ISQL Script in Windows ISQL.
For more information about command-line isql and Windows ISQL, see the Operations
Guide.

40 INTERBASE 5

CREATING A DATABASE

IMPORTANT

Using CREATE DATABASE

CREATE DATABASE establishes a new database and populates its system tables, or metadata,
which are the tables that describe the internal structure of the database. CREATE DATABASE
must occur before creating database tables, views, and indexes.

CREATE DATABASE optionally allows you to do the following:
Specify a user name and a password

Change the default page size of the new database

Specify a default character set for the database

Add secondary files to expand the database

CREATE DATABASE must be the first statement in the data definition file. You cannot create
a database directly from the isql command line.

In DSQL, CREATE DATABASE can be executed only with EXECUTE IMMEDIATE. The database
handle and transaction name, if present, must be initialized to zero prior to use.

The syntax for CREATE DATABASE is:

CREATE { DATABASE | SCHEMA} " <filespec>"

[USER " user nane" [PASSWORD " password']]

[PAGE_SI ZE [=] i nt]

[LENGTH [=] int [PACGE[S]]]

[DEFAULT CHARACTER SET charset]

[<secondary file>];

<secondary file> = FILE "<filespec>" [<fileinfo> [<secondary file>]
<fileinfo> = LENGITH [=] int [PAGE[S]] | STARTING [AT [PAGE]] int

[<fileinfo>]

b Creating a single-file database

Although there are many optional parameters, CREATE DATABASE requires only one
parameter, filespec, which is the new database file specification. The file specification
contains the device name, path name, and database name.

By default, a database is created as a single file, called the primary file. The following
example creates a single-file database, named employee.gdb, in the current directory.

CREATE DATABASE "enpl oyee. gdb";

For more information about file naming conventions, see the Operations Guide.

DATA DEFINITION GUIDE a4

IMPORTANT

42

CHAPTER 3 CREATING DATABASES

SPECIFYING FILE SIZE FOR A SINGLE-FILE DATABASE

You can optionally specify a file length, in pages, for the primary file. For example, the
following statement creates a database that is stored in one 10,000-page- long file:

CREATE DATABASE "enpl oyee. gdb" LENGTH 10000;

If the database grows larger than the specified file length, InterBase extends the primary
file beyond the LENGTH limit until the disk space runs out. To avoid this, you can store a
database in more than one file, called a secondary file.

Note Use LENGTH for the primary file only if defining a secondary file in the same
statement.

) Creating a multi-file database

A multi-file database consists of a primary file and one or more secondary files. You can
create one or more secondary files to be used for overflow purposes only; you cannot
specify what information goes into each file because InterBase handles this automatically.
Each secondary file is typically assigned to a different disk than that of the main database.
When the primary file fills up, InterBase allocates one of the secondary files that was
created. When that secondary file fills up, another secondary file is allocated, and so on,
until all of the secondary file allocations run out.

Whenever possible, the database should be created locally; create the database on the
same machine where you are running isql. If the database is created locally, secondary
file names can include a full file specification, including both host or node names, and a
directory path to the location of the database file. If the database is created on a remote
server, secondary file specifications cannot include a node name, as all secondary files
must reside on the same node.

SPECIFYING FILE SIZE OF A SECONDARY FILE

Unlike primary files, when you define a secondary file, you must declare either a file
length in pages, or a starting page number. The LENGTH parameter specifies a database
file size in pages.

If you choose to describe page ranges in terms of length, list the files in the order in which
they should be filled. The following example creates a database that is stored in four
10,000-page files, Starting with page 10,001, the files are filled in the order employee.gdb,
employee.gd1, employee.gd2, and employee.gd3.
CREATE DATABASE "enpl oyee. gdb"
FI LE "enpl oyee. gd1" STARTI NG AT PAGE 10001
LENGTH 10000 PAGES
FI LE "enpl oyee. gd2"
LENGTH 10000 PAGES

INTERBASE 5

CREATING A DATABASE

IMPORTANT

FI LE "enpl oyee. gd3";
LENGTH 10000 PAGES

Note Because file-naming conventions are platform-specific, for the sake of simplicity,
none of the examples provided include the device and path name portions of the file
specification.

When the last secondary file fills up, InterBase automatically extends the file beyond the
LENGTH limit until its disk space runs out. You can either specify secondary files when the
database is defined, or add them later, as they become necessary, using ALTER DATABASE.
Defining secondary files when a database is created immediately reserves disk space for
the database.

SPECIFYING THE STARTING PAGE NUMBER OF A SECONDARY FILE

If you do not declare a length for a secondary file, then you must specify a starting page
number. STARTING AT PAGE specifies the beginning page number for a secondary file.

The primary file specification in a multi-file database does not need to include a length,
but secondary file specifications must then include a starting page number. You can
specify a combination of length and starting page numbers for secondary files.

InterBase overrides a secondary file length that is inconsistent with the starting page
number. In the next example, the primary file is 10,000 pages long, but the first secondary
file starts at page 5,000:

CREATE DATABASE "enpl oyee. gdb" LENGTH 10000
FI LE "enpl oyee. gd1" STARTI NG AT PAGE 5000
LENGTH 10000 PAGES
FI LE "enpl oyee. gd2"
LENGTH 10000 PAGES
FI LE "enpl oyee. gd3";

InterBase generates a primary file that is 10,000 pages long, starting the first secondary
file at page 10,001.

» Specifying user name and password

If provided, the user name and password are checked against valid user name and
password combinations in the security database on the server where the database will
reside. Passwords are restricted to 8 characters in length.

Windows client applications must create their databases on a remote server. For these
remote connections, the user name and password are ot optional. Windows clients
must provide the USER and PASSWORD options with CREATE DATABASE before connecting
to a remote server.

DATA DEFINITION GUIDE 43

44

CHAPTER 3 CREATING DATABASES

The following statement creates a database with a user name and password:
CREATE DATABASE "enpl oyee. gdb" USER " SALES"' PASSWORD "nycode";

» Specifying database page size

You can optionally override the default page size of 1024 bytes for database pages by
specifying a different PAGE_SIZE. PAGE_SIZE can be 1024, 2048, 4096, or 8192. The next
statement creates a single-file database with a page size of 2048 bytes:

CREATE DATABASE "enpl oyee. gdb" PAGE_SI ZE 2048;

WHEN TO INCREASE PAGE SIZE
Increasing page size can improve performance for several reasons:
® Indexes work faster because the depth of the index is kept to a minimum.

= Keeping large rows on a single page is more efficient. (A row that is too large to fit on a
single page requires more than one page fetch to read or write to it.)

® BLOB data is stored and retrieved more efficiently when it fits on a single page. If an
application typically stores large BLOB columns (between 1K and 2K), a page size of 2048
bytes is preferable to the default (1024).

If most transactions involve only a few rows of data, a smaller page size might be
appropriate, since less data needs to be passed back and forth and less memory is used
by the disk cache.

CHANGING PAGE SIZE FOR AN EXISTING DATABASE

To change a page size of an existing database, follow these steps:

1. Back up the database.

2. Restore the database using the PAGE_SIZE option to specify a new page size.

For more detailed information on backing up the database, see the Operations Guide.

» Specifying the default character set

DEFAULT CHARACTER SET allows you to optionally set the default character set for the
database. The character set determines:

® What characters can be used in CHAR, VARCHAR, and BLOB text columns.

® The default collation order that is used in sorting a column.

INTERBASE 5

ALTERING A DATABASE

Choosing a default character set is useful for all databases, even those where international
use is not an issue. Choice of character set determines if transliteration among character
sets is possible. For example, the following statement creates a database that uses the
ISO8859_1 character set, typically used in Europe to support European languages:

CREATE DATABASE "enpl oyee. gdb"
DEFAULT CHARACTER SET "I SCB859_1";

For a list of the international character sets and collation orders that InterBase supports,
see Chapter 14, “Character Sets and Collation Orders.”

USING CHARACTER SET NONE

If you do not specify a default character set, the character set defaults to NONE. Using
CHARACTER SET NONE means that there is no character set assumption for columns; data
is stored and retrieved just as you originally entered it. You can load any character set
into a column defined with NONE, but you cannot load that same data into another
column that has been defined with a different character set. No transliteration will be
performed between the source and destination character sets, so in most cases, errors will
occur during the attempted assignment.

For example:

CREATE TABLE MYDATA (PART_NUMBER CHARACTER(30) CHARACTER SET NONE);
SET NAMES LATI N1;

INSERT INTO MYDATA (PART_NUMBER) VALUES ("a");

SET NAMES DOS437;

SELECT * FROM MYDATA,

The data (“a”) is returned just as it was entered, without the a being transliterated from
the input character (LATIN1) to the output character (D0OS437). If the column had been set
to anything other than NONE, the transliteration would have occurred.

Altering a database

Use ALTER DATABASE to add one or more secondary files to an existing database.
Secondary files are useful for controlling the growth and location of a database. They
permit database files to be spread across storage devices, but must remain on the same
node as the primary database file. For more information on secondary files, see
“Creating a multi-file database” on page 42.

A database can be altered by its creator, the SYSDBA user, and any users with operating
system root privileges.

DATA DEFINITION GUIDE 45

CHAPTER 3 CREATING DATABASES

ALTER DATABASE requires exclusive access to the database. For more information about
exclusive database access, see the Operations Guide.

The syntax for ALTER DATABASE is:

ALTER { DATABASE | SCHEMA}

ADD <add_cl ause>;

<add_cl ause> =

FILE " <fil espec>" <fileinfo> [<add_cl ause>]

<fileinfo> = LENGTH [=] int [PAGE[S]] | STARTING [AT [PAGE]] int

[<fileinfo>]

You must specify a range of pages for each file either by providing the number of pages
in each file, or by providing the starting page number for the file. The following statement
adds two secondary files to the currently connected database:

ALTER DATABASE
ADD FI LE "enpl oyee. gd1"
STARTI NG AT PAGE 10001
LENGTH 10000
ADD FI LE "enpl oyee. gd2"
LENGTH 10000;

Dropping a database

DROP DATABASE is the command that deletes the database currently connected to,
including any associated shadow and log files. Dropping a database deletes any data it
contains. A database can be dropped by its creator, the SYSDBA user, and any users with
operating system root privileges.

The following statement deletes the current database:
DROP DATABASE;

Creating a database shadow

46

InterBase lets you recover a database in case of disk failure, network failure, or accidental
deletion of the database. The recovery method is called shadowing. This section describes
the various tasks involved in shadowing, as well as the advantages and limitations of
shadowing. The main tasks in setting up and maintaining shadowing are as follows:

INTERBASE 5

CREATING A DATABASE SHADOW

® CREATING A SHADOW Shadowing begins with the creation of a shadow. A shadow is an
identical physical copy of a database. When a shadow is defined for a database, changes
to the database are written simultaneously to its shadow. In this way, the shadow always
reflects the current state of the database. For information about the different ways to
define a shadow, see “Using CREATE SHADOW” on page 48.

= DELETING A SHADOW If shadowing is no longer desired, the shadow can be deleted. For
more information about deleting a shadow, see “Dropping a shadow” on page 52.

= ADDING FILES TO A SHADOW A shadow can consist of more than one file. As shadows
grow in size, files can be added to accommodate the increased space requirements.

Advantages of shadowing

Shadowing offers several advantages:
® Recovery is quick: Activating a shadow makes it available immediately.
® Creating a shadow does not require exclusive access to the database.

® You can control the allocation of disk space. A shadow can span multiple files on multiple
disks.

= Shadowing does not use a separate process. The database process handles writing to the
shadow.

= Shadowing runs behind the scenes and needs little or no maintenance.

Limitations of shadowing

Shadowing has the following limitations:

® Shadowing is useful only for recovery from hardware failures or accidental deletion of
the database. User errors or software failures that corrupt the database are duplicated in
the shadow.

® Recovery to a specific point in time is not possible. When a shadow is activated, it takes
over as a duplicate of the database. Shadowing is an “all or nothing” recovery method.

= Shadowing can occur only to a local disk. InterBase does not support shadowing to an
NFS file system, mapped drive, tape, or other media.

DATA DEFINITION GUIDE 47

CHAPTER 3 CREATING DATABASES

Before creating a shadow

Before creating a shadow, consider the following questions:
® Where will the shadow reside?

= A shadow should be created on a different disk from where the main database resides.
Because shadowing is intended as a recovery mechanism in case of disk failure,
maintaining a database and its shadow on the same disk defeats the purpose of
shadowing.

= How will the shadow be distributed?

= A shadow can be created as a single disk file called a shadow file or as multiple files called
a shadow set. To improve space allocation and disk /0O, each file in a shadow set can be
placed on a different disk.

® If something happens that makes a shadow unavailable, should users be allowed to
access the database?

= [f a shadow becomes unavailable, InterBase can either deny user access until shadowing
is resumed, or InterBase can allow access even though database changes are not being
shadowed. Depending on which database behavior is desired, the database administrator
(DBA) creates a shadow either in auto mode or in manual mode. For more information
about these modes, see “Auto mode and manual mode” on page 50.

= [f a shadow takes over for a database, should a new shadow be automatically created?

= To ensure that a new shadow is automatically created, create a conditional shadow. For
more information, see “Conditional shadows” on page 51.

Using CREATE SHADOW

Use the CREATE SHADOW statement to create a database shadow. Because this does not
require exclusive access, it can be done without affecting other users. A shadow can be
created using a combination of the following options:

= Single-file or multi-file shadows
® Auto or manual shadows
® Conditional shadows

These options are not mutually exclusive. For example, you can create a single-file,
manual, conditional shadow.

The syntax of CREATE SHADOW is:

INTERBASE 5

CREATING A DATABASE SHADOW

CREATE SHADOW set_num [AUTO | MANUAL] [CONDI TI ONAL]

"<filespec>" [LENGTH [=] int [PAGE S]]]

[<secondary file>];

<secondary file> = FILE "<filespec>" [<fileinfo>] [<secondary file>]
<fileinfo> = LENGTH [=] int [PAGE[S]] | STARTING [AT [PACE]] int

[<fileinfo>]

b Creating a single-file shadow
To create a single-file shadow for the database employee.gdb, enter:
CREATE SHADOW 1 "enpl oyee. shd";

The shadow is associated with the currently connected database, employee.gdb. The
name of the shadow file is employee.shd, and it is identified by a shadow set number, 1,
in this example. The shadow set number tells InterBase that all of the shadow files listed
are grouped together under this identifier.

To verify that the shadow has been created, enter the isql command SHOW DATABASE:

SHOW DATABASE;

Dat abase: enpl oyee. gdb

Shadow 1: "/usr/interbase/ enpl oyee. shd" auto
PAGE_SI ZE 1024

Nunber of DB pages al |l ocated = 392

Sweep interval = 20000

The page size of the shadow is the same as that of the database.

b Creating a multi-file shadow

If the size of a database exceeds the space available on one disk, create a multi-file
shadow and spread the files over several disks. To create a multi-file shadow, specify the
name and size of each file in the shadow set. File specifications are platform-specific. The
following examples illustrate the creation of a multi-file shadow on a Unix platform. The
shadow files are created on the A, B, and C drives of the IB_bckup node:

CREATE SHADOW 1 "1 B_bckup: / enpl oyee. shd" LENGTH 1000
FILE "1 B_bckup: / enpl. shd" LENGTH 2000
FI LE "1 B_bckup:/enp2. shd" LENGTH 2000;

This example creates a shadow set consisting of three files. The primary file,
employee.shd, is 1,000 database pages in length. The secondary files, each identified by
the FILE keyword, are each 2,000 database pages long.

DATA DEFINITION GUIDE 49

50

TABLE3.1

CHAPTER 3 CREATING DATABASES

Instead of specifying the page length of secondary files, you can specify their starting
pages. The previous example could be entered as follows:

CREATE SHADOW 1 "1 B_bckup: / enpl oyee. shd" LENGTH 1000
FILE "1 B_bckup:/enpl. shd" STARTI NG AT 1000
FILE "1 B_bckup: /enp2. shd" STARTI NG AT 3000;

In either case, you can use SHOW DATABASE to verify the file names, page lengths, and
starting pages for the shadow just created:

SHOW DATABASE;

Dat abase: enpl oyee. gdb

Shadow 1: | B_bckup:/enpl oyee. shd auto | ength 1000
file I B _bckup:/enpl.shd | ength 2000 starting 1000
file I B _bckup:/enp2.shd | ength 2000 starting 3000
PAGE_SI ZE 1024

Nunber of DB pages al |l ocated = 392

Sweep interval = 20000

Note The page length allocated for secondary shadow files need not correspond to the
page length of the database’s secondary files. As the database grows and its first shadow
file becomes full, updates to the database automatically overflow into the next shadow
file.

» Auto mode and manual mode

A shadow can become unavailable for the same reasons a database becomes unavailable:
disk failure, network failure, or accidental deletion. If a shadow becomes unavailable,
and it was created in auto mode, database operations continue automatically without
shadowing. If a shadow becomes unavailable, and it was created in manual mode, further
access to the database is denied until the database administrator intervenes. The benefits
of auto mode and manual mode are compared in the following table:

Mode Advantage Disadvantage
Auto Database operation is uninterrupted. ~ Creates a temporary period when the database is
not shadowed.

The DBA might be unaware that the database is
operating without a shadow.

Manual Prevents the database from running Database operation is halted until the problem is
unintentionally without a shadow. fixed. Needs intervention of the DBA.

Auto vs. manual shadows

INTERBASE 5

CREATING A DATABASE SHADOW

AUTO MODE

The AUTO keyword directs the CREATE SHADOW statement to create a shadow in auto
mode:

CREATE SHADOW 1 AUTO "enpl oyee. shd";

Auto mode is the default, so omitting the AUTO keyword achieves the same result.

In auto mode, database operation is uninterrupted even though there is no shadow. To
resume shadowing, it might be necessary to create a new shadow. If the original shadow
was created as a conditional shadow, a new shadow is automatically created. For more
information about conditional shadows, see “Conditional shadows” on page 51.

MANUAL MODE

The MANUAL keyword directs the CREATE SHADOW statement to create a shadow in manual
mode:

CREATE SHADOW 1 MANUAL "enpl oyee. shd";

Manual mode is useful when continuous shadowing is more important than continuous
operation of the database. When a manual-mode shadow becomes unavailable, further
connections to the database are prevented. To allow database connections again, the

database administrator must remove the old shadow file. After deleting the references, a
new shadow can be created if shadowing needs to resume.

» Conditional shadows

A shadow can be defined so that if it replaces a database, a new shadow will be
automatically created, allowing shadowing to continue uninterrupted. A shadow defined
with this behavior is called a conditional shadow.

To create a conditional shadow, specify the CONDITIONAL keyword with the CREATE
SHADOW statement. For example:

CREATE SHADOW 3 CONDI Tl ONAL "enpl oyee. shd";
Creating a conditional file directs InterBase to automatically create a new shadow. This
happens in either of two cases:

= The database or one of its shadow files becomes unavailable.

= The shadow takes over for the database due to hardware failure.

DATA DEFINITION GUIDE 51

CHAPTER 3 CREATING DATABASES

Dropping a shadow

To stop shadowing, use the shadow number as an argument to the DROP SHADOW
statement. DROP SHADOW deletes shadow references from a database’s metadata, as well
as the physical files on disk.

A shadow can be dropped by its creator, the SYSDBA user, or any user with operating
system root privileges.

DROP SHADOW syntax

DROP SHADOW set _num
The following example drops all of the files associated with the shadow set
number 1:

DROP SHADOW 1;

If you need to look up the shadow number, use the isql command SHOW DATABASE.

SHOW DATABASE;

Dat abase: enpl oyee. gdb

Shadow 1: "enpl oyee. shd" auto
PAGE_SI ZE 1024

Number of DB pages all ocated = 392
Sweep interval = 20000

Expanding the size of a shadow

52

If a database is expected to increase in size, or if the database is already larger than the
space available for a shadow on one disk, you might need to expand the size of the
shadow. To do this, drop the current shadow and create a new one containing additional
files. To add a shadow file, first use DROP SHADOW to delete the existing shadow, then use
CREATE SHADOW to recreate it with the desired number of secondary files.

The page length allocated for secondary shadow files need not correspond to the page
length of the database’s secondary files. As the database grows and its first shadow file
becomes full, updates to the database automatically overflow into the next shadow file.

INTERBASE 5

USING ISQL TO EXTRACT DATA DEFINITIONS

Using isql to extract data definitions

isql enables you to extract data definition statements from a database and store them in
an output file. All keywords and objects are extracted into the file in uppercase.

The output file enables users to:

= Examine the current state of a database’s system tables before planning alterations. This
is especially useful when the database has changed significantly since its creation.

® Create a database with schema definitions that are identical to the extracted database.

® Make changes to the database, or create a new database source file with a text editor.

Extracting an InterBase 4.0 database

You can use Windows ISQL on a Windows Client PC to extract data definition statements.
On some servers, you can also use command-line isql on the server platform to extract
data definition statements. For more information on using Windows ISQL and
command-line isql, see the Operations Guide.

Extracting a 3.x database

To extract metadata from a 3.x database, use command-line isql on the server. Use the -a
switch instead of -x. The difference between the -x option and the -a option is that the -x
option extracts metadata for SQL objects only, and the -@ option extracts all DDL for the
named database. The syntax can differ depending upon operating system requirements.

The following command extracts the metadata from the employee.gdb database into the
file, newdb.sql.:

isql -a enployee.gdb -0 newdb. sql

For more information on using command-line isql, see the Operations Guide.

DATA DEFINITION GUIDE 53

54

CHAPTER 3 CREATING DATABASES

INTERBASE 5

CHAPTER

Specifying Datatypes

This chapter describes the following:

= All of the datatypes that are supported by InterBase, and the allowable operations on
each type

= Where to specify the datatype, and which data definition statements reference or define
the datatype

= How to specify a default character set
® How to create each datatype, including BLOB data
® How to create arrays of datatypes

® How to perform datatype conversions

DATA DEFINITION GUIDE 55

CHAPTER 4 SPECIFYING DATATYPES

About InterBase datatypes

When creating a new column in an InterBase table, the primary attribute that you must
define is the datatype, which establishes the set of valid data that the column can contain.
Only values that can be represented by that datatype are allowed. Besides establishing
the set of valid data that a column can contain, the datatype defines the kinds of
operations that you can perform on the data. For example, numbers in INTEGER columns
can be manipulated with arithmetic operations, while CHARACTER columns cannot.

The datatype also defines how much space each data item occupies on the disk. Choosing
an optimum size for the data value is an important consideration when disk space is
limited, especially if a table is very large.

InterBase supports the following datatypes:
® INTEGER and SMALLINT
® FLOAT and DOUBLE PRECISION
® NUMERIC and DECIMAL
" DATE
® CHARACTER and VARYING CHARACTER

" BLOB

InterBase provides the binary large object (BLOB) datatype to store data that cannot easily
be stored in one of the standard SQL datatypes. A BLOB is used to store very large data
objects of indeterminate and variable size, such as bitmapped graphics images, vector
drawings, sound files, video segments, chapter or book-length documents, or any other
kind of multimedia information.

InterBase also supports arrays of most datatypes. An array is a matrix of individual items
composed of any single InterBase datatype (except BLOB). An array can have from 1 to
16 dimensions. An array can be handled as a single entity, or manipulated item-by-item.

A DATE datatype is supported that includes information about year, month, day of the
month, and time. The DATE datatype is stored as two long integers, and requires
conversion to and from InterBase when entered or manipulated in a host-language
program.

56 INTERBASE 5

ABOUT INTERBASE DATATYPES

The following table describes the datatypes supported by InterBase:

Name Size Range/Precision Description
BLOB Variable None; BLOB segment sizeis Binary large object; stores large data, such as
limited to 64K graphics, text, and digitized voice; basic structural
unit: segment; the subtype describes the contents
CHAR(n) n characters 1to0 32767 bytes Fixed length CHAR or text string type
Character set character size Alternate keyword: CHARACTER
determines the maximum
number of characters that
can fitin 32K
DATE 64 bits 1Jan 100 a.d. to 29 February, Also includes time information
32768 a.d.
DECIMAL variable precision =1 to 15; specifies Number with a decimal point scale digits from the
(precision, scale) at least precision digits of right. For example, DECIMAL(10, 3) holds numbers
precision to store accurately in the following format:
scale =1to 15; specifies PPPPPPP.SSS
number of decimal places for
storage; must be less than or
equal to precision
DOUBLE 64 bits? 1.7x107308t9 1.7x 10398 Scientific: 15 digits of precision
PRECISION
FLOAT 32 bits 34x10738t03.4x 1038 Single precision: 7 digits of precisionxxsaz
INTEGER 32 bits -2,147,483,648 to Signed long (longword)
2,147,483,647

TABLE4.1 Datatypes supported by InterBase

DATA DEFINITION GUIDE

57

CHAPTER 4 SPECIFYING DATATYPES

Name Size Range/Precision Description

NUMERIC variable precision = 1to 15; specifies Number with a decimal point scale digits from the

(precision, scale) exactly precision digits of right. Forexample, NUMERIC(10,3) holds numbers
precision to store accurately in the following format:

scale =1to 15; specifies PPPPPPP-SSS
number of decimal places for

storage; must be less than or

equal to precision

SMALLINT 16 bits —-3276810 32767 Signed short (word).

VARCHAR(n) n characters 1to 32765 bytes Variable length CHAR or text string type.
Character set character size Alternate keywords: CHAR VARYING, CHARACTER
determines the maximum VARYING
number of characters that
can fitin 32K

TABLE4.1 Datatypes supported by InterBase (continued)

a. Actual size of DOUBLE is platform-dependent. Most platforms support the 64-bit size.

Where to specify datatypes
A datatype is assigned to a column in the following situations:
® Creating a table using CREATE TABLE.
® Creating a global column template using CREATE DOMAIN.
® Adding a new column to a table using ALTER TABLE.

58 INTERBASE 5

DEFINING NUMERIC DATATYPES

The syntax for specifying the datatype with these statements is provided here for
reference.

<dat at ype> = {
{SMALLI NT | I NTEGER | FLCAT | DOUBLE PRECI SI ON} [<array_dinp]
| {DECIMAL | NUMERI C [(precision [, scale])] [<array_dinp]
| DATE [<array_di np]
| {CHAR | CHARACTER | CHARACTER VARYI NG | VARCHAR}
[(int)] [<array_dinr] [CHARACTER SET char nane]
| {NCHAR | NATI ONAL CHARACTER | NATI ONAL CHAR}
[VARYING [(int)] [<array_dinp]
| BLOB [SUB_TYPE {int | subtype_nane}] [SEGVENT Sl ZE int]
[CHARACTER SET char nane]
| BLOB [(seglen [, subtype]l)]
}

For more information on how to create a datatype using CREATE TABLE
and ALTER TABLE, see Chapter 6, “Working with Tables.” For more information on using
CREATE DOMAIN to define datatypes, see Chapter 5, “Working with Domains.”

Defining numeric datatypes

The numeric datatypes that InterBase supports include integer numbers of various sizes
(INTEGER and SMALLINT), floating-point numbers with variable precision (FLOAT, DOUBLE
PRECISION), and formatted, fixed-decimal numbers (DECIMAL, NUMERIC).

Integer datatypes

Integers are whole numbers. InterBase supports two integer datatypes: SMALLINT and
INTEGER. SMALLINT is a signed short integer with a range from —32,768 to 32,767. INTEGER
is a signed long integer with a range from -2,147,483,648 to 2,147,483,647.

The next two statements create domains with the SMALLINT and INTEGER datatypes:

CREATE DOVAI N EMPNO

AS SMVALLI NT;

CREATE DOVAI N CUSTNO

AS | NTEGER

CHECK (VALUE > 99999);

You can perform the following operations on the integer datatypes:

DATA DEFINITION GUIDE 59

60

CHAPTER 4 SPECIFYING DATATYPES

® Comparisons using the standard relational operators (=, <, >, >=, <=). Other operators
such as CONTAINING, STARTING WITH, and LIKE perform string comparisons on numeric
values.

® Arithmetic operations. The standard arithmetic operators determine the sum, difference,
product, or dividend of two or more integers.

= Conversions. When performing arithmetic operations that involve mixed datatypes,
InterBase automatically converts between INTEGER, FLOAT, and CHAR datatypes. For
operations that involve comparisons of numeric data with other datatypes, InterBase first
converts the data to a numeric type, then performs the arithmetic operation or
comparison.

= Sorts. By default, a query retrieves rows in the exact order that it finds them in the table,
which is likely to be unordered. You can sort rows using the ORDER BY clause of a SELECT
statement in descending or ascending order.

Fixed-decimal datatypes

InterBase supports two SQL datatypes, NUMERIC, and DECIMAL, for handling numeric data
with a fixed decimal point, such as monetary values. You can specify optional precision
and scale factors for both datatypes. Precision is the maximum number of total digits,
both significant and fractional, that can appear in a column of these datatypes. Scale is
the number of digits to the right of the decimal point that comprise the fractional portion
of the number. The allowable range for both precision and scale is from 1 to a maximum
of 15, and scale must be less than or equal to precision.

The syntax for NUMERIC and DECIMAL is as follows:
NUMERI C[(precision [, scale])]
DECI MAL[(precision [, scale])]

You can specify NUMERIC and DECIMAL datatypes without precision or scale, with
precision only, or with both precision and scale. When you specify a NUMERIC datatype
with both precision and scale, the exact number of digits that you specified in precision
and scale are stored. For example,

NUMER! C(4, 2)
declares that a column of this type always holds numbers with up to two significant digits,
with exactly two digits to the right of the decimal point: pp.ss.

When you specify a DECIMAL datatype with both precision and scale, the number of total
digits stored is at least as many as you specified in precision, and the exact number of
fractional digits that you specified in scale. For example,

INTERBASE 5

DEFINING NUMERIC DATATYPES

DATA DEFINITION GUIDE

DECI MAL(4, 2)
declares that a column of this type must be capable of holding at least two, but possibly
more significant digits, and exactly two digits to the right of the decimal point: pp.ss.

» How InterBase stores fixed-decimal datatypes

When you create a domain or column with a NUMERIC or DECIMAL datatype, InterBase
determines which datatype to use for internal storage based on the precision and scale
that you specify. NUMERIC and DECIMAL datatypes store numbers in three ways:

Defined without precision or scale—always stored as INTEGER.

Defined with precision, but not scale—depending upon the precision specified, stored as
SMALLINT, INTEGER, or DOUBLE PRECISION.

Defined with both precision and scale—depending upon the precision specified, stored
as SMALLINT, INTEGER, or DOUBLE PRECISION.

The following table summarizes how InterBase stores NUMERIC and
DECIMAL datatypes based on precision and scale:

Datatype specified as... Datatype stored as...
NUMERIC INTEGER
NUMERIC(4) SMALLINT
NUMERIC(9) INTEGER
NUMERIC(10) DOUBLE PRECISION
NUMERIC(4,2) SMALLINT
NUMERIC(9,3) INTEGER
NUMERIC(10,4) DOUBLE PRECISION
DECIMAL INTEGER
DECIMAL(4) INTEGER
DECIMAL(9) INTEGER
DECIMAL(10) DOUBLE PRECISION
DECIMAL(4,2) INTEGER
DECIMAL(9,3) INTEGER
DECIMAL(10,4) DOUBLE PRECISION

61

IMPORTANT

IMPORTANT

62

Tip

CHAPTER 4 SPECIFYING DATATYPES

) Specifying NUMERIC and DECIMAL without scale

For a NUMERIC datatype, if a precision of less than 5 is specified without scale, InterBase
stores the datatype as a SMALLINT. If the precision is less than 10, InterBase stores the
type as an INTEGER. For precisions of 10 or greater, the datatype is stored as DOUBLE
PRECISION. See the previous table for the exact specifications.

Therefore, when you declare NUMERIC and DECIMAL datatypes with a precision of 10 or
greater, fractional numbers can be stored without specifying a scale.

For example, in isql, if you specify “NUMERIC(10)”, and insert a 13-digit number
“2555555.256789,” the number is stored exactly as specified, with 13 digits of precision
and six digits to the right of the decimal. Conversely, if you format the column as
NUMERIC(9), and insert the same 13-digit number “2555555.256789,” InterBase truncates
the fraction and stores the number as an INTEGER, “2555555.”

Similarly, for a DECIMAL datatype, if a precision of less than 10 is specified without scale,
InterBase stores the datatype as INTEGER; otherwise, it stores the datatype as DOUBLE
PRECISION.

When you format the column as NUMERIC or DECIMAL with a precision of 10 or greater
without scale, you lose the ability to control both scale and precision.

Using the same NUMERIC(10) example, when you insert the 13-digit number
“2555555.256789,” the number is stored exactly as specified, with 73 digits of precision
and 6 digits to the right of the decimal. If you insert an 11-digit number “255555.25678,”
the number is also stored exactly as specified with 77 digits of precision, and 5 fractional
digits. You might expect that the precision would always be 10 because you explicitly
specified 10, but it also varies depending upon precision of the inserted data.

If you want to store fixed-decimal numbers such as monetary values, do not declare
NUMERIC or DECIMAL with a precision of 10 or greater without specifying scale. In
addition, if you need to control the precision for decimal data, you must specify scale.

b Specifying NUMERIC and DECIMAL with scale and precision

When a NUMERIC or DECIMAL datatype declaration includes both precision and scale,
values containing a fractional portion can be stored, and you can control the number of
fractional digits. InterBase stores such values internally as SMALLINT, INTEGER, or DOUBLE
PRECISION data, depending on the precision specified. How can a number with a
fractional portion be stored as an integer value? For all SMALLINT and INTEGER data
entered, InterBase stores:

INTERBASE 5

DEFINING NUMERIC DATATYPES

= A scale factor, a negative number indicating how many decimal places are contained in
the number, based on the power of 10. A -1 scale factor indicates a fractional portion of
tenths; a -2 scale factor indicates a fractional portion of hundredths. You do not need to
include the sign; it is negative by default.

For example, when you specify NUMERIC(4,2), InterBase stores the number internally as
a SMALLINT. If you insert the number “25.253,” it is stored as a decimal “25.25,” with 4
digits of precision, and a scale of 2.

The number is divided by 10 to the power of “scale” (number/10%4%) to produce a
number without a fractional portion.

» Specifying datatypes using embedded applications

DSQL applications such as isql can correct for the scale factor for SMALLINT and INTEGER
datatypes by examining the XSQLVAR sg/scale field and dividing to produce the correct
value.

IMPORTANT Embedded applications cannot use or recognize small precision NUMERIC or DECIMAL
datatypes with fractional portions when they are stored as SMALLINT or INTEGER types. To
avoid this problem, create all NUMERIC and DECIMAL datatypes that are to be accessed
from embedded applications with a precision of 10 or more, which forces them to be
stored as DOUBLE PRECISION. Again, remember to specify a scale if you want to control
the precision and scale.

Both SQL and DSQL applications handle NUMERIC and DECIMAL types stored as DOUBLE
PRECISION without problem.

Floating-point datatypes

InterBase provides two floating-point datatypes, FLOAT and DOUBLE PRECISION; the only
difference is their size. FLOAT specifies a single-precision, 32-bit datatype with a precision
of approximately 7 decimal digits. DOUBLE PRECISION specifies a double-precision, 64-bit
datatype with a precision of approximately 15 decimal digits.

The precision of FLOAT and DOUBLE PRECISION is fixed by their size, but the scale is not,
and you cannot control the formatting of the scale. With floating numeric datatypes, the
placement of the decimal point can vary; the position of the decimal is allowed to “float.”
For example, in the same column, one value could be stored as “25.33333,” and another
could be stored as “25.333.”

Use floating-point numbers when you expect the placement of the decimal point to vary,
and for applications where the data values have a very wide range, such as in scientific
calculations.

DATA DEFINITION GUIDE 63

CHAPTER 4 SPECIFYING DATATYPES

If the value stored is outside of the range of the precision of the floating-point number,
then it is stored only approximately, with its least-significant digits treated as zeros. For
example, if the type is FLOAT, you are limited to 7 digits of precision. If you insert a
10-digit number “25.33333312” into the column, it is stored as “25.33333.”

The next statement creates a column, PERCENT_CHANGE, using a2 DOUBLE PRECISION type:

CREATE TABLE SALARY_HI STORY
(. . .
PERCENT_CHANGE DOUBLE PRECI SI ON

DEFAULT O

NOT NULL

CHECK (PERCENT_CHANGE BETWEEN - 50 AND 50),

)5

You can perform the following operations on FLOAT and DOUBLE PRECISION datatypes:

® Comparisons using the standard relational operators (=, <, >, >=, <=). Other operators
such as CONTAINING, STARTING WITH, and LIKE perform string comparisons on the integer
portion of floating data.

® Arithmetic operations. The standard arithmetic operators determine the sum, difference,
product, or dividend of two or more integers.

® Conversions. When performing arithmetic operations that involve mixed datatypes,
InterBase automatically converts between INTEGER, FLOAT, and CHAR datatypes. For
operations that involve comparisons of numeric data with other datatypes, such as
CHARACTER and INTEGER, InterBase first converts the data to a numeric type, then
compares them numerically.

® Sorts. By default, a query retrieves rows in the exact order that it finds them in the table,
which is likely to be unordered. Sort rows using the ORDER BY clause of a SELECT
statement in descending or ascending order.

The following CREATE TABLE statement provides an example of how the different numeric
types can be used: an INTEGER for the total number of orders, a fixed DECIMAL for the
dollar value of total sales, and a FLOAT for a discount rate applied to the sale.

CREATE TABLE SALES
(. . .
QTY_ORDERED | NTEGER
DEFAULT 1
CHECK (QTY_ORDERED >= 1),
TOTAL_VALUE DECI MAL (9, 2)

INTERBASE 5

THE DATE DATATYPE

CHECK (TOTAL_VALUE >= 0),
DI SCOUNT FLOAT
DEFAULT 0
CHECK (DI SCOUNT >= 0 AND DI SCOUNT <= 1));

The DATE datatype

InterBase supports a DATE datatype that stores dates as two 32-bit longwords. Valid dates
are from January 1, 100 a.d. to February 29, 32768 a.d. The following statement creates
DATE columns in the SALES table:

CREATE TABLE SALES
(. . .
ORDER DATE DATE
DEFAULT " now'
NOT NULL,
SHI P_DATE DATE
CHECK (SHI P_DATE >= ORDER DATE OR SHI P_DATE IS NULL),

)

In the previous example, “now” returns the system date and time.

Converting to the DATE datatype

Most languages do not support the DATE datatype. Instead, they express dates as strings
or structures. The DATE datatype requires conversion to and from InterBase when entered
or manipulated in a host-language program. There are two ways to use the DATE
datatype:

1. Create a string in a format that InterBase understands (for example,
“1-JAN-1994”). When you insert the date into a DATE column, InterBase
automatically converts the text into the internal DATE format.

2. Use the call interface routines provided by InterBase to do the conversion.
isc_decode_date() converts from the InterBase internal DATE format to the C
time structure. isc_encode_date() converts from the C time structure to the
internal InterBase DATE format.

Note The string conversion described in item 1 does not work in the other direction. To
read a date in an InterBase format and convert it to a C date variable, you must call
isc_decode_date().

DATA DEFINITION GUIDE 65

CHAPTER 4 SPECIFYING DATATYPES

For more information about how to convert date datatypes in C, and how to use the cast()
function for type conversion using SELECT statements, see the Programmer’s Guide.

InterBase and the year 2000

InterBase stores all date values correctly, including those after the year 2000. InterBase
always stores the full year value in a DATE column, never the two-digit abbreviated value.
When a client application enters a two-digit year value, InterBase uses the “sliding
window” algorithm, described below, to make an inference about the century and stores
the full date value including the century. When you retrieve the data, InterBase returns
the full year value including the century information. It is up to client applications to
display the information with two or four digits.

The sliding window algorithm that InterBase uses to infer a century is the following:
- Compare the two-digit year number entered to the current year modulo 100

- If the absolute difference is greater than 50, then infer that the century of the number
entered is 20, otherwise it is 19.

Character datatypes

66

InterBase supports four character string datatypes:

1. A fixed-length character datatype, called CHAR(72) or CHARACTER(%2), where 72
is the exact number of characters stored.

2. A variable-length character type, called VARCHAR(72) or CHARACTER
VARYING(n), where # is the maximum number of characters in the string.

3. An NCHAR(72) or NATIONAL CHARACTER(#72) or NATIONAL CHAR(72) datatype,
which is a fixed-length character string of # characters which uses the
ISO8859_1 character set.

4. An NCHAR VARYING(72) or NATIONAL CHARACTER VARYING(72) or NATIONAL CHAR
VARYING(72) datatype, which is a variable-length national character string up
to a maximum of 7z characters.

INTERBASE 5

CHARACTER DATATYPES

Specifying a character set

When you define the datatype for a column, you can specify a character set for the
column with the CHARACTER SET argument. This setting overrides the database default
character set that is assigned when the database is created.

You can also change the default character set with SET NAMES in command-line isql or with
the Session | Advanced Settings command in Windows ISQL. For details about using
interactive SQL in either environment, see the Operations Guide.

The character set determines:

What characters can be used in CHAR, VARCHAR, and BLOB text columns.

The collation order to be used in sorting the column.

Note Collation order does not apply to BLOB data.

For example, the following statement creates a column that uses the ISO8859_1 character
set, which is typically used in Europe to support European languages:

CREATE TABLE EMPLOYEE
(FI RST_NAME VARCHAR(10) CHARACTER SET | SO8859 1,

)

For a list of the international character sets and collation orders that InterBase supports,
see Chapter 14, “Character Sets and Collation Orders.”

b Characters vs. bytes

The number of bytes that the system uses to store a single character can vary depending
upon the character set. InterBase limits a character column to 32,767 bytes. Some
character sets require two or three bytes per character, so the maximum number of
characters allowed in 7 varies depending upon the character set used.

In the case of a single-byte character column, one character is stored in one byte, so the
internal memory used to store the string is also 32,767 bytes. Therefore, you can define
32,767 characters per single-byte column without encountering an error.

In the case of multi-byte characters, one character does not equal one byte.
In the following example, the user specifies a CHAR datatype using the UNICODE_FSS
character set:

CHAR (10922) CHARACTER SET UNI CODE_FSS; /* succeeds */
CHAR (10923) CHARACTER SET UNI CODE_FSS; /* fails */

DATA DEFINITION GUIDE 67

68

CHAPTER 4 SPECIFYING DATATYPES

This character set has a maximum size of 3 bytes for a single character. Because each
character requires 3 bytes of internal storage, the maximum number of characters
allowed without encountering an error is 10,922 (32,767 divided by 3 is approximately
10,922).

Note To determine the maximum number of characters allowed in the data definition
statement of any multi-byte column, look up the number of bytes per character in
Appendix A. Then divide 32,767 (the internal byte storage limit for any character
datatype) by the number of bytes for each character. Two-byte character sets have a
character limit of 16,383 per field, and a three-byte character set has a limit of 10,922
characters per field.

» Using CHARACTER SET NONE

If a default character set was not specified when the database was created, the character
set defaults to NONE. Using CHARACTER SET NONE means that there is no character set
assumption for columns; data is stored and retrieved just as you originally entered it. You
can load any character set into a column defined with NONE, but you cannot load that
same data into another column that has been defined with a different character set. No
transliteration will be performed between the source and destination character sets, so in
most cases, errors will occur during the attempted assignment.

For example:

CREATE TABLE MYDATA (PART_NUMBER CHARACTER(30) CHARACTER SET NONE);
SET NAMES LATI N1,

INSERT INTO MYDATA (PART_NUMBER) VALUES("a");

SET NAMES DOS437,

SELECT * FROM MYDATA,

The data (“a”) is returned just as it was entered, without the a being transliterated from
the input character (LATIN1) to the output character (D0OS437). If the column had been set
to anything other than NONE, the transliteration would have occurred.

» About collation order

Each character set has its own subset of possible collation orders. The character set that
you choose when you define the datatype limits your choice of collation orders. The
collation order for a column is specified when you create the table.

For a list of the international character sets and collation orders that InterBase supports,
see Chapter 14, “Character Sets and Collation Orders.”

INTERBASE 5

CHARACTER DATATYPES

Fixed-length character data

InterBase supports two fixed-length string datatypes: CHAR(#n), or alternately CHARACTER
(n), and NCHAR(#), or alternately NATIONAL CHAR(72).

» CHAR(72) or CHARACTER(72)

The CHAR(72) or CHARACTER(72) datatype contains character strings. The number of
characters 7 is fixed. For the maximum number of characters allowed for the character
set that you have specified, see Chapter 14, “Character Sets and Collation Orders.”

When the string to be stored or read contains less than 7 characters, InterBase fills in the
blanks to make up the difference. If a string is larger than #, then the value is truncated.
If you do not supply 7, it will default to 1, so CHAR is the same as CHAR(1). The next
statement illustrates this:

CREATE TABLE SALES
(. ..
PAI D CHAR

DEFAULT ' n’

CHECK (PAIDIN ('y’, 'n’),
coe)l
Trailingblanks InterBase compresses trailing blanks when it stores fixed-length strings,
so data with trailing blanks uses the same amount of space as an equivalent
variable-length string. When the data is read, InterBase reinserts the blanks. This saves
disk space when the length of the data items varies widely.

» NCHAR(72) or NATIONAL CHAR(72)

NCHAR(7) is exactly the same as CHARACTER(72), except that the 1S08859_1 character set is
used by definition. Using NCHAR(#) is a shortcut for using the CHARACTER SET clause to
specify the “ISO8859_1” character set for a column.

The next two CREATE TABLE examples are equivalent:

CREATE TABLE EMPLOYEE
(. . .
FI RST_NAME NCHAR(10),
LAST_NAME NCHAR(15),
Coe)
CREATE TABLE EMPLOYEE
(. . .
FI RST_NAME CHAR(10) CHARACTER SET "1 S08859 1",
LAST_NAME CHAR(15) CHARACTER SET "|S08859 1",

)

DATA DEFINITION GUIDE 69

CHAPTER 4 SPECIFYING DATATYPES

Variable-length character data

InterBase supports two variable-length string datatypes: VARCHAR(72), or alternately
CHAR(72) VARYING, and NCHAR(#2), or alternately NATIONAL CHAR(72) VARYING.

) VARCHAR(72)

VARCHAR(72)—also called CHAR VARYING(72), or CHARACTER VARYING(72)—allows you to
store the exact number of characters that is contained in your data, up to a maximum of
n. You must supply 7; there is no default to 1.

If the length of the data within a column varies widely, and you do not want to pad your
character strings with blanks, use the VARCHAR(72) or CHARACTER VARYING(72) datatype.

InterBase converts from variable-length character data to fixed-length character data by
adding spaces to the value in the varying column until the column reaches its maximum
length ». When the data is read, InterBase removes the blanks.

The main advantages of using the VARCHAR(#) datatype are that it saves disk space, and
since more rows fit on a disk page, the database server can search the table with fewer
disk I/O operations. The disadvantage is that table updates can be slower than using a
fixed-length column in some cases.

The next statement illustrates the VARCHAR(#) datatype:

CREATE TABLE SALES

(. . .

ORDER_STATUS VARCHAR(7)

DEFAULT " new'

NOT NULL

CHECK (ORDER_STATUS I N ("new', "open", "shipped", "waiting")),
)

» NCHAR VARYING(72)

NCHAR VARYING(72)—also called NATIONAL CHARACTER VARYING (72) or NATIONAL CHAR
VARYING(72)—is exactly the same as VARCHAR(72), except that the ISO8859_1 character set
is used. Using NCHAR VARYING(#2) is a shortcut for using the CHARACTER SET clause of
CREATE TABLE, CREATE DOMAIN, or ALTER TABLE to specify the ISO8859_1 character set.

INTERBASE 5

DEFINING BLOB DATATYPES

Defining BLOB datatypes

InterBase supports a dynamically sizable datatype called a BLOB to store data that cannot
easily be stored in one of the standard SQL datatypes. A Blob is used to store very large
data objects of indeterminate and variable size, such as bitmapped graphics images,
vector drawings, sound files, video segments, chapter or book-length documents, or any
other kind of multimedia information. Because a Blob can hold different kinds of
information, it requires special processing for reading and writing. For more information
about Blob handling, see the Programmer’s Guide.

The BLOB datatype provides the advantages of a database management system, including
transaction control, maintenance by database utilities, and access using SELECT, INSERT,
UPDATE, and DELETE statements. Use the BLOB datatype to avoid storing pointers to
non-database files.

BLOB columns

BLOB columns can be defined in database tables like non-BLOB columns. For example,
the following statement creates a table with a BLOB column:

CREATE TABLE PRQIECT
(PRQJ_I D PRQINO NOT NULL,
PRQJ_NAME VARCHAR(20) NOT NULL UN QUE,
PROJ_DESC BLOB,
TEAM _LEADER EMPNG,
PRODUCT PRODTYPE,

)

Rather than storing BLOB data directly, a BLOB column stores a BLOB ID. A BLOB ID is a
unique numeric value that references BLOB data. The BLOB data is stored elsewhere in the
database, in a series of BLOB segments, units of BLOB data read and written in chunks.
When a BLOB is created, data is written to it a segment at a time. Similarly, when a BLOB
is read, it is read a segment at a time.

The following diagram shows the relationship between a BLOB column containing a
BLOB ID and the BLOB data referenced by the BLOB ID:

DATA DEFINITION GUIDE 71

72

FIGURE 4.1

CHAPTER 4 SPECIFYING DATATYPES

BLOB relationships

BLOB
column
Table row BLOBID |
BLOB data ‘segment segment segment 8
BLOB segment length

When a BLOB column is defined in a table, the BLOB definition can specify the expected
size of BLOB segments that are written to the column. Actually, for SELECT, INSERT, and
UPDATE operations, BLOB segments can be of varying length. For example, during
insertion, a BLOB might be read in as three segments, the first segment having length 30,
the second having length 300, and the third having length 3.

The length of an individual segment should be specified when it is written. For example,
the following code fragment inserts a BLOB segment. The segment length is specified in
the host variable, segment_length:

I NSERT CURSOR BCI NS VALUES (:wite_segnent _buffer:segnent _| ength);

» Defining segment length

gpre, the InterBase precompiler, is used to process embedded SQL statements inside
applications. The segment length setting, defined for a BLOB column when it is created,
is used to determine the size of the internal buffer where the BLOB segment data will be
written. This setting specifies (to gpre) the maximum number of bytes that an application
is expected to write to any segment in the column. The default segment length is 80.
Normally, an application should not attempt to write segments larger than the segment
length defined in the table; doing so overflows the internal segment buffer, corrupting
memory in the process.

The segment length setting does not affect InterBase system performance. Choose the
segment length most convenient for the specific application. The largest possible segment
length is 32 kilobytes (32,767 bytes).

» Segment syniax

The following statement creates two BLOB columns, BLOB1, with a default segment size
of 80, and BLOB2, with a specified segment length of 512:

INTERBASE 5

DEFINING BLOB DATATYPES

CREATE TABLE TABLE2
(BLOB1 BLOB,
BLOB2 BLOB SEGMENT SI ZE 512);

BLOB subtypes

When a BLOB column is defined, its subtype can be specified. A BLOB subtype is a positive
or negative integer that describes the nature of the BLOB data contained in the column.
InterBase provides two predefined subtypes, 0, signifying that a BLOB contains binary
data, the default, and 1, signifying that a BLOB contains ASCII text. User-defined subtypes
must always be represented as negative integers. Positive integers are reserved for use by
InterBase.

Blob subtype Description

0 Unstructured, generally applied to binary data or data of an indeterminate type
1 Text

2 Binary language representation (BLR)

3 Access control list

4 (Reserved for future use)

5 Encoded description of a table’s current metadata

6 Description of multi-database transaction that finished irregularly

For example, the following statement defines three BLOB columns: BLOB1 with subtype 0
(the default), BLOB2 with InterBase subtype 1 (TEXT), and BLOB3 with user-defined
subtype —1:

CREATE TABLE TABLE2

(BLOB1 BLOB,

BLOB2 BLOB SUB_TYPE 1,

BLOB3 BLOB SUB_TYPE -1);
The application is responsible for ensuring that data stored in a BLOB column agrees with
its subtype. For example, if subtype —10 denotes a certain datatype in a particular
application, then the application must ensure that only data of that datatype is written to
a BLOB column of subtype —10. InterBase does not check the type or format of BLOB
data.

DATA DEFINITION GUIDE 73

CHAPTER 4 SPECIFYING DATATYPES

To specify both a default segment length and a subtype when creating a BLOB column,
use the SEGMENT SIZE option after the SUB_TYPE option, as in the following example:

CREATE TABLE TABLE2
(BLOB1 BLOB SUB_TYPE 1 SEGVENT Sl ZE 100 CHARACTER SET DOS437;);

BLOB filters

BLOB subtypes are used in conjunction with BLOB filters. A BLOB filter is a routine that
translates BLOB data from one subtype to another. InterBase includes a set of special
internal BLOB filters that convert from subtype 0 to subtype 1 (TEXT), and from InterBase
system subtypes to subtype 1 (TEXT). In addition to using the internal text filters,
programmers can write their own external filters to provide special data translation. For
example, an external filter might automatically translate from one bitmapped image
format to another.

Note BLOB filters are not supported on NetWare servers.

Associated with every filter is an integer pair that specifies the input subtype and the
output subtype. When declaring a cursor to read or write BLOB data, specify FROM and TO
subtypes that correspond to a particular BLOB filter. InterBase invokes the filter based on
the FROM and TO subtype specified by the read or write cursor declaration.

The display of BLOB subtypes in isql can be specified with SET BLOBDISPLAY in
command-line isql or with the Session | Advanced Settings command in Windows ISQL.

For more information about Windows ISQL and command-line isql, see the Operations
Guide. For more information about creating external BLOB filters, see the Programmer’s
Guide.

Defining arrays

74

InterBase allows you to create arrays of datatypes. Using an array enables multiple data
items to be stored in a single column. InterBase can perform operations on an entire
array, effectively treating it as a single element, or it can operate on an array slice, a
subset of array elements. An array slice can consist of a single element, or a set of many
contiguous elements.

Using an array is appropriate when:

® The data items naturally form a set of the same datatype.

INTERBASE 5

DEFINING ARRAYS

= The entire set of data items in a single database column must be represented and
controlled as a unit, as opposed to storing each item in a separate column.

® Each item must also be identified and accessed individually.

The data items in an array are called array elements. An array can contain elements of
any InterBase datatype except BLOB, and cannot be an array of arrays. All of the elements
of a particular array are of the same datatype.

Arrays are defined with the CREATE DOMAIN or CREATE TABLE statements. Defining an array
column is just like defining any other column, except that the array dimensions must also
be specified. For example, the following statement defines both a regular character
column, and a single-dimension, character array column containing four elements:

EXEC SQL
CREATE TABLE TABLEL
(NAVE CHAR(10),
CHAR ARR CHAR(10)[4]);

Array dimensions are always enclosed in square brackets following a column’s datatype
specification.

For a complete discussion of CREATE TABLE and array syntax, see the Language Reference.
To learn more about the flexible data access provided by arrays, see the Programmer’s
Guide.

Multi-dimensional arrays

InterBase supports multi-dimensional arrays, arrays with 1 to 16 dimensions. For
example, the following statement defines three INTEGER array columns with two, three,
and six dimensions respectively:

EXEC SQL
CREATE TABLE TABLEL
(I NT_ARR2 | NTEGER 4, 5],
| NT_ARR3 | NTEGER| 4, 5, 6] ,
I NT_ARR6 | NTEGER[4, 5, 6, 7]) ;

In this example, INT_ARR?2 allocates storage for 4 rows, 5 elements in width, for a total of
20 integer elements, INT_ARR3 allocates 120 elements, and INT_ARRG allocates 840
elements.

DATA DEFINITION GUIDE 75

IMPORTANT

76

CHAPTER 4 SPECIFYING DATATYPES

InterBase stores multi-dimensional arrays in row-major order. Some host languages,
such as FORTRAN, expect arrays to be in column-major order. In these cases, care must
be taken to translate element ordering correctly between InterBase and the host
language.

Specifying subscript ranges for array dimensions

In InterBase, array dimensions have a specific range of upper and lower boundaries,
called subscripts. In many cases, the subscript range is implicit. The first element of the
array is element 1, the second element 2, and the last is element 7. For example, the
following statement creates a table with a column that is an array of four integers:

EXEC SQL
CREATE TABLE TABLEL
(I NT_ARR | NTEGER] 4]) ;

The subscripts for this array are 1, 2, 3, and 4.

A different set of upper and lower boundaries for each array dimension can be explicitly
defined when an array column is created. For example, C programmers, familiar with
arrays that start with a lower subscript boundary of zero, might want to create array
columns with a lower boundary of zero as well.

To specify array subscripts for an array dimension, both the lower and upper boundaries
of the dimension must be specified using the following syntax:

| ower: upper
For example, the following statement creates a table with a single-dimension array
column of four elements where the lower boundary is 0 and the upper boundary is 3:

EXEC SQL
CREATE TABLE TABLEL
(I NT_ARR | NTEGER] 0: 3]) ;

The subscripts for this array are 0, 1, 2, and 3.

When creating multi-dimensional arrays with explicit array boundaries, separate each
dimension’s set of subscripts from the next with commas. For example, the following

statement creates a table with a two-dimensional array column where each dimension
has four elements with boundaries of 0 and 3:

EXEC SQL
CREATE TABLE TABLEl
(I NT_ARR | NTECER[0: 3, 0:3]);

INTERBASE 5

CONVERTING DATATYPES

Converting datatypes

Normally, you must use compatible datatypes to perform arithmetic operations, or to
compare data in search conditions. If you need to perform operations on mixed
datatypes, or if your programming language uses a datatype that is not supported by
InterBase, then datatype conversions must be performed before the database operation
can proceed. InterBase either automatically converts the data to an equivalent datatype
(an implicit type conversion), or you can use the cast() function in search conditions to
explicitly translate one datatype into another for comparison purposes.

Implicit type conversions

InterBase automatically converts columns of an unsupported datatype to an equivalent
one, if required. This is an implicit datatype conversion. For example, in the following
operation,

341 =4

InterBase automatically converts the character “1” to an INTEGER for the addition
operation.

7))

The next example returns an error because InterBase cannot convert the “a” to an
INTEGER:

3+'a =4

Explicit type conversions

When InterBase cannot do an implicit type conversion, you must perform an explicit type
conversion using the cast() function. Use cast() to convert one datatype to another inside
a SELECT statement. Typically, cast() is used in the WHERE clause to compare different
datatypes. The syntax is:

CAST (<value>| NULL AS dat at ype)

Use cast() to translate a:
® DATE datatype into a CHARACTER or NUMERIC datatype.
® CHARACTER datatype into a NUMERIC or DATE datatype.
® NUMERIC datatype into a CHARACTER or DATE datatype.

DATA DEFINITION GUIDE 77

78

CHAPTER 4 SPECIFYING DATATYPES

For example, in the following WHERE clause, cast() is used to translate a CHAR datatype,
INTERVIEW_DATE, to a DATE datatype in order to compare against a DATE datatype,
HIRE_DATE:

... WHERE HIRE_DATE = (CAST(INTERVIEW_DATE AS DATE);

In the next example, cast() is used to translate a DATE datatype into a CHAR datatype:
... WHERE CAST(HIRE_DATE AS CHAR) = INTERVIEW_DATE;

You can use cast() to compare columns with different datatypes in the same table, or
across tables.

INTERBASE 5

CHAPTER

Working with Domains

This chapter describes how to:
® Create a domain.
= Alter a domain.

= Drop a domain.

Creating domains

When you create a table, you can use a global column definition, called a domain, to
define a column locally. Before defining a column that references a domain, you must
first create the domain definition in the database with CREATE DOMAIN. CREATE DOMAIN
acts as a template for defining columns in subsequent CREATE TABLE and ALTER TABLE
statements. For more information on creating and modifying tables, see Chapter 6,
“Working with Tables.”

Domains are useful when many tables in a database contain identical column definitions.
Columns based on a domain definition inherit all characteristics of the domain; some of
these attributes can be overridden by local column definitions.

Note You cannot apply referential integrity constraints to a domain.

The syntax for CREATE DOMAIN is:

DATA DEFINITION GUIDE 79

CHAPTER 5 WORKING WITH DOMAINS

CREATE DOMVAI N donai n [AS] <dat at ype>

[DEFAULT {/iteral | NULL | USER}]

[NOT NULL] [CHECK (<dom search_condition>)]
[COLLATE col I ation];

Using CREATE DOMAIN

When you create a domain in the database, you must specify a unique name for the
domain, and define the various attributes and constraints of the column definition. These
attributes include:

= datatype
® Default values and NULL status
® CHECK constraints

= Collation order

Specifying the domain datatype

The datatype is the only required attribute that must be set for the domain—all other
attributes are optional. The datatype defines the set of valid data that the column can
contain. The datatype also determines the set of allowable operations that can be
performed on the data, and defines the disk space requirements for each data item.

The syntax for specifying the datatype is:

<dat at ype> = {
{SMALLI NT | INTEGER | FLOAT | DQOUBLE PRECI SI ON} [<array_di np]
| {DECIMAL | NUMERI C [(precision [, scale])] [<array_dinp]
| DATE [<array_di np]
| {CHAR | CHARACTER | CHARACTER VARYI NG | VARCHAR}
[(int)] [<array_dinr] [CHARACTER SET char nane]
| {NCHAR | NATI ONAL CHARACTER | NATI ONAL CHAR}
[VARYING [(int)] [<array_dinp]
| BLOB [SUB_TYPE {int | subtype_nane}] [SEGVENT Sl ZE int]
[CHARACTER SET char nane]
| BLOB [(seglen [, subtype]l)]
}
<array_dinm = [xy][, x1yl..] 1

Note The outermost (boldface) brackets must be included when declaring arrays.

80 INTERBASE 5

USING CREATE DOMAIN

datatype is the SQL datatype for any column based on a domain. You cannot override the

domain datatype with a local column definition.
The general categories of SQL datatypes include:
® Character datatypes.
= Integer datatypes.
® Decimal datatypes, both fixed and floating.

® A DATE datatype to represent date and time. InterBase does not directly support the SQL

DATE, TIME, and TIMESTAMP datatypes.

= A BLOB datatype to represent unstructured binary data, such as graphics and digitized
voice.

® Arrays of datatypes (except for BLOB data).
InterBase supports the following datatypes:

Name Size Range/Precision Description
BLOB Variable None; BLOB segment sizeis Binary large object. Stores large data, such as
limited to 64K graphics, text, and digitized voice. Basic structural
unit: segment. BLOB subtype describes BLOB
contents.
CHAR(N) n characters 1to 32767 bytes Fixed length CHAR or text string type.

Character set character size Alternate keyword: CHARACTER.
determines the maximum
number of characters that

can fitin 32K
DATE 64 bits 1Jan 100 a.d. to 29 February, Also included time information.
32768 ad.
DECIMAL variable precision = 1to 15; specifies Number with a decimal point scale digits from the
(precision, scale) at least precision digits of right. For example, DECIMAL(10, 3) holds numbers
precision to store accurately in the following format:

scale =110 15. Specifies PPPPPPP-SSS
number of decimal places for

storage; must be less than or

equal to precision

DOUBLE PRECISION 64 bits? 1.7X1073%801.7X 10398 Scientific: 15 digits of precision.

TABLES.1 Datatypes supported by InterBase

DATA DEFINITION GUIDE

81

CHAPTER 5 WORKING WITH DOMAINS

Name Size Range/Precision Description
FLOAT 32 bits 34X10738t03.4X 1038 Single precision: 7 digits of precision.
INTEGER 32 bits -2,147,483,648 to Signed long (longword).
2,147,483,647
NUMERIC variable precision =1to 15; specifies Number with a decimal point scale digits from the
(precision, scale) exactly precision digits of right. For example, NUMERIC(10,3) holds numbers
precision to store accurately in the following format:

SMALLINT

VARCHAR(n)

scale =1to 15; specifies PPPPPPP.-SSS
number of decimal places for

storage; must be less than or

equal to precision

16 bits —-32768 10 32767 Signed short (word).

n characters 1t0 32765 bytes Variable length CHAR or text string type.

Character set character size Alternate keywords: CHAR VARYING, CHARACTER
determines the maximum VARYING

number of characters that

canfitin 32K

TABLES.1 Datatypes supported by InterBase (continued)

a. Actual size of DOUBLE is platform-dependent. Most platforms support the 64-bit size.

82

For more information about datatypes, see Chapter 4, “Specifying Datatypes.”
The following statement creates a domain that defines an array of CHARACTER datatype:
CREATE DOVAI N DEPTARRAY AS CHAR(31) [4:5];

The next statement creates a BLOB domain with a text subtype that has an assigned
character set:

CREATE DOVAI N DESCRI PT AS BLOB SUB_TYPE TEXT SEGVENT SI ZE 80
CHARACTER SET SJI S;

INTERBASE 5

USING CREATE DOMAIN

IMPORTANT

Specifying domain defaults

You can set an optional default value that is automatically entered into a column if you
do not specify an explicit value. Defaults set at the column level with CREATE TABLE or

ALTER TABLE override defaults set at the domain level. Defaults can save data entry time
and prevent data entry errors. For example, a possible default for a DATE column could
be today’s date, or in a (Y/N) flag column for saving changes, “Y” could be the default.

Default values can be:
literal: The default value is a user-specified string, numeric value, or date value.
NULL: If the user does not enter a value, a NULL value is entered into the column.

USER: The default is the name of the current user. If your operating system supports the
use of 8 or 16-bit characters in user names, then the column into which USER will be
stored must be defined using a compatible character set.

In the following example, the first statement creates a domain with USER named as the
default. The next statement creates a table that includes a column, ENTERED_BY, based on
the USERNAME domain.

CREATE DOMAI N USERNAME AS VARCHAR(20)

DEFAULT USER;

CREATE TABLE ORDERS (ORDER DATE DATE, ENTERED BY USERNAME, ORDER AMT
DECI MAL(8, 2));

| NSERT | NTO ORDERS (ORDER DATE, ORDER AMT)

VALUES ("1-MAY-93", 512.36);

The INSERT statement does not include a value for the ENTERED_BY column, so InterBase
automatically inserts the user name of the current user, JSMITH:

SELECT * FROM ORDERS;
1- MAY-93 JSM TH 512. 36

Specifying NOT NULL

You can optionally specify NOT NULL to force the user to enter a value. If you do not
specify NOT NULL, then NULL values are allowed for any column that references this
domain. NOT NULL specified on the domain level cannot be overridden by a local column
definition.

If you have already specified NULL as a default value, be sure not to create contradictory
constraints by also assigning NOT NULL to the domain, as in the following example:

DATA DEFINITION GUIDE 83

84

CHAPTER 5 WORKING WITH DOMAINS

CREATE DOVAI N DOML | NTEGER DEFAULT NULL, NOT NULL;

Specifying domain CHECK constraints

You can specify a condition or requirement on a data value at the time the data is entered
by applying a CHECK constraint to a column. The CHECK constraint in a domain definition
sets a search condition (dom_search_condition) that must be true before data can be
entered into columns based on the domain.

The syntax of the search condition is:

<dom search_condi tion> = {

VALUE <operat or> <val >

| VALUE [NOT] BETWEEN <val > AND <val >

| VALUE [NOT] LIKE <val > [ESCAPE <val >|

| VALUE [NOT] IN (<val> [, <val>..])

| VALUE IS [NOT] NULL

| VALUE [NOT] CONTAINING <val >

| VALUE [NOT] STARTING [WITH] <val >

| (<dom search_condition>)

| NOT <dom search_condition>

| <dom search_condition>0R <dom search_condition>
| <dom search_condition>AND <dom search_condition>

}

<operator>={=|<|>|<=|>=|I|!>]|<>|!=}

The following restrictions apply to CHECK constraints:
® A CHECK constraint cannot reference any other domain or column name.
= A domain can have only one CHECK constraint.

= You cannot override the domain’s CHECK constraint with a local CHECK constraint. A
column based on a domain can add additional CHECK constraints to the local column
definition.

Using the VALUE keyword

VALUE defines the set of values that is valid for the domain. VALUE is a placeholder for the
name of a column that will eventually be based on the domain. The search condition can
verify whether the value entered falls within a certain range, or match it to any one value
in a list of values.

INTERBASE 5

USING CREATE DOMAIN

Note If NULL values are allowed, they must be included in the CHECK constraint, as in the
following example:

CHECK ((VALUE IS NULL) OR (VALUE > 1000));
The next statement creates a domain where value must be > 1,000:

CREATE DOMAI N CUSTNO
AS | NTEGER
CHECK (VALUE > 1000);

The following statement creates a domain that must have a positive value greater than
1,000, with a default value of 9,999.

CREATE DOMAI N CUSTNO
AS | NTEGER
DEFAULT 9999
CHECK (VALUE > 1000);

The next statement limits the values entered in the domain to four specific values:

CREATE DOMAI N PRODTYPE
AS VARCHAR(12)
CHECK (VALUE IN ("software", "hardware", "other", "NA"));

When a problem cannot be solved using comparisons, you can instruct the system to
search for a specific pattern in a character column. For example, the next search
condition allows only cities in California to be entered into columns that are based on the
CALIFORNIA domain:

CREATE DOMAI N CALI FORNI A
AS VARCHAR(25)
CHECK (VALUE LIKE "% CA");

Specifying domain collation order

The COLLATE clause of CREATE DOMAIN allows you to specify a particular collation order
for columns defined as CHAR or VARCHAR text datatypes. You must choose a collation
order that is supported for the column’s given character set. The character set is either
the default character set for the entire database, or you can specify a different set in the
CHARACTER SET clause of the datatype definition. The collation order set at the column
level overrides a collation order set at the domain level.

For a list of the collation orders available for each character set, see Chapter 14,
“Character Sets and Collation Orders.”

DATA DEFINITION GUIDE 85

CHAPTER 5 WORKING WITH DOMAINS

In the following statement, the domain, TITLE, overrides the database default character
set, specifying a DOS437 character set with a PDOX_INTL collation order:

CREATE DOMVAIN Tl TLE AS
CHAR(50) CHARACTER SET DOS437 COLLATE PDOX_I NTL;

Altering domains with ALTER DOMAIN

ALTER DOMAIN changes any aspect of an existing domain except its datatype and NOT NULL
setting. Changes that you make to a domain definition affect all column definitions based
on the domain that have not been overridden at the table level.

Note To change a datatype or NOT NULL setting of a domain, drop the domain and
recreate it with the desired combination of features.

A domain can be altered by its creator, the SYSDBA user, and any users with operating
system root privileges.

ALTER DOMAIN allows you to:
® Drop an existing default value.
= Set a new default value.
® Drop an existing CHECK constraint.
® Add a new CHECK constraint.
The syntax for ALTER DOMAIN is:

ALTER DOMAI N nane {

[SET DEFAULT {/iteral | NULL | USER}]

| [DROP DEFAULT]

| [ADD [CONSTRAI NT] CHECK (<dom search_condition>)]
| [DROP CONSTRAI NT]

b
The following statement sets a new default value for the CUSTNO domain:
ALTER DOVAI N CUSTNO SET DEFAULT 9999;

86 INTERBASE 5

DROPPING A DOMAIN

Dropping a domain

DROP DOMAIN removes an existing domain definition from a database.

If a domain is currently used in any column definition in the database, the DROP
operation fails. To prevent failure, delete the columns based on the domain with ALTER
TABLE before executing DROP DOMAIN.

A domain can be dropped by its creator, the SYSDBA, and any users with operating
system root privileges.

The syntax of DROP DOMAIN is:
DROP DOVAI N nare;

The following statement deletes a domain:
DROP DOVAI N COUNTRYNANME;

DATA DEFINITION GUIDE 87

88

CHAPTER 5 WORKING WITH DOMAINS

INTERBASE 5

CHAPTER

Working with Tables

This chapter describes:
® What to do before creating a table.
® How to create database tables.
= How to alter tables.

® How to drop tables.

Before creating a table

Before creating a table, you should:
® Design, normalize, create, and connect to a database
® Determine what tables, columns, and column definitions to create
® Create the domain definitions in the database

® Declare the table if an embedded SQL application both creates a table and populates the
table with data in the same program

For information on how to create, drop, and modify domains, see Chapter 5, “Working
with Domains.” The DECLARE TABLE statement must precede CREATE TABLE. For the syntax
of DECLARE TABLE, see the Language Reference.

DATA DEFINITION GUIDE 89

CHAPTER 6 WORKING WITH TABLES

Creating tables

You can create tables in the database with the CREATE TABLE statement. The syntax for
CREATE TABLE is:

CREATE TABLE tabl e [EXTERNAL [FILE] "<filespec>"]
(<col _def> [, <col_def> | <tconstraint> ...]);

The first argument that you supply to CREATE TABLE is the table name, which is required,
and must be unique among all table and procedure names in the database. You must also
supply at least one column definition.

InterBase automatically imposes the default SQL security scheme on the table. The
person who creates the table (the owner), is assigned all privileges for it, including the
right to grant privileges to other users, triggers, and stored procedures. For more
information on security, see Chapter 13, “Planning Security.”

For a detailed specification of CREATE TABLE syntax, see the Language Reference.

Defining columns

When you create a table in the database, your main task is to define the various attributes
and constraints for each of the columns in the table. The syntax for defining a column is:

<col _def> = col {datatype | COVPUTED [BY] (<expr>) | domai n}
[DEFAULT {/iteral | NULL | USER}]

[NOT NULL] [<col _constrai nt>]

[COLLATE col I ati on]

The next sections list the required and optional attributes that you can define for a
column.

» Required attributes

You are required to specify:
= A column name, which must be unique among the columns in the table.
® One of the following:

- An SQL datatype (datatype).

- An expression (expr) for a computed column.

- A domain definition (domain) for a domain-based column.

20 INTERBASE 5

CREATING TABLES

) Optional attributes
You have the option to specify:
® A default value for the column.

® Integrity constraints. Constraints can be applied to a set of columns (a table-level
constraint), or to a single column (a column-level constraint). Integrity constraints
include:

- The PRIMARY KEY column constraint, if the column is a PRIMARY KEY, and the PRIMARY
KEY constraint is not defined at the table level. Creating a PRIMARY KEY requires
exclusive database access.

- The UNIQUE constraint, if the column is not a PRIMARY KEY, but should still disallow
duplicate and NULL values.

- The FOREIGN KEY constraint, if the column references a PRIMARY KEY in another table.
Creating a FOREIGN KEY requires exclusive database access. The foreign key constraint
includes the ON UPDATE and ON DELETE mechanisms for specifying what happens to the
foreign key when the primary key is updated (cascading referential integrity).

® A NOT NULL attribute does not allow NULL values. This attribute is required if the column
is a PRIMARY KEY or UNIQUE key.

® A CHECK constraint for the column. A CHECK constraint enforces a condition that must be
true before an insert or an update to a column or group of columns is allowed.

® A CHARACTER SET can be specified for a single column when you define the datatype. If
you do not specify a character set, the column assumes the database character set as a
default.

b Specifying the datatype
When creating a table, you must specify the datatype for each column. The datatype
defines the set of valid data that the column can contain. The datatype also determines

the set of allowable operations that can be performed on the data, and defines the disk
space requirements for each data item.

The syntax for specifying the datatype is:

<dat at ype> = {
{SMALLI NT | INTECER | FLCAT | DOUBLE PRECI SI ON} [<array_dinp]
| {DECIMAL | NUMERI C [(precision [, scale])] [<array_dinp]
| DATE [<array_di np]
| {CHAR | CHARACTER | CHARACTER VARYI NG | VARCHAR}
[(int)] [<array_dinr] [CHARACTER SET char nane]
| {NCHAR | NATI ONAL CHARACTER | NATI ONAL CHAR}
[VARYING [(int)] [<array_dinp]

DATA DEFINITION GUIDE 91

92

TABLE6.1

CHAPTER 6 WORKING WITH TABLES

| BLOB [SUB_TYPE {int | subtype_nane}] [SEGVENT Sl ZE int]
[CHARACTER SET char nane]
| BLOB [(seglen [, subtype])]

}
<array_dinme = [x:y [, x1l:yl ...]]

Note The outermost (boldface) brackets must be included when declaring arrays.

SUPPORTED DATATYPES

The general categories of datatypes that are supported include:
® Character datatypes.
= Integer datatypes.
® Decimal datatypes, both fixed and floating.

= A DATE datatype to represent date and time. InterBase does not directly support the SQL
DATE, TIME, and TIMESTAMP datatypes.

= A BLOB datatype to represent unstructured binary data, such as graphics and digitized
voice.

= Arrays of datatypes (except for BLOB data).
InterBase supports the following datatypes:

Name Size Range/Precision Description

BLOB Variable Segment size limited to 64K Binary large object. Stores large
data, such as graphics, text, and
digitized voice. Basic structural unit:
segment. BLOB subtype describes

BLOB contents.
CHAR(n) n 1t0 32767 bytes Fixed length CHAR or text string type.
characters Character set character size Alternate keyword: CHARACTER.
determines the maximum
number of characters that can fit
in 32K
DATE 64 bits 1Jan 100 a.d. to 29 Feb 32768 Also included time information.
ad.

Datatypes supported by InterBase

INTERBASE 5

CREATING TABLES

Name Size Range/Precision Description
DECIMAL variable precision =110 15; specifiesat ~ Number with a decimal point scale
(precision, least precision digits of precision digits from the right. For example,
scale) to store DECIMAL(10, 3) holds numbers
scale =110 15; specifies number accurately in the following format:
of decimal places for storage, PPPPPPP.SSS
must be less than or equal to
precision
DOUBLEPRECISION 64 bits? 1.7 X 107308t0 1.7 X 10308 Scientific: 15 digits of precision.
FLOAT 32 bits 34X10738t03.4X 1038 Single precision: 7 digits of
precision.
INTEGER 32 bits -2,147,483,64810 2,147,483,647 Signed long (longword).
NUMERIC variable precision = 1to 15; specifies Number with a decimal point scale
(precision, exactly precision digits of digits from the right. For example,
scale) precision to store NUMERIC(10,3) holds numbers
scale =110 15; specifies number accurately in the following format:
of decimal places for storage, PPPPPPP.SSS
must be less than or equal to
precision
SMALLINT 16 bits —-32768 10 32767 Signed short (word).
VARCHAR(n) n 1t0 32765 bytes Variable length CHAR or text string
characters type.

Character set character size
determines the maximum
number of characters that can fit
in 32K

Alternate keywords: CHAR VARYING,
CHARACTER VARYING

TABLE6.1

Datatypes supported by InterBase (continued)

a. Actual size of DOUBLE is platform-dependent. Most platforms support the 64-bit size.

CASTING DATATYPES

If your application programming language does not support a particular datatype, you
can let InterBase automatically convert the data to an equivalent datatype (an implicit
type conversion), or you can use the cast() function in search conditions to explicitly
translate one datatype into another for comparison purposes. For more information
about specifying datatypes and using the cast() function, see Chapter 4, “Specifying

Datatypes.”

DATA DEFINITION GUIDE

93

94

CHAPTER 6 WORKING WITH TABLES

DEFINING A CHARACTER SET

The datatype specification for a CHAR, VARCHAR, or BLOB text column definition can
include a CHARACTER SET clause to specify a particular character set for a column. If you
do not specify a character set, the column assumes the default database character set. If
the database default character set is subsequently changed, all columns defined after the
change have the new character set, but existing columns are not affected. For a list of
available character sets recognized by InterBase, see Chapter 14, “Character Sets and
Collation Orders.”

» The COLLATE clause

The collation order determines the order in which values are sorted. The

COLLATE clause of CREATE TABLE allows you to specify a particular collation order for
columns defined as CHAR and VARCHAR text datatypes. You must choose a collation order
that is supported for the column’s given character set. The character set is either the
default character set for the entire database, or you can specify a different set in the
CHARACTER SET clause of the datatype definition. The collation order set at the column
level overrides a collation order set at the domain level.

In the following statement, BOOKNO keeps the default collating order for the database’s
default character set. The second (TITLE) and third (EUROPUB) columns specify different
character sets and collating orders.

CREATE TABLE BOOKADVANCE (BOOKNO CHAR(6),
TI TLE CHAR(50) CHARACTER SET DOS437 COLLATE PDOX_| NTL,
EUROPUB CHAR(50) CHARACTER SET |1S08859_1 COLLATE FR_FR);

For a list of the available characters sets and collation orders that InterBase recognizes,
see Chapter 14, “Character Sets and Collation Orders.”

» Defining domain-based columns

When you create a table, you can set column attributes by using an existing domain
definition that has been previously stored in the database. A domain is a global column
definition. Domains must be created with the CREATE DOMAIN statement before you can
reference them to define columns locally. For information on how to create a domain, see
Chapter 5, “Working with Domains.”

Domain-based columns inherit all the characteristics of a domain, but the column
definition can include a new default value, additional CHECK constraints, or a collation
clause that overrides the domain definition. It can also include additional column
constraints. You can specify a NOT NULL setting if the domain does not already define one.

INTERBASE 5

CREATING TABLES

Note You cannot override the domain’s NOT NULL setting with a local column definition.

For example, the following statement creates a table, COUNTRY, referencing the domain,
COUNTRYNAME, which was previously defined with a datatype of VARCHAR(15):

CREATE TABLE COUNTRY
(COUNTRY COUNTRYNAME NOT NULL PRI MARY KEY,
CURRENCY VARCHAR(10) NOT NULL);

» Defining expression-based columns

A computed column is one whose value is calculated each time the column is accessed
at run time. The syntax is:

<col _nane> COVPUTED [BY] (<expr>);

If you do not specify the datatype, InterBase calculates an appropriate one. expr is any
arithmetic expression that is valid for the datatypes in the columns; it must return a single
value, and cannot be an array or return an array. Columns referenced in the expression
must exist before the COMPUTED [BY] clause can be defined.

For example, the following statement creates a computed column, FULL_NAME, by
concatenating the LAST_NAME and FIRST_NAME columns.

CREATE TABLE EMPLOYEE
(FI RST_NAME VARCHAR(10) NOT NULL,
LAST NAME VARCHAR(15) NOT NULL,
FULL_NAVE COVPUTED BY (LAST NAME || ", " || FIRST_NAME));

The next example creates a table with a calculated column (NEW_SALARY) using the
previously created EMPNO and SALARY domains.

CREATE TABLE SALARY_HI STORY
(EMP_NO EMPNO NOT NULL,
CHANGE_DATE DATE DEFAULT "NOW NOT NULL,
UPDATER | D VARCHAR(20) NOT NULL,
OLD_SALARY SALARY NOT NULL,
PERCENT_CHANGE DOUBLE PRECI SI ON
DEFAULT 0O
NOT NULL
CHECK (PERCENT_CHANGE BETWEENor ei gn key
50 AND 50),
NEW SALARY COWPUTED BY
(OLD_SALARY + OLD_SALARY * PERCENT_CHANGE / 100),
PRI MARY KEY (EMP_NO, CHANGE_DATE, UPDATER_ID),
FOREI GN KEY (EMP_NO) REFERENCES EMPLOYEE (EMP_NO
ON UPDATE CASCADE

DATA DEFINITION GUIDE 95

96

CHAPTER 6 WORKING WITH TABLES

ON DELETE CASCADE) ;

Note Constraints on computed columns are not enforced, but InterBase does not return
an error if you do define such a constraint.

» Specifying column default values

You can set an optional default value that is automatically entered into a column if you
do not specify an explicit value. Defaults set at the column level with CREATE TABLE or

ALTER TABLE override defaults set at the domain level. Defaults can save data entry time
and prevent data entry errors. For example, a possible default for a DATE column could
be today’s date, or in a (Y/N) flag column for saving changes, “Y” could be the default.

Default values can be:
literal—The default value is a user-specified string, numeric value, or date value.
NULL—If the user does not enter a value, a NULL value is entered into the column.

USER—The default is the name of the current user. If your operating system supports the
use of 8 or 16-bit characters in user names, then the column into which USER will be
stored must be defined using a compatible character set.

In the following example, the first statement creates a domain with USER named as the
default. The next statement creates a table that includes a column, ENTERED_BY, based on
the USERNAME domain.

CREATE DOMAI N USERNAVE AS VARCHAR(20)

DEFAULT USER;

CREATE TABLE ORDERS (ORDER DATE DATE, ENTERED BY USERNAME, ORDER AMT
DECI MAL(8, 2)) ;

| NSERT | NTO ORDERS (ORDER DATE, ORDER AM)

VALUES ("1-MAY-93", 512.36);

The INSERT statement does not include a value for the ENTERED_BY column, so InterBase
automatically inserts the user name of the current user, JSMITH:
SELECT * FROM ORDERS;

) Specifying NOT NULL

You can optionally specify NOT NULL to force the user to enter a value. If you do not
specify NOT NULL, then NULL values are allowed in the column. You cannot override a NOT
NULL setting that has been set at a domain level with a local column definition.

Note If you have already specified NULL as a default value, be sure not to create
contradictory constraints by also specifying the NOT NULL attribute, as in the following
example:

INTERBASE 5

CREATING TABLES

TABLE6.2

CREATE TABLE MY_TABLE (COUNT | NTEGER DEFAULT NULL NOT NULL);

Defining integrity constraints

InterBase allows you to optionally apply certain constraints to a column, called integrity
constraints, which are the rules that govern column-to-table and table-to-table
relationships, and validate data entries. They span all transactions that access the
database and are automatically maintained by the system. Integrity constraints can be
applied to an entire table or to an individual column.

» PRIMARY KEY and UNIQUE constraints

The PRIMARY KEY and UNIQUE integrity constraints ensure that the values entered into a
column or set of columns are unique in each row. If you try to insert a duplicate value in
a PRIMARY KEY or UNIQUE column, InterBase returns an error. When you define a UNIQUE
or PRIMARY KEY column, determine whether the data stored in the column is inherently
unique. For example, no two social security numbers or driver’s license numbers are ever
the same. If no single column has this property, then define the primary key as a
composite of two or more columns which, when taken together, are unique.

EMP_NO LAST_NAME FIRST_NAME JOB_TITLE PHONE_EXT
10335 Smith John Engineer 4968

21347 Carter Catherine Product Manager 4967

13314 Jones Sarah Senior Writer 4800

The EMPLOYEE table

In the EMPLOYEE table, EMP_NO is the primary key that uniquely identifies each employee.
EMP_NO is the primary key because no two values in the column are alike. If the EMP_NO
column did not exist, then no other column is a candidate for primary key due to the high
probability for duplication of values. LAST_NAME, FIRST_NAME, and JOB_TITLE fail because
more than one employee can have the same first name, last name, and job title. In a large
database, a combination of LAST_NAME and FIRST_NAME could still result in duplicate
values. A primary key that combines LAST_NAME and PHONE_EXT might work, but there
could be two people with identical last names at the same extension. In this table, the
EMP_NO column is actually the only acceptable candidate for the primary key because it
guarantees a unique number for each employee in the table.

DATA DEFINITION GUIDE 97

98

TABLE6.3

TABLE 6.4

CHAPTER 6 WORKING WITH TABLES

A table can have only one primary key. If you define a PRIMARY KEY constraint at the table
level, you cannot do it again at the column level. The reverse is also true; if you define a
PRIMARY KEY constraint at the column level, you cannot define a primary key at the table
level. You must define the NOT NULL attribute for a PRIMARY KEY column in order to
preserve the uniqueness of the data values in that column.

Like primary keys, a unique key ensures that no two rows have the same value for a
specified column or ordered set of columns. You must define the NOT NULL attribute for
a UNIQUE column. A unique key is different from a primary key in that the UNIQUE
constraint specifies alternate keys that you can use to uniquely identify a row. You can
have more than one unique key defined for a table, but the same set of columns cannot
make up more than one PRIMARY KEY or UNIQUE constraint for a table. Like a primary key,
a unique key can be referenced by a foreign key in another table.

» Enforcing referential integrity with the FOREIGN KEY

A foreign key is a column or set of columns in one table that correspond in exact order
to a column or set of columns defined as a primary key in another table. For example, in
the PROJECT table, TEAM_LEADER is a foreign key referencing the primary key, EMP_NO in
the EMPLOYEE table.

TEAM_LEADE
PROJ_ID R PROJ_NAME PROJ_DESC PRODUCT
DGPII 44 Automap blob data hardware
VBASE 47 Video database blob data software
HWRII 24 Translator upgrade blob data software

The PROJECT table

EMP_NO LAST_NAME FIRST_NAME DEPT_NO JOB_CODE PHONE_EXT SALARY

24 Smith John 100 Eng 4968 64000
48 Carter Catherine 900 Sales 4967 72500
36 Smith Jane 600 Admin 4800 37500
The EMPLOYEE table

The primary reason for defining foreign keys is to ensure that data integrity is maintained
when more than one table uses the same data: rows in the referencing table must always
have corresponding rows in the referenced table.

INTERBASE 5

CREATING TABLES

TABLE6.S

InterBase enforces referential integrity in the following ways:

® The unique or primary key columns must already be defined before you can create the
foreign key that references them.

= Referential integrity checks are available in the form of the ON UPDATE and ON DELETE
options to the REFERENCES statement. When you create a foreign key by defining a
column or table REFERENCES constraint, you can specify what should happen to the
foreign key when the referenced primary key changes. The options are:

Action specified Effect on foreign key

NO ACTION [Default] The foreign key does not change (can cause the primary key update or
delete to fail due to referential integrity checks)

CASCADE The corresponding foreign key is updated or deleted as appropriate to the new
value of the primary key

SET DEFAULT Every column of the corresponding foreign key is set to its default value; fails if the
default value of the foreign key is not found in the primary key

SETNULL Every column of the corresponding foreign key is set to NULL

Referential integrity check options

If you do not use the ON UPDATE and ON DELETE options when defining foreign keys, you
must make sure that when information changes in one place, it changes in all referencing
columns as well. Typically, you write triggers to do this. For example, to change a value
in the EMP_NO column of the EMPLOYEE table (the primary key), that value must also be
updated in the TEAM_LEADER column of the PROJECT table (the foreign key).

If you delete a row from a table that is a primary key, you must first delete all foreign
keys that reference that row. If you use the ON DELETE CASCADE option when defining the
foreign keys, InterBase does this for you.

Note When you specify SET DEFAULT as the action, the default value used is the one in
effect when the referential integrity constraint was defined. When the default for a foreign
key column is changed after the referential integrity constraint is set up, the change does
not have an effect on the default value used in the referential integrity constraint.

® You cannot add a value to a column defined as a foreign key unless that value exists in
the referenced primary key. For example, to enter a value in the TEAM_LEADER column of
the PROJECT table, that value must first exist in the EMP_NO column of the EMPLOYEE table.

DATA DEFINITION GUIDE 929

CHAPTER 6 WORKING WITH TABLES

The following example specifies that when a value is deleted from a primary key, the
corresponding values in the foreign key are set to NULL. When the primary key is updated,
the changes are cascaded so that the corresponding foreign key values match the new
primary key values.

CREATE TABLE PRQIECT ({

TEAM LEADER | NTEGER REFERENCES EMPLOYEE (EMP_NO
ON DELETE SET NULL
ON UPDATE CASCADE

-}

» Referencing tables owned by others

If you want to create a foreign key that references a table owned by someone else, that
owner must first use the GRANT command to grant you REFERENCES privileges on that
table. Alternately, the owner can grant REFERENCES privileges to a role and then grant that
role to you. See Chapter 13, “Planning Security” and the Language Reference for more
information on granting privileges to users and roles. See the Language Reference for
more on creating and dropping roles.

) Circular references

When two tables reference each other’s foreign keys and primary keys, a circular
reference exists between the two tables. In the following illustration, the foreign key in
the EMPLOYEE table, DEPT_NO, references the primary key, DEPT_NO, in the DEPARTMENT
table. Therefore, the primary key, DEPT_NO must be defined in the DEPARTMENT table
before it can be referenced by a foreign key in the EMPLOYEE table. In the same manner,
EMP_NO, which is the EMPLOYEE table’s primary key, must be created before the
DEPARTMENT table can define EMP_NO as its foreign key.

FIGURE6.1 Circular references

PRIMARY KEY FOREIGN KEY

EMPLOYEE table
emp_no dept_no
PRIMARY KEY FOREIGN KEY

DEPARTMENT table
dept_no emp_no

100 INTERBASE 5

CREATING TABLES

The problem with circular referencing occurs when you try to insert a new row into either
table. Inserting a new row into the EMPLOYEE table causes a new value to be inserted into
the DEPT_NO (foreign key) column, but you cannot insert a value into the foreign key
column unless that value already exists in the DEPT_NO (primary key) column of the
DEPARTMENT table. It is also true that you cannot add a new row to the DEPARTMENT table
unless the values placed in the EMP_NO (foreign key) column already exist in the EMP_NO
(primary key) column of the EMPLOYEE table. Therefore, you are in a deadlock situation
because you cannot add a new row to either table!

InterBase gets around the problem of circular referencing by allowing you to insert a
NULL value into a foreign key column before the corresponding primary key value exists.
The following example illustrates the sequence for inserting a new row into each table:

® Insert 2 new row into the EMPLOYEE table by placing “1” in the EMP_NO primary key
column, and a NULL in the DEPT_NO foreign key column.

® [nsert a new row into the DEPARTMENT table, placing “2” in the DEPT_NO primary key
column, and “1” in the foreign key column.

= Use ALTER TABLE to modify the EMPLOYEE table. Change the DEPT_NO column from NULL
to “2.”

» How to declare constraints

When declaring a table-level or a column-level constraint, you can optionally name the
constraint using the CONSTRAINT clause. If you omit the CONSTRAINT clause, InterBase
generates a unique system constraint name which is stored in the system table,
RDB$RELATION_CONSTRAINTS.

Tip To ensure that the constraint names are visible in RDB$RELATION_CONSTRAINTS, commit
your transaction before trying to view the constraint in the RDB$RELATION_CONSTRAINTS
system table.

The syntax for a column-level constraint is:

<col _constraint> = [CONSTRAI NT constraint] <constraint_def>
[<col _constraint> ...]
<constraint_def> = {UNIQUE | PRI MARY KEY
| CHECK (<search_condition>)
| REFERENCES ot her_table [(other_col [, other_col ..])]
[ON DELETE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}Y]

DATA DEFINITION GUIDE 101

102

Tip

CHAPTER 6 WORKING WITH TABLES

The syntax for a table-level constraint is:

<tconstrai nt> = [CONSTRAI NT constrai nt] <tconstraint_def>
[<tconstraint> ...]
<tconstraint_def> = {{PRIMARY KEY | UNIQUE} (col [, col ..])
| FOREIGN KEY (col [, col ...])] REFERENCESot her_t abl e
[ON DELETE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
| CHECK (<search_condi ti on>)}

Although naming a constraint is optional, assigning a descriptive name with the
CONSTRAINT clause can make the constraint easier to find for changing or dropping, and
easier to find when its name appears in a constraint violation error message.

The following statement illustrates how to create a simple, column-level PRIMARY KEY
constraint:

CREATE TABLE COUNTRY
(COUNTRY COUNTRYNAME NOT NULL PRIMARY KEY,
CURRENCY VARCHAR(10) NOT NULL);

The next example illustrates how to create a UNIQUE constraint at both the
column level and the table level:

CREATE TABLE STOCK

(MODEL SMALLINT NOT NULL UNIQUE,

MODELNAME CHAR(10) NOT NULL,

ITEMID INTEGER NOT NULL, CONSTRAINT MOD_UNIQUE UNIQUE (MODELNAME,
ITEMID));

Defining a CHECK constraint

You can specify a condition or requirement on a data value at the time the data is entered
by applying a CHECK constraint to a column. Use CHECK constraints to enforce a condition
that must be true before an insert or an update to a column or group of columns is
allowed. The search condition verifies whether the value entered falls within a certain
permissible range, or matches it to one value in a list of values. The search condition can
also compare the value entered with data values in other columns.

Note A CHECK constraint guarantees data integrity only when the values being verified
are in the same row that is being inserted and deleted. If you try to compare values in
different rows of the same table or in different tables, another user could later modify
those values, thus invalidating the original CHECK constraint that was applied at insertion
time.

INTERBASE 5

CREATING TABLES

In the following example, the CHECK constraint is guaranteed to be satisfied:

CHECK (VALUE (COL_1 > COL_2));
I NSERT | NTO TABLE 1 (COL_1, COL_2) VALUES (5, 6);

The syntax for creating a CHECK constraint is:

CHECK (<search condition>);
<search_condi tion> = {<val > <oper at or >
{<val > | (<select_one>)}

<val > [NOT] BETWEEN <val > AND <val >
<val > [NOT] LIKE <val > [ESCAPE <val >]
<val> [NOT] IN (<val> [, <val>...] | <select_Ilist>)
<val > 1S [NOT] NULL
<val> {[NOT] {=] < | >} | >=]| <=}

{ALL | SOVE | ANY} (<select_list>)
EXI STS (<sel ect_expr>)
SI NGULAR (<sel ect_expr >)
<val > [NOT] CONTAI NI NG <val >
<val > [NOT] STARTING [WTH] <val >
(<search_condi tion>)
NOT <search_condi ti on>
<search_condi ti on> OR <search_condition>
<search_condi ti on> AND <search_conditi on>}

When creating CHECK constraints, the following restrictions apply:

® A CHECK constraint cannot reference a domain.

® A column can have only one CHECK constraint.

® On a domain-based column, you cannot override a CHECK constraint imposed by the
domain with a local CHECK constraint. A column based on a domain can add additional
CHECK constraints to the local column definition.

In the next example, a CHECK constraint is placed on the SALARY domain. VALUE is a
placeholder for the name of a column that will eventually be based on the domain.

CREATE DOMVAI N BUDGET
AS NUMERI C(12, 2)
DEFAULT 0

CHECK (VALUE > 0);

DATA DEFINITION GUIDE 103

CHAPTER 6 WORKING WITH TABLES

The next statement illustrates PRIMARY KEY, FOREIGN KEY, CHECK, and the referential
integrity constraints ON UPDATE and ON DELETE. The PRIMARY KEY constraint is based on
three columns, so it is a table-level constraint. The FOREIGN KEY column (JOB_COUNTRY)
references the PRIMARY KEY column (COUNTRY) in the table, COUNTRY. When the primary
key changes, the ON UPDATE and ON DELETE clauses guarantee that the foreign key
column will reflect the changes. This example also illustrates using domains (JOBCODE,
JOBGRADE, COUNTRYNAME, SALARY) and a CHECK constraint to define columns:

OREATE TABLE JOB

(JOB_CODE JOBCCDE NOT NULL,

JOB_GRADE JOBGRADE NOT NULL,

JOB_COUNTRY COUNTRYNAME NOT NULL,

JOB TI TLE VARCHAR(25) NOT NULL,

M N_SALARY SALARY NOT NULL,

MAX_SALARY SALARY NOT NULL,

JOB_REQUI REMENT BLOB(400, 1),

LANGUAGE_REQ VARCHAR(15) [5],

PRI MARY KEY (JOB CODE, JOB GRADE, JOB COUNTRY),

FOREl GN KEY (JOB_COUNTRY) REFERENCES COUNTRY (COUNTRY)
ON UPDATE CASCADE
ON DELETE CASCADE,

CHECK (M N_SALARY < MAX_SALARY));

Using the EXTERNAL FILE option

The EXTERNAL FILE option creates a table for which the data resides in an external table
or file, rather than in the InterBase database. External files are ASCII text that can also be
read and manipulated by non-InterBase applications. In the syntax for CREATE TABLE, the
filespec that accompanies the EXTERNAL keyword is the fully qualified file specification for
the external data file. You can modify the external file outside of InterBase, since
InterBase accesses it only when needed.

Use the EXTERNAL FILE option to:

® Import data from a flat external file in a known fixed-length format into a new or existing
InterBase table. This allows you to populate an InterBase table with data from an external
source. Many applications allow you to create an external file with fixed-length records.

® SELECT from the external file as if it were a standard InterBase table.

= Export data from an existing InterBase table to an external file. You can format the data
from the InterBase table into a fixed-length file that another application can use.

104 INTERBASE 5

CREATING TABLES

b Restrictions
The following restrictions apply to using the EXTERNAL FILE option:

® You must create the external file before you try to access the external table inside of the
database.

® Each record in the external file must be of fixed length. You cannot put BLOB or array
data into an external file.

® When you create the table that will be used to import the external data, you must define
a column to contain the end-of-line (EOL) or new-line character. The size of this column
must be exactly large enough to contain a particular system’s EOL symbol (usually one
or two bytes). For most versions of Unix, it is 1 byte. For Windows, NT, and NetWare, it
is 2 bytes.

= While it is possible to read in numeric data directly from an external table, it is much
easier to read it in as character data, and convert using the cast() function.

® Data to be treated as VARCHAR in InterBase must be stored in an external file in the
following format:

<2-byte unsigned short><string of character bytes>
where the 2-byte unsigned short indicates the number of bytes in the actual string, and
the string immediately follows. Because it is not readily portable, using VARCHAR data in
an external file is not recommended.

® You can only INSERT into and SELECT from the rows of an external table. You cannot
UPDATE or DELETE from an external table; if you try to do so, InterBase returns an error
message.

® Inserting into and selecting from an external table are not under standard transaction
control because the external file is outside of the database. Therefore, changes are
immediate and permanent—you cannot roll back your changes. If you want your table
to be under transaction control, create another internal InterBase table, and insert the
data from the external table into the internal one.

= [f you use DROP DATABASE to delete the database, you must also remove the external file—
it will not be automatically deleted as a result of DROP DATABASE.

DATA DEFINITION GUIDE 105

CHAPTER 6 WORKING WITH TABLES

» Importing external files to InterBase tables

The following steps describe how to import an external file into an InterBase table:

1. Create an InterBase table that allows you to view the external data. Declare
all columns as CHAR. The text file containing the data must be on the server.
In the following example, the external file exists on a Unix system, so the
EOL character is 1 byte.

CREATE TABLE EXT_TBL EXTERNAL FILE "file.txt"
(
FNAVE CHAR(10),
LNAVE CHAR(20),
HDATE CHAR(8),
NEWLI NE CHAR(1)
)
COW T;

2. Create another InterBase table that will eventually be your working table. If
you expect to export data from the internal table back to an external file at a
later time, be sure to create a column to hold the newline. Otherwise, you do
not need to leave room for the newline character. In the following example,
a column for the newline is provided:

CREATE TABLE PECPLE

(
FI RST_NAME CHAR(10),
LAST_NAME CHAR(20),
H RE_DATE CHAR(8),
NEW LI NE CHAR(1)

)

COW T;

3. Create and populate the external file. You can create the file with a text
editor, or you can create an appropriate file with an application like Paradox
for Windows or dBASE for Windows. If you create the file yourself with a text
editor, make each record the same length, pad the unused characters with
blanks, and insert the EOL character(s) at the end of each record.

Note The number of characters in the EOL is platform-specific. You need to know how
many characters are contained in your platform’s EOL (typically one or two) in order to
correctly format the columns of the tables and the corresponding records in the external
file. In the following example, the record length is 36 characters. “b” represents a blank
space, and “a” represents the EOL:

106 INTERBASE 5

CREATING TABLES

123456789012345678901234567890123456
fnane..... Ilname............. hdate..n

Rober t bbbbBr i cknanbbbbbbbbbb6/ 12/ 92n
SanbbbbbbbJonesbbbbbbbbbbbb12/ 13/ 93n

4. At this point, when you do a SELECT statement from table EXT_TBL, you will

see the records from the external file:
SELECT FNAME, LNAME, HDATE FROM EXT_TBL;

FNANVE LNANVE HDATE
Robert Bri ckman 12- JUN- 1992
Sam Jones 13- DEC- 1993

. Insert the data into the destination table.

| NSERT | NTO PEOPLE SELECT FNAME, LNAME, CAST(HDATE AS DATE),
NEWLI NE FROM EXT_TBL;

Now if you SELECT from PEOPLE, the data from your external table will be there.
SELECT FI RST_NAME, LAST_NAME, H RE_DATE FROM PEOCPLE;

FI RST_NAME LAST_NAME H RE_DATE
Robert Bri ckman 12- JUN- 1992
Sam Jones 13- DEC- 1993

InterBase allows you to store the date as an integer by converting from a CHAR(8) to
DATE using the CAST(function.

» Exporting InterBase tables to an external file

If you add, update, or delete a record from an internal table, the changes will not be
reflected in the external file. So in the previous example, if you delete the “Sam Jones”
record from the PEOPLE table, and do a subsequent SELECT from EXT_TBL, you would still
see the “Sam Jones” record.

This section explains how to export InterBase data to an external file. Using the example
developed in the previous section, follow these steps:

DATA DEFINITION GUIDE 107

CHAPTER 6 WORKING WITH TABLES

1. Open the external file in a text editor and remove everything from the file. If
you then do a SELECT on EXT_TBL, it should be empty.

2. Use an INSERT statement to copy the InterBase records from PEOPLE into the
external file, file.txt.

I NSERT | NTO EXT_TBL SELECT FI RST_NAME, LAST_NAME, H RE_DATE,

NEW LI NE
FROM PEOPLE WHERE FI RST_NAME LI KE " Rob% ;

3. Now if you do a SELECT from the external table, EXT_TBL, only the records you
inserted should be there. In this example, only a single record should be

displayed:

SELECT FNAME, LNAME, HDATE FROM EXT_TBL;
FNAVE LNANVE HDATE

Robert Bri ckman 12- JUN- 1992

IMPORTANT ~ Make sure that all records that you intend to export from the internal table to the
external file have the correct EOL character(s) in the newline column.

Altering tables
Use ALTER TABLE to modify the structure of an existing table. ALTER TABLE allows you to:
® Add a new column to a table.
® Drop a column from a table.
® Drop integrity constraints from a table or column.

You can perform any number of the above operations with a single ALTER TABLE
statement. A table can be altered by its creator, the SYSDBA user, and any users with
operating system root privileges.

Before using ALTER TABLE

Before modifying or dropping columns in a table, you need to do three things:
1. Make sure you have the proper database privileges.

2. Save the existing data.

3. Drop any constraints on the column.

108 INTERBASE 5

ALTERING TABLES

) Saving existing data

Before modifying an existing column definition using ALTER TABLE, you must preserve
existing data, or it will be lost.

Preserving data in a column and modifying the definition for a column, is a six-step
process:

1.

Add a temporary column to the table whose definition mirrors the current
column to be changed.

Copy the data from the column to be changed to the temporary column.

Drop the column to be changed.

4. Add a new column definition, giving it the same name as the dropped

5.
0.

column.
Copy the data from the temporary column to the new column.

Drop the temporary column.

For example, suppose the EMPLOYEE table contains a column, OFFICE_NO, defined to hold
a datatype of CHAR(3), and suppose that the size of the column needs to be increased by
one. The following numbered sequence describes each step and provides sample code:

1.

First, create a temporary column to hold the data in OFFICE_NO during the
modification process:

ALTER TABLE EMPLOYEE ADD TEMP_NO CHAR(3);

Move existing data from OFFICE_NO to TEMP_NO to preserve it:

UPDATE EMPLOYEE
SET TEMP_NO = OFFI CE_NO,

. After the data is moved, drop the OFFICE_NO column:

ALTER TABLE DROP OFFI CE_NO

. Add a new column definition for OFFICE_NO, specifying the datatype and new

size:

ALTER TABLE ADD OFFI CE_NO CHAR(4) ;
Move the data from TEMP_NO to OFFICE_NO:
UPDATE EMPLOYEE

SET OFFI CE_NO = TEMP_NO

Finally, drop the TEMP_NO column:

ALTER TABLE DROP TEMP_NG,

DATA DEFINITION GUIDE 109

IMPORTANT

IMPORTANT

110

CHAPTER 6 WORKING WITH TABLES

» Dropping columns

Before attempting to drop or modify a column, you should be aware of the different ways
that ALTER TABLE can fail:

= The person attempting to alter data does not have the required privileges.

® Current data in a table violates a PRIMARY KEY or UNIQUE constraint definition added to
the table; there is duplicate data in columns that you are trying to define as PRIMARY KEY
or UNIQUE.

= The column to be dropped is part of a UNIQUE, PRIMARY, or FOREIGN KEY constraint.

® The column is used in a CHECK constraint. When altering a column based on a domain,
you can supply an additional CHECK constraint for the column. Changes to tables that
contain CHECK constraints with subqueries can cause constraint violations.

® The column is used in another view, trigger, or in the value expression of a computed
column.

You must drop the constraint or computed column before dropping the table column.
You cannot drop PRIMARY KEY and UNIQUE constraints if they are referenced by FOREIGN
KEY constraints. In this case, drop the FOREIGN KEY constraint before dropping the
PRIMARY KEY or UNIQUE key it references. Finally, you can drop the column.

When you alter or drop a column, all data stored in it is lost.

Using ALTER TABLE

ALTER TABLE allows you to make the following changes to an existing table:

® Add new column definitions. To create a column using an existing name, you must drop
existing column definitions before adding new ones.

® Add new table constraints. To create a constraint using an existing name, you must drop
existing constraints with that name before adding a new one.

® Drop existing column definitions without adding new ones.
® Drop existing table constraints without adding new ones.

For a detailed specification of ALTER TABLE syntax, see the Language Reference.

» Adding a new column to a table
The syntax for adding a column with ALTER TABLE is:
ALTER TABLE tabl e ADD <col _def >

INTERBASE 5

ALTERING TABLES

<col _def> = col {<datatype> | [COWUTIED [BY] (<expr>) | domai n}
[DEFAULT {/iteral | NULL | USER}]
[NOT NULL] [<col _constrai nt >]
[COLLATE col I ati on]

<col _constraint> = [CONSTRAI NT constraint] <constraint_def>
[<col _constrai nt >]

<constraint_def> = { PRI MARY KEY | UN QUE
| CHECK (<search_condition>)
| REFERENCES ot her_table [(other_col [, other_col ..])]
[ON DELETE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]
[ON UPDATE {NO ACTION|CASCADE|SET DEFAULT|SET NULL}]}

For the complete syntax of ALTER TABLE, see the Language Reference.

For example, the following statement adds a column, EMP_NO, to the EMPLOYEE table
using the EMPNO domain:

ALTER TABLE EMPLOYEE ADD EMP_NO EMPNO NOT NULL;

You can add multiple columns to a table at the same time. Separate column definitions
with commas. For example, the following statement adds two columns, EMP_NO, and
FULL_NAME, to the EMPLOYEE table. FULL_NAME is a computed column, a column that
derives it values from calculations based on two other columns already defined for the
EMPLOYEE table:

ALTER TABLE EMPLOYEE
ADD EMP_NO EMPNO NOT NULL,
ADD FULL_NAME COMPUTED BY (LAST_NAME || ', ' || FIRST_NAME);

You can also define integrity constraints for columns that you add to the table. For
example, the next statement adds two columns, CAPITAL and LARGEST_CITY, to the
COUNTRY table, and defines a UNIQUE constraint on CAPITAL:

ALTER TABLE COUNTRY
ADD CAPITAL VARCHAR(25) UNIQUE,
ADD LARGEST_CITY VARCHAR(25) NOT NULL;

» Adding new table constraints
You can use ALTER TABLE to add a new table-level constraint. The syntax is:

ALTER TABLE nane ADD [CONSTRAINT constrai nt] <tconstraint_opt >,

where fconstraint_opt is a PRIMARY KEY, FOREIGN KEY, UNIQUE, or CHECK constraint. For
example:

DATA DEFINITION GUIDE 111

IMPORTANT

112

CHAPTER 6 WORKING WITH TABLES

ALTER TABLE EMPLOYEE
ADD CONSTRAI NT DEPT_NO UNI QUE(PHONE_EXT) ;

» Dropping an existing column from a table

You can use ALTER TABLE to delete a column definition and its data from a table. A column
can be dropped only by the owner of the table. If another user is accessing a table when
you attempt to drop a column, the other user’s transaction will continue to have access
to the table until that transaction completes. InterBase postpones the drop until the table
is no longer in use.

The syntax for dropping a column with ALTER TABLE is:
ALTER TABLE nane DROP col nane [, colnane ...];

For example, the following statement drops the EMP_NO column from the EMPLOYEE table:
ALTER TABLE EMPLOYEE DROP EMP_NO

Multiple columns can be dropped with a single ALTER TABLE statement.

ALTER TABLE EMPLOYEE
DROP EMP_NO,
DROP FULL_NAME;

You cannot delete a column that is part of a UNIQUE, PRIMARY KEY, or FOREIGN KEY
constraint. In the previous example, EMP_NO is the PRIMARY KEY for the EMPLOYEE table,
so you cannot drop this column unless you first drop the PRIMARY KEY constraint.

» Dropping existing constraints from a column

You must drop constraints from a column in the correct sequence. See the following
CREATE TABLE example. Because there is a foreign key in the PROJECT table that references
the primary key (EMP_NO) of the EMPLOYEE table, you must first drop the foreign key
reference before you can drop the PRIMARY KEY constraint in the EMPLOYEE table.

CREATE TABLE PROJECT
(PROJ_I D PRQJNO NOT NULL,
PROJ_NAVE VARCHAR(20) NOT NULL UNI QUE,
PROJ_DESC BLOB(800, 1),
TEAM LEADER EMPNO,
PRODUCT PRODTYPE,

PRI MARY KEY (PRQJ_ID),

CONSTRAI NT TEAM CONSTRT FOREI GN KEY (TEAM LEADER) REFERENCES
EMPLOYEE (EMP_NO));

INTERBASE 5

DROPPING TABLES

The proper sequence is:

ALTER TABLE PRQJECT

DROP CONSTRAI NT TEAM CONSTRT;
ALTER TABLE EMPLOYEE

DROP CONSTRAI NT EMP_NO_CONSTRT;
ALTER TABLE EMPLOYEE

DROP EMP_NO,

Note Constraint names are in the system table, RDB§RELATION_CONSTRAINTS.

In addition, you cannot delete a column if it is referenced by another column’s CHECK
constraint. To drop the column, first drop the CHECK constraint, then drop the column.

» Summary of ALTER TABLE arguments

When you use ALTER TABLE to add column definitions and constraints, you can specify all
of the same arguments that you use in CREATE TABLE; all column definitions, constraints,
and datatype arguments are the same, with the exception of the operation argument. The
following operations are available for ALTER TABLE.

= Add a new column definition with ADD col_def.
= Add a new table constraint with ADD table_constraint.
® Drop an existing column with DROP col.

® Drop an existing constraint with DROP CONSTRAINT constraint.

]
Dropping tables
Use DROP TABLE to delete an entire table from the database.

Note If you want to drop columns from a table, use ALTER TABLE.

Dropping a table

Use DROP TABLE to remove a table’s data, metadata, and indexes from a database. It also
drops any triggers that are based on the table. A table can be dropped by its creator, the
SYSDBA user, or any user with operating system root privileges.

You cannot drop a table that is referenced in a computed column, a view, integrity
constraint, or stored procedure. You cannot drop a table that is being used by an active
transaction until the table is no longer in use.

DATA DEFINITION GUIDE 113

114

CHAPTER 6 WORKING WITH TABLES

DROP TABLE fails and returns an error if:
® The person who attempts to drop the table is not the owner of the table.

= The table is in use when the drop is attempted. The drop is postponed until the table is
no longer in use.

® The table has a UNIQUE or PRIMARY KEY defined for it, and the PRIMARY KEY is referenced
by a FOREIGN KEY in another table. First drop the FOREIGN KEY constraints in the other
table, then drop the table.

= The table is used in a view, trigger, stored procedure, or computed column. Remove the
other elements before dropping the table.

® The table is referenced in another table’s CHECK constraint.

Note DROP TABLE does not delete external tables; it removes the table definition from the
database. You must explicitly delete the external file.

DROP TABLE syntax
DROP TABLE nane;

The following statement drops the table, COUNTRY:
DROP TABLE COUNTRY;

INTERBASE 5

CHAPTER

Working with Indexes

This chapter explains the following:
® Index basics
® When and how to create indexes

® How to improve index performance

Index basics

An index is a mechanism that is used to speed the retrieval of records in response to
certain search conditions, and to enforce uniqueness constraints on columns. Just as you
search an index in a book for a list of page numbers to quickly find the pages that you
want to read, a database index serves as a logical pointer to the physical location
(address) of a row in a table. An index stores each value of the indexed column or
columns along with pointers to all of the disk blocks that contain rows with that column
value.

When executing a query, the InterBase engine first checks to see if any indexes exist for
the named tables. It then determines whether it is more efficient to scan the entire table,
or to use an existing index to process the query. If the engine decides to use an index, it
searches the index to find the key values requested, and follows the pointers to locate the
rows in the table containing the values.

DATA DEFINITION GUIDE 115

CHAPTER 7 WORKING WITH INDEXES

Data retrieval is fast because the values in the index are ordered, and the index is
relatively small. This allows the system to quickly locate the key value. Once the key value
is found, the system follows the pointer to the physical location of the associated data.
Using an index typically requires fewer page fetches than a sequential read of every row
in the table.

An index can be defined on a single column or on multiple columns of a table.
Multi-column indexes can be used for single-column lookups, as long as the column that
is being retrieved is the first in the index.

When to index

An index on a column can mean the difference between an immediate response to a
query and a long wait, as the length of time it takes to search the whole table is directly
proportional to the number of rows in the table. So why not index every column? The
main drawbacks are that indexes consume additional disk space, and inserting, deleting,
and updating data takes longer on indexed columns than on non-indexed columns. The
reason is that the index must be updated each time the data in the indexed column
changes, and each time a row is added to or deleted from the table.

Nevertheless, the overhead of indexes is usually outweighed by the boost in performance
for data retrieval queries. You should create an index on a column when:

= Search conditions frequently reference the column.

® Join conditions frequently reference the column.

= ORDER BY statements frequently use the column to sort data.
You do not need to create an index for:

® Columns that are seldom referenced in search conditions.

® Frequently updated non-key columns.

® Columns that have a small number of possible values.

Creating indexes

116

Indexes are either created by the user with the CREATE INDEX statement, or they are
created automatically by the system as part of the CREATE TABLE statement. InterBase
allows users to create as many as 64 indexes on a given table. To create indexes you must
have authority to connect to the database.

INTERBASE 5

CREATING INDEXES

Note To see all indexes defined for the current database, use the isql command SHOW
INDEX. To see all indexes defined for a specific table, use the command, SHOW INDEX
tablename. To view information about a specific index, use SHOW INDEX indexname.

InterBase automatically generates system-level indexes on a column or set of columns
when tables are defined using PRIMARY KEY, FOREIGN KEY, and UNIQUE constraints.
Indexes on PRIMARY KEY and FOREIGN KEY constraints preserve referential integrity.

Using CREATE INDEX

The CREATE INDEX statement creates an index on one or more columns of a table. A
single-column index searches only one column in response to a query, while a
multi-column index searches one or more columns. Options specify:

The sort order for the index.
Whether duplicate values are allowed in the indexed column.

Use CREATE INDEX to improve speed of data access. For faster response to queries that
require sorted values, use the index order that matches the query’s ORDER BY clause. Use
an index for columns that appear in a WHERE clause to speed searching.

To improve index performance, use SET STATISTICS to recompute index selectivity, or
rebuild the index by making it inactive, then active with sequential calls to ALTER INDEX.
For more information about improving performance, see “Using SET STATISTICS” on
page 121.

The syntax for CREATE INDEX is:

CREATE [UNI QUE] [ASC] ENDI NG | DESC] ENDI NG]
| NDEX i ndex ON table (col [, col ...]);

) Preventing duplicate entries

No two rows can be alike when a UNIQUE index is specified for a column or set of
columns. The system checks for duplicate values when the index is created, and each
time a row is inserted or updated. InterBase automatically creates a UNIQUE index on a
PRIMARY KEY column, forcing the values in that column to be unique identifiers for the
row. Unique indexes only make sense when uniqueness is a characteristic of the data
itself. For example, you would not define a unique index on a LAST_NAME column because
there is a high probability for duplication. Conversely, a unique index is a good idea on
a column containing a social security number.

To define an index that disallows duplicate entries, include the UNIQUE keyword in
CREATE INDEX. The following statement creates a unique ascending index (PRODTYPEX)
on the PRODUCT and PROJ_NAME columns of the PROJECT table:

DATA DEFINITION GUIDE 117

118

Tip

CHAPTER 7 WORKING WITH INDEXES

CREATE UNI QUE | NDEX PRODTYPEX ON PRQJECT (PRODUCT, PRQOJ_NAME);

InterBase does not allow you to create a unique index on a column that already
contains duplicate values. Before defining a UNIQUE index, use a SELECT statement to
ensure there are no duplicate keys in the table. For example:

SELECT PRCDUCT, PRQJ_NAME FROM PRQIECT
GROUP BY PRCDUCT, PRQJ_NAME
HAVI NG COUNT(*) > 1;

» Specifying index sort order

Specify a direction (low to high or high to low) by using the ASCENDING or DESCENDING
keyword. By default, InterBase creates indexes in ascending order. To make a descending
index on a column or group of columns, use the DESCENDING keyword to define the
index. The following statement creates a descending index (DESC_X) on the CHANGE_DATE
column of the SALARY_HISTORY table:

CREATE DESCENDI NG | NDEX DESC_X ON SALARY_HI STORY (CHANGE_DATE) ;

Note To retrieve indexed data from this table in descending order, use ORDER BY
CHANGE_DATE DESCENDING in the SELECT statement.

If you intend to use both ascending and descending sort orders on a particular column,
define both an ascending and a descending index for the same column. The following
example illustrates this:

CREATE ASCENDI NG | NDEX ASCEND X ON SALARY_HI STORY (CHANGE DATE)
CREATE DESCENDI NG | NDEX DESC_X ON SALARY_ HI STORY (CHANGE_DATE) ;

When to use a multi-column index

The main reason to use a multi-column index is to speed up queries that often access the
same set of columns. You do not have to create the query with the exact column list that
is defined in the index. InterBase will use a subset of the components of a multi-column
index to optimize a query if the:

Subset of columns used in the ORDER BY clause begins with the first column in the
multi-column index. Unless the query uses all prior columns in the list, InterBase cannot
use that index to optimize the search. For example, if the index column list is A1, A2, and
A3, a query using Al and A2 would be optimized using the index, but a query using A2
and A3 would not.

INTERBASE 5

CREATING INDEXES

Tip

® Order in which the query accesses the columns in an ORDER BY clause matches the order
of the column list defined in the index. (The query would not be optimized if its column
list were A2, Al.)

If you expect to issue frequent queries against a table where the queries use the OR
operator, it is better to create a single-column index for each condition. Since
multi-column indices are sorted hierarchically, a query that is looking for any one of two
or more conditions would, of course, have to search the whole table, losing the
advantage of an index.

Examples using multi-column indexes

The first example creates a multi-column index, NAMEX, on the EMPLOYEE table:

CREATE | NDEX NAMEX ON EMPLOYEE (LAST_NAME, FI RST_NAME);
The following query will be optimized against the index because the ORDER BY clause
references all of the indexed columns in the correct order:

SELECT LAST_NAME, SALARY FROM EMPLOYEE
VWHERE SALARY > 40000
CRDER BY LAST_NAME, FI RST_NANME;

The next query will also process the following query with an index search (using
LAST_NAME from NAMEX) because although the ORDER BY clause only references one of
the indexed columns (LAST_NAME), it does so in the correct order.

SELECT LAST_NAME, SALARY FROM EMPLOYEE
VWHERE SALARY > 40000
CRDER BY LAST_NAME;

Conversely, the following query will 7ot be optimized against the index because the
ORDER BY clause uses FIRST_NAME, which is not the first indexed column in the NAMEX
column list.

SELECT LASTNAME, SALARY FROM EMP

VWHERE SALARY > 40000
ORDER BY FI RST_NANME;

The same rules that apply to the ORDER BY clause also apply to queries containing a
WHERE clause. The next example creates a multi-column index for the PROJECT table:
CREATE UNI QUE | NDEX PRODTYPEX ON PROJECT (PRODUCT, PRQJ_NAME);

The following query will be optimized against the PRODTYPEX index because the WHERE
clause references the first indexed column (PRODUCT) of the index:

DATA DEFINITION GUIDE 119

CHAPTER 7 WORKING WITH INDEXES

SELECT * FROM PRQJECT
VWHERE PRODUCT ="software";

Conversely, the next query will not be optimized against the index because PROJ_NAME is
not the first indexed column in the column list of the PRODTYPEX index:

SELECT * FROM PRQJECT
WHERE PRQJ_NAME ="Int er Base 4.0";

Improving index performance

120

Tip

Indexes can become unbalanced after many changes to the database. When this happens,
performance can be improved using one of the following methods:

® Rebuild the index with ALTER INDEX.
® Recompute index selectivity with SET STATISTICS.
= Delete and recreate the index with DROP INDEX and CREATE INDEX.

= Back up and restore the database with gbak.

Using ALTER INDEX

The ALTER INDEX statement deactivates and reactivates an index. Deactivating and
reactivating an index is useful when changes in the distribution of indexed data cause the
index to become unbalanced.

To rebuild the index, first use ALTER INDEX INACTIVE to deactivate the index, then ALTER
INDEX ACTIVE to reactivate it again. This method recreates and balances the index.

Note You can also rebuild an index by backing up and restoring the database with the
gbak utility. gbak stores only the definition of the index, not the data structure, so when
you restore the database, ghak rebuilds the indexes.

Before inserting a large number of rows, deactivate a table’s indexes during the insert,
then reactivate the index to rebuild it. Otherwise, InterBase incrementally updates the
index each time a single row is inserted.

The syntax for ALTER INDEX is:
ALTER | NDEX nanme { ACTIVE | | NACTI VE};

The following statements deactivate and reactivate an index to rebuild it:
ALTER | NDEX BUDGETX | NACTI VE;

INTERBASE 5

IMPROVING INDEX PERFORMANCE

ALTER | NDEX BUDGETX ACTI VE;

Note The following restrictions apply to altering an index:

® In order to alter an index, you must be the creator of the index, a SYSDBA user, or a user
with operating system root privileges.

® You cannot alter an index if it is in use in an active database. An index is in use if it is
currently being used by a compiled request to process a query. All requests using an index
must be released to make it available.

® You cannot alter an index that has been defined with a UNIQUE, PRIMARY KEY, or FOREIGN
KEY constraint. If you want to modify the constraints, you must use ALTER TABLE. For more
information about ALTER TABLE, see the Language Reference.

® You cannot use ALTER INDEX to add or drop index columns or keys. Use DROP INDEX to
delete the index and then redefine it with CREATE INDEX.

Using SET STATISTICS

For tables where the number of duplicate values in indexed columns radically increases
or decreases, periodically recomputing index selectivity can improve performance. SET
STATISTICS recomputes the selectivity of an index.

Index selectivity is a calculation that is made by the InterBase optimizer when a table is
accessed, and is based on the number of distinct rows in a table. It is cached in memory,
where the optimizer can access it to calculate the optimal retrieval plan for a given query.

The syntax for SET STATISTICS is:

SET STATI STI CS | NDEX nane,

The following statement recomputes the selectivity for an index:

SET STATI STI CS | NDEX M NSALX;

Note The following restrictions apply to the SET STATISTICS statement:

® In order to use SET STATISTICS, you must be the creator of the index, a SYSDBA user, or a
user with operating system root privileges.

B SET STATISTICS does not rebuild an index. To rebuild an index, use ALTER INDEX.

DATA DEFINITION GUIDE 121

122

CHAPTER 7 WORKING WITH INDEXES

Using DROP INDEX

DROP INDEX removes a user-defined index from the database. System-defined indexes,
such as those created on columns defined with UNIQUE, PRIMARY KEY, and FOREIGN KEY
constraints cannot be dropped.

To alter an index, first use the DROP INDEX statement to delete the index, then use the
CREATE INDEX statement to recreate the index (using the same name) with the desired
characteristics.

The syntax for DROP INDEX is:
DROP | NDEX nane;

The following statement deletes an index:
DROP | NDEX M NSALX;

Note The following restrictions apply to dropping an index:

® To drop an index, you must be the creator of the index, a SYSDBA user, or a user with
operating system root privileges.

® An index in use cannot be dropped until it is no longer in use. If you try to alter or drop
an index while transactions are being processed, the results depend on the type of
transaction in operation. In a WAIT transaction, the ALTER INDEX or DROP INDEX operation
waits until the index is not in use. In a NOWAIT transaction, InterBase returns an error.

® If an index was automatically created by the system on a column having a UNIQUE,
PRIMARY KEY, or FOREIGN KEY constraint, you cannot drop the index. To drop an index on
a column defined with those constraints, drop the constraint, the constrained column, or
the table. To modify the constraints, use ALTER TABLE. For more information about ALTER
TABLE, see the Language Reference.

INTERBASE 5

CHAPTER

Working with Views

This chapter describes:
® What views are and the reasons for using them.
® How to create and drop views.

® How to modify data through a view.

Introduction

Database users typically need to access a particular subset of the data that is stored in the
database. Further, the data requirements within an individual user or group are often
quite consistent. Views provide a way to create a customized version of the underlying
tables that display only the clusters of data that a given user or group of users is interested
in.

Once a view is defined, you can display and operate on it as if it were an ordinary table.
A view can be derived from one or more tables, or from another view. Views look just like
ordinary database tables, but they are not physically stored in the database. The database
stores only the view definition, and uses this definition to filter the data when a query
referencing the view occurs.

DATA DEFINITION GUIDE 123

IMPORTANT

124

CHAPTER 8 WORKING WITH VIEWS

It is important to understand that creating a view does not generate a copy of the data
stored in another table; when you change the data through a view, you are changing the
data in the actual underlying tables. Conversely, when the data in the base tables is
changed directly, the views that were derived from the base tables are automatically
updated to reflect the changes. Think of a view as a movable “window” or frame
through which you can see the actual data. The data definition is the “frame.” For
restrictions on operations using views, see “Iypes of views: read-only and updatable”
on page 127.

A view can be created from:

= Avertical subset of columns from a single table. For example, the table, JOB, in the employee.gdb
database has 8 columns: JOB_CODE, JOB_GRADE, JOB_COUNTRY, JOB_TITLE, MIN_SALARY,
MAX_SALARY, JOB_REQUIREMENT, and LANGUAGE_REQ. The following view displays a list of
salary ranges (subset of columns) for all jobs (all rows) in the JOB table:

CREATE VI EW JOB_SALARY_RANGES AS
SELECT JOB_CODE, M N_SALARY, MAX_SALARY
FROM JOB;

= A horizontal subset of rows from a single table. The next view displays all of the columns in the
JOB table, but only the subset of rows where the MAX_SALARY is less than $15,000:

CREATE VI EW LOW PAY AS
SELECT *

FROM JOB

VWHERE MAX_SALARY < 15000;

= A combined vertical and horizontal subset of columns and rows from a single table. The next view
displays only the JOB_CODE and JOB_TITLE columns and only those jobs where
MAX_SALARY is less than $15,000:

CREATE VI EW ENTRY_LEVEL_JOBS AS
SELECT JOB_CODE, JOB_TI TLE,
FROM JOB

VWHERE MAX_SALARY < 15000;

= A subset of rows and columns from multiple tables (joins). The next example shows a view created
from both the JOB and EMPLOYEE tables. The EMPLOYEE table contains 11 columns:
EMP_NO, FIRST_NAME, LAST NAME, PHONE_EXT, HIRE_DATE, DEPT_NO, JOB_CODE,
JOB_GRADE, JOB_COUNTRY, SALARY, FULL_NAME. It displays two columns from the JOB table,
and two columns from the EMPLOYEE table, and returns only the rows where SALARY is
less than $15,000:

INTERBASE 5

ADVANTAGES OF VIEWS

CREATE VI EW ENTRY_LEVEL_WORKERS AS

SELECT JOB_CODE, JOB_TITLE, FIRST_NAME, LAST_NAME

FROM JOB, EMPLOYEE

VWHERE JCB. JOB_CODE = EMPLOYEE. JOB_CODE AND SALARY < 15000;

Advantages of views

The main advantages of views are:

= Simplified access to the data. Views enable you to encapsulate a subset of data from one
or more tables to use as a foundation for future queries without requiring you to repeat
the same set of SQL statements to retrieve the same subset of data.

® Customized access to the data. Views provide a way to tailor the database to suit a variety
of users with dissimilar skills and interests. You can focus on the information that
specifically concerns you without having to process extraneous data.

® Data independence. Views protect users from the effects of changes to the underlying
database structure. For example, if the database administrator decides to split one table
into two, a view can be created that is a join of the two new tables, thus shielding the
users from the change.

= Data security. Views provide security by restricting access to sensitive or irrelevant
portions of the database. For example, you might be able to look up job information, but
not be able to see associated salary information.

Creating views

The CREATE VIEW statement creates a virtual table based on one or more underlying tables
in the database. You can perform select, project, join, and union operations on views just
as if they were tables.

The user who creates a view is its owner and has all privileges for it, including the ability
to GRANT privileges to other users, triggers, and stored procedures. A user can be granted
privileges to a view without having access to its base tables.

The syntax for CREATE VIEW is:

CREATE VI EW nane [(view_col [, view col ..])]
AS <sel ect > [WITH CHECK OPTION];

Note You cannot define a view that is based on the result set of a stored procedure.

DATA DEFINITION GUIDE 125

CHAPTER 8 WORKING WITH VIEWS

Specifying view column names

® piew_col names one or more columns for the view. Column names are optional unless
the view includes columns based on expressions. When specified, view column names
correspond in order and number to the columns listed in select, so you must specify view
column names for every column selected, or do not specify names at all.

® Column names must be unique among all column names in the view. If column names
are not specified, the view takes the column names from the underlying table by default.

= If the view definition includes an expression, view_col names are required. A view_col
definition can contain one or more columns based on an expression.

Note isql does not support view definitions containing UNION clauses. You must write an
embedded application to create this type of view.

Using the SELECT statement

The SELECT statement specifies the selection criteria for the rows to be included in the
view. SELECT does the following:

® Lists the columns to be included from the base table. When SELECT * is used rather than
a column list, the view contains all of the column names from the base table, and displays
them in the order in which they appear in the base table. The following example creates
a view, MY_VIEW, that contains all of the columns in the EMPLOYEE table:

CREATE VI EW MY_VI EW AS
SELECT * FROM EMPLOYEE;

® Identifies the source tables in the FROM clause. In the MY_VIEW example, EMPLOYEE is the
source table.

= Specifies, if needed, row selection conditions in a WHERE clause. In the next example,
only the employees that work in the USA are included in the view:

CREATE VI EW USA_EMPLOYEES AS
SELECT * FROM EMPLOYEE
VHERE JOB_COUNTRY = "USA";

= [f WITH CHECK OPTION is specified, it prevents INSERT or UPDATE operations on an
updatable view if the operation violates the search condition specified in the WHERE
clause. For more information about using this option, see “Using WITH CHECK OPTION”
on page 129. For an explanation of updatable views, see “Iypes of views: read-only and
updatable” on page 127.

IMPORTANT ~ When creating views, the SELECT statement cannot include an ORDER BY clause.

126 INTERBASE 5

CREATING VIEWS

Using expressions to define columns

An expression can be any SQL statement that performs a comparison or computation, and
returns a single value. Examples of expressions are concatenating character strings,
performing computations on numeric data, doing comparisons using comparison
operators (<, >, <=, and so on) or Boolean operators (AND, OR, NOT). The expression
must return a single value, and cannot be an array or return an array. Any columns used
in the value expression must exist before the expression can be defined.

For example, suppose you want to create a view that displays the salary ranges for all jobs
that pay at least $60,000. The view, GOOD_JOB, based on the JOB table, selects the
pertinent jobs and their salary ranges:

CREATE VI EW GOOD_JOB (JOB_TI TLE, STRT_SALARY, TOP_SALARY) AS
SELECT JOB_TITLE, M N_SALARY, MAX_ SALARY FROM JOB
VWHERE M N_SALARY > 60000;

Suppose you want to create a view that assigns a hypothetical 10% salary increase to all
employees in the company. The next example creates a view that displays all of the
employees and their new salaries:

CREATE VI EW 10% RAI SE (EMPLOYEE, NEW SALARY) AS
SELECT EMP_NO, SALARY *1.1 FROM EMPLOYEE;

Note Remember, unless the creator of the view assigns INSERT or UPDATE privileges, the
users of the view cannot affect the actual data in the underlying table.

Types of views: read-only and updatable

When you update a view, the changes are passed through to the underlying tables from
which the view was created only if certain conditions are met. If a view meets these
conditions, it is updatable. If it does not meet these conditions, it is read-only, meaning
that writes to the view are not passed through to the underlying tables.

Note The terms updatable and read-only refer to how you access the data in the
underlying tables, not to whether the view definition can be modified. To modify the view
definition, you must drop the view and then recreate it.

A view is updatable if all of the following conditions are met:
= [t is a subset of a single table or another updatable view.

= All base table columns excluded from the view definition allow NULL values.

DATA DEFINITION GUIDE 127

CHAPTER 8 WORKING WITH VIEWS

= The view’s SELECT statement does not contain subqueries, a DISTINCT predicate, a HAVING
clause, aggregate functions, joined tables, user-defined functions, or stored procedures.

If the view definition does not meet all of these conditions, it is considered read-only.

Note Read-only views can be updated by using a combination of user-defined referential
constraints, triggers, and unique indexes. For information on how to update read-only
views using triggers, see Chapter 10, “Creating Triggers.”

» View privileges

The creator of the view must have the following privileges:
= To create a read-only view, the creator needs SELECT privileges for any underlying tables.
= To create an updatable view, the creator needs ALL privileges to the underlying tables.

For more information on SQL privileges, see Chapter 13, “Planning Security.”

» Examples of views
The following statement creates an updatable view:

CREATE VI EW EMP_MNCRS (FI RST, LAST, SALARY) AS
SELECT FI RST_NAME, LAST_NAME, SALARY

FROM EMPLOYEE

VWHERE JOB_CODE = "Mhgr";

The next statement uses a nested query to create a view, so the view is read-only:

CREATE VI EW ALL_MNGRS AS

SELECT FI RST_NAME, LAST_NAMVE, JOB_COUNTRY FROM EMPLOYEE WHERE
JOB_COUNTRY | N (SELECT JOB_COUNTRY FROM JOB

WHERE JOB_TI TLE = "manager");

The next statement creates a view that joins two tables, and so it is also read-only:

CREATE VI EW PHONE_LI ST AS SELECT

EMP_NO, FI RST_NAME, LAST NAME, PHONE_EXT, LOCATION, PHONE _NO
FROM EMPLOYEE, DEPARTNMENT

WHERE EMPLOYEE. DEPT_NO = DEPARTMENT. DEPT_NO.

Inserting data through a view

Rows can be inserted and updated through a view if the following conditions are met:

® The view is updatable

128 INTERBASE 5

CREATING VIEWS

® A user or stored procedure has INSERT privilege for the view

® The view is created using WITH CHECK OPTION

TP You can simulate updating a read-only view by writing triggers that perform the
appropriate writes to the underlying tables. For an example of this, see “Updating views
with triggers” on page 183.

» Using WITH CHECK OPTION

WITH CHECK OPTION specifies rules for modifying data through views. This option can be
included only if the views are updatable. Views that are created using WITH CHECK OPTION
enable InterBase to verify that a row inserted or updated through a view can be seen
through the view before allowing the operation to succeed. Values can only be inserted
through a view for those columns named in the view. InterBase stores NULL values for
unreferenced columns.

WITH CHECK OPTION prevents you from inserting or updating values that do not satisfy the
search condition specified in the WHERE clause of the CREATE VIEW select statement.

» Examples

Suppose you want to create a view that allows access to information about all
departments with budgets between $10,000 and $500,000. The view, SUB_DEPT, is defined
as follows:

CREATE VI EW SUB_DEPT

(DEPT_NAME, DEPT_NO, SUB _DEPT_NO, LOW BUDGET)

AS SELECT DEPARTMENT, DEPT_NO, HEAD DEPT, BUDGET
FROM DEPARTMENT WHERE BUDGET BETWEEN 10000 AND 500000
W TH CHECK OPTI ON;

The SUB_DEPT view references a single table, DEPARTMENT. If you are the creator of the
view or have INSERT privileges, you can insert new data into the DEPARTMENT, DEPT_NO,
HEAD_DEPT, and BUDGET columns of the base table, DEPARTMENT. WITH CHECK OPTION
assures that all values entered through the view fall within the range prescribed for each
column in the WHERE clause of the SUB_DEPT view.

The following statement inserts a new row for the Publications Department through the
SUB_DEPT view:

| NSERT | NTO SUB_DEPT (DEPT_NAME, DEPT_NO, SUB DEPT_NO, LOW BUDGET)
VALUES ("Publications", "7735", "670", 250000);

InterBase inserts NULL values for all other columns in the DEPARTMENT base table that are
not available directly through the view.

DATA DEFINITION GUIDE 129

CHAPTER 8 WORKING WITH VIEWS

Dropping views

The DROP VIEW statement enables a view’s creator to remove a view definition from the
database. It does not affect the base tables associated with the view. You can drop a view
only if:

® You created the view.

® The view is not used in another view, a stored procedure, or CHECK constraint definition.
You must delete the associated database objects before dropping the view.

The syntax for DROP VIEW is:
DROP VI EW nane;

The following statement removes a view definition:
DROP VI EW SUB_DEPT;

Note You cannot alter a view directly. To change a view, drop it and use the CREATE VIEW
statement to create a view with the same name and the features you want.

130 INTERBASE 5

CHAPTER

Working with
Stored Procedures

This chapter describes the following:
® How to create, alter, and drop procedures.
® The InterBase procedure and trigger language.
® How to use stored procedures.
® How to create, alter, drop, and raise exceptions.

® How to handle errors.

Overview of stored procedures

A stored procedure is a self-contained program written in InterBase procedure and trigger
language, and stored as part of a the database metadata.

Once you have created a stored procedure, you can invoke it directly from an application,
or substitute the procedure for a table or view in a SELECT statement. Stored procedures
can receive input parameters from and return values to applications.

DATA DEFINITION GUIDE 131

CHAPTER 9 WORKING WITH STORED PROCEDURES

InterBase procedure and trigger language includes SQL data manipulation statements
and some powerful extensions, including IF ... THEN ... ELSE, WHILE ... DO, FOR SELECT ...
DO, exceptions, and error handling.

The advantages of using stored procedures include:
® Modular design

® Applications that access the same database can share stored procedures, eliminating
duplicate code and reducing the size of the applications

= Streamlined maintenance

® When a procedure is updated, the changes are automatically reflected in all applications
that use it without the need to recompile and relink them; applications are compiled and
optimized only once for each client

® Improved performance

= Stored procedures are executed by the server, not the client, which reduces network
traffic, and improves performance—especially for remote client access

Working with procedures

With isql, you can create, alter, and drop procedures and exceptions. Each of these
operations is explained in the corresponding sections in this chapter.

There are two ways to create, alter, and drop procedures with isql:
® Interactively
® With an input file containing data definition statements

It is usually preferable to use data definition files, because they are easier to modify and
provide separate documentation of the procedure. For simple changes to existing
procedures or exceptions, the interactive interface can be convenient.

The user who creates a procedure is the owner of the procedure, and can grant the
privilege to execute the procedure to other users, triggers, and stored
procedures.

132 INTERBASE 5

WORKING WITH PROCEDURES

Using a data definition file

To create or alter a procedure through a data definition file, follow these steps:
1. Use a text editor to write the data definition file.

2. Save the file.

3. Process the file with isql. Use this command:

isql -input filenane database_nane

where filename is the name of the data definition file and database_name is the
name of the database to use. Alternatively, from within isql, you can process the file
using the command:

SQL> i nput filenaneg;

If you do not specify the database on the command line or interactively, the data
definition file must include a statement to create or open a database.

The data definition file can include:

= Statements to create, alter, or drop procedures. The file can also include statements to
create, alter, or drop exceptions. Exceptions must be created before they can be
referenced in procedures.

® Any other isql statements.

Calling stored procedures

Applications can call stored procedures from SQL and DSQL. You can also use stored
procedures in isql. For more information on calling stored procedures from applications,
see the Programmer’s Guide.

There are two types of stored procedures:

® Select procedures that an application can use in place of a table or view in a SELECT
statement. A select procedure must be defined to return one or more values (output
parameters), or an error results.

= Executable procedures that an application can call directly with the EXECUTE PROCEDURE
statement. An executable procedure can optionally return values to the calling program.

DATA DEFINITION GUIDE 133

CHAPTER 9 WORKING WITH STORED PROCEDURES

Both kinds of procedures are defined with CREATE PROCEDURE and have essentially the
same syntax. The difference is in how the procedure is written and how it is intended to
be used. Select procedures can return more than one row, so that to the calling program
they appear as a table or view. Executable procedures are routines invoked by the calling
program, which can optionally return values.

In fact, a single procedure conceivably can be used as a select procedure or as an
executable procedure, but in general a procedure is written specifically to be used in a
SELECT statement (a select procedure) or to be used in an EXECUTE PROCEDURE statement
(an executable procedure).

Privileges for stored procedures

To use a stored procedure, a user must be the creator of the procedure or must be given
EXECUTE privilege for it. An extension to the GRANT statement assigns the EXECUTE
privilege, and an extension to the REVOKE statement eliminates the privilege.

Stored procedures themselves sometimes need access to tables or views for which a user
does not—or should not—have privileges. For more information about granting
privileges to users and procedures, see Chapter 13, “Planning Security.”

Creating procedures

134

You can define a stored procedure with the CREATE PROCEDURE statement in isql. You
cannot create stored procedures in embedded SQL. A stored procedure is composed of a
beader and a body.

The header contains:

® The name of the stored procedure, which must be unique among procedure, view, and
table names in the database.

® An optional list of input parameters and their datatypes that a procedure receives from
the calling program.

= If the procedure returns values to the calling program, RETURNS followed by a list of
output parameters and their datatypes.

The procedure body contains:

® An optional list of local variables and their datatypes.

INTERBASE 5

CREATING PROCEDURES

IMPORTANT

nesting.

® A block of statements in InterBase procedure and trigger language, bracketed by BEGIN
and END. A block can itself include other blocks, so that there can be many levels of

Because each statement in a stored procedure body must be terminated by a semicolon,
you must define a different symbol to terminate the CREATE PROCEDURE statement in isql.
Use SET TERM before CREATE PROCEDURE to specify a terminator other than a semicolon.

After the CREATE PROCEDURE statement, include another SET TERM to change the

terminator back to a semicolon.

CREATE PROCEDURE syntax

CREATE PROCEDURE nane
[(param dat at ype [, param dat at ype ...])]

[RETURNS (param dat at ype [, param dat at ype ..

AS
<procedur e_body>;
<procedure_body>=
[<vari abl e_decl aration_|ist>]
<bl ock>
<variabl e_declaration_list> =
DECLARE VARIABLE var dat at ype;
[DECLARE VARIABLE var dat atype; ...]
<bl ock>=
BEGIN
<conpound_st at enent >
[<conpound_st at enent > ...]
END

DATA DEFINITION GUIDE

3))

135

136

TABLE9.1

<conpound_st at enent > =
{<bl ock> | statenent;}

Argument

CHAPTER 9 WORKING WITH STORED PROCEDURES

Description

name

param <datatype>

RETURNS
param <datatype>

AS

DECLARE VARIABLE
var <datatype>

statement

Name of the procedure. Must be unique among procedure,
table, and view names in the database.

Input parameters that the calling program uses to pass values
to the procedure:

param—Name of the input parameter, unique for variables in
the procedure.

<datatype>—~An InterBase datatype.

Output parameters that the procedure uses to return values to
the calling program:

param—Name of the output parameter, unique for variables
within the procedure.

<datatype>—~An InterBase datatype.

The procedure returns the values of output parameters when it
reaches a SUSPEND statement in the procedure body.

Keyword that separates the procedure header and the
procedure body.

Declares local variables used only in the procedure. Each
declaration must be preceded by DECLARE VARIABLE and
followed by a semicolon (;). var is the name of the local
variable, unique for variables in the procedure.

Any single statement in InterBase procedure and trigger
language. Each statement (except BEGIN and END) must be
followed by a semicolon (;).

Arguments of the CREATE PROCEDURE statement

Procedure and trigger language

The InterBase procedure and trigger language is a complete programming language for
stored procedures and triggers. It includes:

® SQL data manipulation statements: INSERT, UPDATE, DELETE, and singleton SELECT. Cursors

are allowed.

INTERBASE 5

CREATING PROCEDURES

= SQL operators and expressions, including UDFs linked with the database server and

generators.

= Powerful extensions to SQL, including assignment statements, control-flow statements,
context variables, event-posting statements, exceptions, and error-handling statements.

Although stored procedures and triggers are used in different ways and for different
purposes, they both use the procedure and trigger language. Both triggers and stored
procedures can use any statements in the procedure and trigger language, with some

exceptions:

= Context variables are unique to triggers.

® Input and output parameters, and the SUSPEND and EXIT statements, which return values
and are unique to stored procedures.

The following table summarizes the language extensions for stored procedures.

Statement

Description

BEGIN ... END

variable = expression

/¥ comment_text */

EXCEPTION
exception_name

EXECUTE PROCEDURE
proc_name [var [, var ...]]
[RETURNING_VALUES

var [, var ...1]

EXIT

Defines a block of statements that executes as one. The BEGIN
keyword starts the block; the END keyword terminates it.
Neither should be followed by a semicolon.

Assignment statement which assigns the value of
expression to variable, a local variable, input parameter, or
output parameter.

Programmer’s comment, where comment_text can be any
number of lines of text.

Raises the named exception. An exception is a user-defined
error, which can be handled with WHEN.

Executes stored procedure, proc_name, with the input
arguments listed following the procedure name, returning
values in the output arguments listed following
RETURNING_VALUES. Input and output parameters must be
variables defined within the procedure. Enables nested
procedures and recursion.

Jumps to the final END statement in the procedure.

TABLE9.2 Procedure and trigger language extensions

DATA DEFINITION GUIDE

137

138

Statement

CHAPTER 9 WORKING WITH STORED PROCEDURES

Description

FOR <select_statement> DO
<compound_statement>

<c0mpound_statement>

IF (<condition>)
THEN <compound_statement>
[ELSE <compound_statement>]

POST_EVENT event_name
SUSPEND

WHILE (<condition>)
DO <compound_statement>

WHEN
{<error> [, <error> ...]| ANY}
DO <compound_statement>

Repeats the statement or block following DO for every
qualifying row retrieved by <select_statement>.

<select_statement>: a normal SELECT statement, except the
INTO clause is required and must come last.

Either a single statement in procedure and trigger language or
a block of statements bracketed by BEGIN and END.

Tests <condition> and if it is TRUE, performs the statement or
block following THEN. Otherwise, performs the statement or
block following ELSE, if present.

<condition>: a Boolean expression (TRUE, FALSE, or
UNKNOWN), generally two expressions as operands of a
comparison operator.

Posts the event, event_name.

In a SELECT procedure:

Suspends execution of procedure until next FETCH is issued by
the calling application

Returns output values, if any, to the calling application.
Not recommended for executable procedures.

While <condition> is TRUE, keep performing
<compound_statement>. First <condition> is tested, and if it
is TRUE, then <compound_statement> is performed. This
sequence is repeated until <condition> is no longer TRUE.

Error-handling statement. When one of the specified errors
occurs, performs <compound_statement>. WHEN statements,
if present, must come at the end of a block, just before END.

<error>—EXCEPTION exception_name,
SQLCODE errcode or GDSCODE number.

ANY—Handles any errors.

Procedure and trigger language extensions (continued)

INTERBASE 5

CREATING PROCEDURES

» Using SET TERM in stored procedures

CREATE PROCEDURE is a statement that must end with a terminator, just as all other SQL
statements must. But the CREATE PROCEDURE statement contains other statements within
it and these “contained” statements must also end with the terminator. If isql were to
interpret semicolons as statement terminators, then procedures and triggers would
execute during their creation, rather than when they are called.

A script file containing CREATE PROCEDURE or CREATE TRIGGER definitions should include
one SET TERM command before the procedure or trigger definitions and a corresponding
SET TERM after the definitions. The beginning SET TERM defines a new termination
character; the ending SET TERM restores the semicolon (;) as the default.

The following example shows a text file that uses SET TERM in creating a procedure. The
first SET TERM defines “##” as the termination characters. The matching SET TERM restores

(1%}

;” as the termination character.

SET TERM ## ;
CREATE PROCEDURE ADD EMP_PRQJ (EMP_NO SMALLI NT, PRQJ_| D CHAR(5))
AS
BEG N

BEG N

| NSERT | NTO EMPLOYEE_PRQJIECT (EMP_NO, PRQJ_I D)
VALUES (:enp_no, :proj_id);

WHEN SQLCCDE -530 DO

EXCEPTI ON UNKNOAN_EMP_| D;

END

RETURN;
END ##
SET TERM ; ##

There must be a space after SET TERM. Each SET TERM is itself terminated with the current
terminator.

» Syntax errors in stored procedures

InterBase generates errors during parsing if there is incorrect syntax in a CREATE
PROCEDURE statement. Error messages look similar to this:

Staterment failed, SQLCODE = -104
Dynamic SQL Error

-SQ error code = -104

- Token unknown - line 4, char 9

-trrp

DATA DEFINITION GUIDE 139

140

CHAPTER 9 WORKING WITH STORED PROCEDURES

The line numbers are counted from the beginning of the CREATE PROCEDURE statement,
not from the beginning of the data definition file. Characters are counted from the left,
and the unknown token indicated is either the source of the error, or immediately to the
right of the source of the error. When in doubt, examine the entire line to determine the
source of the syntax error.

The procedure header

Everything before AS in the CREATE PROCEDURE statement forms the procedure header.
The header contains:

The name of the stored procedure, which must be unique among procedure and table
names in the database.

An optional list of input parameters and their datatypes. The procedure receives the
values of the input parameters from the calling program.

Optionally, the RETURNS keyword followed by a list of output parameters and their
datatypes. The procedure returns the values of the output parameters to the calling
program.

» Declaring input parameters

Use input parameters to pass values from an application to a procedure. Any input
parameters are given in a comma-delimited list enclosed in parentheses immediately after
the procedure name, as follows:

CREATE PROCEDURE nane
(var datatype [, var datatype..])

Each input parameter declaration has two parts: a name and a datatype. The name of the
parameter must be unique within the procedure, and the datatype can be any standard
SQL datatype except BLOB and arrays of datatypes. The name of an input parameter need
not match the name of any host parameter in the calling program.

Note No more than 1,400 input parameters can be passed to a stored procedure.

» Declaring output parameters

Use output parameters to return values from a procedure to an application. The RETURNS
clause in the procedure header specifies a list of output parameters. The syntax of the
RETURNS clause is:

[RETURNS (var datatype [, var datatype ...])]

INTERBASE 5

CREATING PROCEDURES

AS

Each output parameter declaration has two parts: a name and a datatype. The name of
the parameter must be unique within the procedure, and the datatype can be any
standard SQL datatype except BLOB and arrays.

The procedure body

Everything following the AS keyword in the CREATE PROCEDURE statement forms the
procedure body. The body consists of an optional list of local variable declarations
followed by a block of statements.

A block is composed of statements in the InterBase procedure and trigger language,
bracketed by BEGIN and END. A block can itself include other blocks, so that there can be
many levels of nesting.

InterBase procedure and trigger language includes all standard InterBase SQL statements
except data definition and transaction statements, plus statements unique to procedure
and trigger language.

Features of InterBase procedure and trigger language include:
Assignment statements, to set values of local variables and input/output parameters.

SELECT statements, to retrieve column values. SELECT statements must have an INTO clause
as the last clause.

Control-flow statements, such as FOR SELECT ... DO, IF ... THEN, and WHILE ... DO, to
perform conditional or looping tasks.

EXECUTE PROCEDURE statements, to invoke other procedures. Recursion is allowed.
Comments to annotate procedure code.

Exception statements, to return error messages to applications, and WHEN statements to
handle specific error conditions.

SUSPEND and EXIT statements, that return control—and return values of output
parameters—to the calling application.

) BEGIN ... END statements

Each block of statements in the procedure body starts with a BEGIN statement and ends
with an END statement. BEGIN and END are not followed by a semicolon. In isq]l, the final
END in the procedure body is followed by the terminator that you specified in the SET
TERM statement.

DATA DEFINITION GUIDE 141

142

CHAPTER 9 WORKING WITH STORED PROCEDURES

» Using variables
There are three types of variables that can be used in the body of a procedure:
Input parameters, used to pass values from an application to a stored procedure.

Output parameters, used to pass values from a stored procedure back to the calling
application.

Local variables, used to hold values used only within a procedure.

Any of these types of variables can be used in the body of a stored procedure where an
expression can appear. They can be assigned a literal value, or assigned a value derived
from queries or expression evaluations.

Note In SQL statements, precede variables with a colon (:) to signify that they are
variables rather than column names. In procedure and trigger language extension
statements, you need not precede variables with a colon.

LOCAL VARIABLES

Local variables are declared and used within a stored procedure. They have no effect
outside the procedure.

Local variables must be declared at the beginning of a procedure body before they can
be used. Declare a local variable as follows:

DECLARE VARI ABLE var dat at ype;
where var is the name of the local variable, unique within the procedure, and datatype

is the datatype, which can be any SQL datatype except BLOB or an array. Each local
variable requires a separate DECLARE VARIABLE statement, followed by a semicolon (;).

The following header declares the local variable, any_sales:

CREATE PROCEDURE DELETE_EMPLOYEE (EMP_NUM | NTEGER)
AS

DECLARE VARI ABLE ANY_SALES | NTECER;
BEG N

INPUT PARAMETERS

Input parameters are used to pass values from an application to a procedure. They are
declared in a comma-delimited list in parentheses following the procedure name. Once
declared, they can be used in the procedure body anywhere an expression can appear.

INTERBASE 5

CREATING PROCEDURES

Input parameters are passed by value from the calling program to a stored procedure.
This means that if the procedure changes the value of an input parameter, the change
has effect only within the procedure. When control returns to the calling program, the
input parameter still has its original value.

The following procedure header declares two input parameters, emp_no and

proj_id:

CREATE PROCEDURE ADD EMP_PRQJ (EMP_NO SMALLINT, PRQJ_ID CHAR(5))
AS

For more information on declaring input parameters in stored procedures, see
“Declaring input parameters” on page 140.

OUTPUT PARAMETERS

Output parameters are used to return values from a procedure to the calling application.
Declare them in a comma-delimited list in parentheses following the RETURNS keyword
in the procedure header. Once declared, they can be used in the procedure body
anywhere an expression can appear. For example, the following procedure header
declares five output parameters, head_dept, department, mngr_name, title, and
emp_cnt:

CREATE PROCEDURE ORG CHART
RETURNS (HEAD DEPT CHAR(25), DEPARTMENT CHAR(25),
MNGR NAVE CHAR(20), TITLE CHAR(5), EMP_CNT | NTEGER)

If you declare output parameters in the procedure header, the procedure must assign
them values to return to the calling application. Values can be derived from any valid
expression in the procedure.

For more information on declaring output parameters in stored procedures, see
“Declaring output parameters” on page 140.

A procedure returns output parameter values to the calling application with a SUSPEND
statement. For more information about SUSPEND, see “Using SUSPEND, EXIT, and END” on
page 149.

In a SELECT statement that retrieves values from a procedure, the column names must
match the names and datatypes of the procedure’s output parameters. In an EXECUTE

PROCEDURE statement, the output parameters need not match the names of the
procedure’s output parameters, but the datatypes must match.

DATA DEFINITION GUIDE 143

144

CHAPTER 9 WORKING WITH STORED PROCEDURES

» Using assignment statements
A procedure can assign values to variables with the syntax:

vari abl e = expression,;

where expression is any valid combination of variables, operators, and expressions, and
can include user-defined functions (UDFs) and generators.

A colon need not precede the variable name in an assignment statement. For example,
the following statement assigns a value of zero to the local variable, any_sales:

any_sales = 0;

Variables should be assigned values of the datatype that they are declared to be. Numeric
variables should be assigned numeric values, and character variables assigned character
values. InterBase provides automatic type conversion. For example, a character variable
can be assigned a numeric value, and the numeric value is automatically converted to a
string. For more information on type conversion, see the Programmer’s Guide.

» Using SELECT statements

In a stored procedure, use the SELECT statement with an INTO clause to retrieve a single
row value from the database and assign it to a host variable. The SELECT statement must
return at most one row from the database, like a standard singleton SELECT. The INTO
clause is required and must be the last clause in the statement.

For example, the following statement is a standard singleton SELECT statement in an
application:

EXEC SQL
SELECT SUM BUDGET), AVG BUDGET)
I NTO :tot_budget, :avg_budget
FROM DEPARTMENT
WHERE HEAD DEPT = : head_dept;

To use this SELECT statement in a procedure, move the INTO clause to the end as follows:

SELECT SUM BUDGET), AVG(BUDGET)
FROM DEPARTNMENT
WHERE HEAD DEPT = : head_dept
I NTO :tot_budget, :avg_budget;

For a complete discussion of SELECT statement syntax, see the Language Reference.

» Using FOR SELECT ... DO statemenis

To retrieve multiple rows in a procedure, use the FOR SELECT ... DO statement. The syntax
of FOR SELECT is:

INTERBASE 5

CREATING PROCEDURES

FOR
<sel ect _expr>
DO
<conpound_st at ement >;

FOR SELECT differs from a standard SELECT as follows:

= It is a loop statement that retrieves the row specified in the select_expr and performs the
statement or block following DO for each row retrieved.

® The INTO clause in the select_expr is required and must come last. This syntax allows FOR
... SELECT to use the SQL UNION clause, if needed.

For example, the following statement from a procedure selects department numbers into
the local variable, »dno, which is then used as an input parameter to the DEPT_BUDGET
procedure:

FOR SELECT DEPT_NO
FROM DEPARTMENT
WHERE HEAD DEPT = :dno
I NTO : rdno
DO
BEG N
EXECUTE PROCEDURE DEPT_BUDGET :rdno RETURNS : sunb;
tot = tot + sunb;
END

» Using WHILE ... DO statements

WHILE ... DO is a looping statement that repeats a statement or block of statements as long
as a condition is true. The condition is tested at the start of each loop. WHILE ... DO uses
the following syntax:
WH LE (<condition>) DO

<conpound_st at enent >
<conpound_st at enrent > =

{<bl ock> | statenent;}

The compound_statement is executed as long as condition remains TRUE.
A block is one or more compound statements enclosed by BEGIN and END.

For example, the following procedure uses a WHILE ... DO loop to compute the sum of all
integers from one up to the input parameter,

SET TERM ! ! ;
CREATE PROCEDURE SUM I NT (i | NTEGER) RETURNS (s | NTEGER)

DATA DEFINITION GUIDE 145

CHAPTER 9 WORKING WITH STORED PROCEDURES

AS
BEG N
s = 0;
VWH LE (i > 0) DO
BEG N
S =s + i;
i =i - 1;
END
END! !
SET TERM ; !!

If this procedure is called from isql with the command:
EXECUTE PRCCEDURE SUM | NT 4;

then the results will be:

» Using IF ... THEN ... ELSE statements

The IF ... THEN ... ELSE statement selects alternative courses of action by testing a specified
condition. The syntax of IF ... THEN ... ELSE is as follows:

| F (<condition> THEN
<conpound_st at enent >

[ELSE
<conpound_st at enent >]

<conpound_st at enent > =
{<bl ock> | statenent;}

The condition clause is an expression that must evaluate to TRUE to execute the statement
or block following THEN. The optional ELSE clause specifies an alternative statement or
block to be executed if condition is FALSE.

The following lines of code illustrate the use of IF ... THEN, assuming the variables /ine2,
first, and last have been previously declared:

IF (first I'S NOT NULL) THEN
line2 = first || " " || last;
ELSE
line2 = | ast;

146 INTERBASE 5

CREATING PROCEDURES

» Using event alerters
To use an event alerter in a stored procedure, use the following syntax:
POST_EVENT <event _nane>;

The parameter, event_name, can be either a quoted literal or string variable.

Note Variable names do not need to be—and must not be—preceded by a colon in
stored procedures except in SELECT, INSERT, UPDATE, and DELETE clauses where they would
be interpreted as column names without the colon.

When the procedure is executed, this statement notifies the event manager, which alerts
applications waiting for the named event. For example, the following statement posts an
event named “new_order”:

POST_EVENT "new_order";

Alternatively, a variable can be used for the event name:

POST_EVENT event _nane;

So, the statement can post different events, depending on the value of the string variable,
event_name.

For more information on events and event alerters, see the Programmer’s Guide.
)

» Adding comments

Stored procedure code should be commented to aid debugging and application
development. Comments are especially important in stored procedures since they are
global to the database and can be used by many different application developers.

Comments in stored procedure definitions are exactly like comments in standard C code,
and use the following syntax:

/* comment _text */
comment_text can be any number of lines of text. A comment can appear on the same
line as code. For example:

Xx =42; /* Initialize value of x. */

) Creating nested and recursive procedures

A stored procedure can itself execute a stored procedure. Each time a stored procedure
calls another procedure, the call is said to be nested because it occurs in the context of a
previous and still active call to the first procedure. A stored procedure called by another
stored procedure is known as a nested procedure.

DATA DEFINITION GUIDE 147

148

CHAPTER 9 WORKING WITH STORED PROCEDURES

If a procedure calls itself, it is recursive. Recursive procedures are useful for tasks that
involve repetitive steps. Each invocation of a procedure is referred to as an instance, since
each procedure call is a separate entity that performs as if called from an application,
reserving memory and stack space as required to perform its tasks.

Note Stored procedures can be nested up to 1,000 levels deep. This limitation helps to
prevent infinite loops that can occur when a recursive procedure provides no absolute
terminating condition. Nested procedure calls can be restricted to fewer than 1,000 levels
by memory and stack limitations of the server.

The following example illustrates a recursive procedure, FACTORIAL, which calculates
factorials. The procedure calls itself recursively to calculate the factorial of num, the input
parameter.

SET TERM ! I
CREATE PROCEDURE FACTORI AL (num | NT)
RETURNS (n_factorial DOUBLE PRECI SI ON)
AS
DECLARE VARI ABLE num | ess_one | NT;
BEG N
| F (num = 1) THEN
BEG N /**** Base case: 1 factorial is 1 ****/
n_factorial = 1,
SUSPEND,
END
ELSE
BEA N/ **** Recursion: numfactorial = num* (num 1) factorial ****/
num| ess_one = num- 1;
EXECUTE PROCEDURE FACTORI AL num | ess_one
RETURNI NG_VALUES n_factorial;
n_factorial = n_factorial * num
SUSPEND;
END
END! !
SET TERM ;!!

The following C code demonstrates how a host-language program would call FACTORIAL:

printf("\nCalculate factorial for what value? ");
scanf (" %", &pnum;
EXEC SQL
EXECUTE PROCEDURE FACTORI AL : pnum RETURNI NG_VALUES : pf act;
printf("%l factorial is %.\n", pnum pfact);

INTERBASE 5

CREATING PROCEDURES

Recursion nesting restrictions would not allow this procedure to calculate
factorials for numbers greater than 1,001. Arithmetic overflow, however, occurs for much
smaller numbers.

b Using SUSPEND, EXIT, and END

The SUSPEND statement suspends execution of a select procedure, passes control back to
the program, and resumes execution from the next statement when the next FETCH is
executed. SUSPEND also returns values in the output parameters of a stored procedure.

SUSPEND should not be used in executable procedures, since the statements that follow it
will never execute. Use EXIT instead to indicate to the reader explicitly that the statement
terminates the procedure.

In a select procedure, the SUSPEND statement returns current values of output parameters
to the calling program and continues execution. If an output parameter has not been
assigned a value, its value is unpredictable, which can lead to errors. A procedure should
ensure that all output parameters are assigned values before a SUSPEND.

In both select and executable procedures, EXIT jumps program control to the final END
statement in the procedure.

What happens when a procedure reaches the final END statement depends on the type
of procedure:

In a select procedure, the final END statement returns control to the application and sets
SQLCODE to 100, which indicates there are no more rows to retrieve.

In an executable procedure, the final END statement returns control and values of output
parameters, if any, to the calling application.

The behavior of these statements is summarized in the following table:

Procedure type SUSPEND EXIT END

Select procedure Suspends execution of Jumps to final END Returns control to application
procedure until next FETCH Sets SQLCODE to 100
Returns values

Executable procedure Jumps to final END Jumps to final END Returns values

Not Recommended Returns control to application

TABLE9.3 SUSPEND, EXIT, and END

Consider the following procedure:

SET TERM !'I';
CREATE PROCEDURE P RETURNS (r | NTEGER)

DATA DEFINITION GUIDE 149

CHAPTER 9 WORKING WITH STORED PROCEDURES

AS
BEG N
r = 0;
WHI LE (r < 5) DO
BEG N
r=r + 1,
SUSPEND,
IF (r = 3) THEN
EXIT,

END;

SET TERM ; !'!

If this procedure is used as a select procedure, for example:

SELECT * FROM P,

then it returns values 1, 2, and 3 to the calling application, since the SUSPEND statement
returns the current value of r to the calling application. The procedure terminates when
it encounters EXIT.

If the procedure is used as an executable procedure, for example:

EXECUTE PROCEDURE P,

then it returns 1, since the SUSPEND statement terminates the procedure and returns the

current value of 7 to the calling application. This is not recommended, but is included
here for comparison.

Note If a select procedure has executable statements following the last SUSPEND in the
procedure, all of those statements are executed, even though no more rows are returned
to the calling program. The procedure terminates with the final END statement.

ERROR BEHAVIOR

When a procedure encounters an error—either an SQLCODE error, GDSCODE error, or
user-defined exception—all statements since the last SUSPEND are undone.

Since select procedures can have multiple SUSPENDs, possibly inside a loop statement,
only the actions since the last SUSPEND are undone. Since executable procedures should
not use SUSPEND, when an error occurs the entire executable procedure is undone (if EXIT
is used, as recommended).

150 INTERBASE 5

ALTERING STORED PROCEDURES

Altering stored procedures

IMPORTANT

To change a stored procedure, use ALTER PROCEDURE. This statement changes the
definition of an existing stored procedure without affecting its dependencies. If a
procedure has dependencies which prevent you from dropping, changing, and recreating
it, use ALTER PROCEDURE.

Changes made with ALTER PROCEDURE are automatically reflected in all applications that
use the procedure without recompiling and relinking them. Only the creator of a
procedure can alter it.

Be careful about changing the type, number, and order of input and output parameters
to a procedure, since existing code might assume that the procedure has its original
format.

When a procedure is altered, the new procedure definition replaces the old one.
Therefore, to alter a procedure, follow these steps:

1. Copy the original data definition file used to create the procedure.
Alternatively, use isql -extract to extract a procedure from the database to a file.

2. Edit the file, changing CREATE to ALTER, and changing the procedure
definition as desired. Retain whatever is still useful.

The syntax for ALTER PROCEDURE is similar to CREATE PROCEDURE as shown in the
following syntax:

ALTER PROCEDURE nane
[(var datatype [, var datatype ..])]
[RETURNS (var datatype [, var datatype ..])]
AS
<procedur e_body>;
The procedure name must be the name of an existing procedure. The arguments of the
ALTER PROCEDURE statement are the same as CREATE PROCEDURE.

Dropping procedures

The DROP PROCEDURE statement deletes an existing stored procedure from the database.
DROP PROCEDURE can be used interactively with isql or in a data definition file.

Note Procedures cannot be dropped with embedded SQL.
The following restrictions apply to dropping procedures:

® Only the creator of a procedure can drop it.

DATA DEFINITION GUIDE 151

CHAPTER 9 WORKING WITH STORED PROCEDURES

® Procedures used by other procedures, triggers, or views cannot be dropped.
® Procedures currently in use cannot be dropped.
If you attempt to drop a procedure and receive an error, make sure you have entered the
procedure name correctly.
Tip To see a list of database procedures and their dependencies, use the isql command,
SHOW PROCEDURES.
The syntax for dropping a procedure is:

DROP PROCEDURE nane;

The procedure name must be the name of an existing procedure. The following
statement deletes the ACCOUNTS_BY_CLASS procedure:

DROP PROCEDURE ACCOUNTS_BY_CLASS;

Using stored procedures

Stored procedures can be used in applications in a variety of ways. Select procedures are
used in place of a table or view in a SELECT statement. Executable procedures are used
with an EXECUTE PROCEDURE statement.

Both kinds of procedures are defined with CREATE PROCEDURE and have the same syntax.
The difference is in how the procedure is written and how it is intended to be used. Select
procedures always return one or more rows, so that to the calling program they appear
as a table or view. Executable procedures are simply routines invoked by the calling
program and only optionally return values.

In fact, a single procedure can be used as a select procedure or an executable procedure,
but this is not recommended. A procedure should be written specifically to be used in a
SELECT statement (a select procedure) or to be used in an EXECUTE PROCEDURE statement
(an executable procedure).

During application development, create and test stored procedures in isql. Once a stored
procedure has been created, tested, and refined, it can be used in applications. For more
information on using stored procedures in applications, see the Programmer’s Guide.

152 INTERBASE 5

USING STORED PROCEDURES

Using executable procedures in isql

An executable procedure is invoked with EXECUTE PROCEDURE. It can return at most one
row. To execute a stored procedure in isql, use the following syntax:

EXECUTE PROCEDURE nane [(] [param][, param..]]]D];

The procedure name must be specified, and each param is an input parameter value (a
constant). All input parameters required by the procedure must be supplied.

IMPORTANT In isql, do not supply output parameters or use RETURNING_VALUES in the EXECUTE
PROCEDURE statement, even if the procedure returns values. isql automatically displays
output parameters.

To execute the procedure, DEPT_BUDGET, from isql, use:
EXECUTE PROCEDURE DEPT_BUDGET 110;
isql displays this output:

TOT

1700000.00

Using select procedures in isql

A select procedure is used in place of a table or view in a SELECT statement and can return
a single row or multiple rows.

The advantages of select procedures over tables or views are:
® They can take input parameters that can affect the output.
® They can contain logic not available in normal queries or views.
® They can return rows from multiple tables using UNION.

The syntax of SELECT from a procedure is:

SELECT <col _Ili st>from name ([param[, param..]])
WHERE search_condi ti on>
ORDER BY <order_11i st>;

The procedure name must be specified, and in isql each param is a constant passed to
the corresponding input parameter. All input parameters required by the procedure must
be supplied. The col_list is a comma-delimited list of output parameters returned by the
procedure, or * to select all rows.

DATA DEFINITION GUIDE 153

154

CHAPTER 9 WORKING WITH STORED PROCEDURES

The WHERE clause specifies a search_condition that selects a subset of rows to return.
The ORDER BY clause specifies how to order the rows returned. For more information on
SELECT, see the Language Reference.

The following code defines the procedure, GET_EMP_PROJ, which returns emp_proj, the
project numbers assigned to an employee, when it is passed the employee number,
emp_no, as the input parameter.

SET TERM !'! ;
CREATE PROCEDURE GET_EMP_PRQJ (enp_no SMALLI NT)
RETURNS (enp_proj SMALLINT) AS
BEG N
FOR SELECT PRQJ_ID
FROM EMPLOYEE_PRQJECT
WHERE EMP_NO = :enp_no
I NTO : enp_pr oj
DO
SUSPEND,;
END !'!

The following statement selects from GET_EMP_PROJ in isql:
SELECT * FROM GET_EMP_PRQJ(24) ;

The output is:

The following select procedure, ORG_CHART, displays an organizational chart:

CREATE PROCEDURE ORG CHART
RETURNS (HEAD DEPT CHAR(25), DEPARTMENT CHAR(25),
MNGR_NAME CHAR(20), TITLE CHAR(5), EMP_CNT | NTEGER)
AS
DECLARE VARI ABLE mmgr _no | NTECER;
DECLARE VARI ABLE dno CHAR(3);
BEG N
FOR SELECT H. DEPARTMENT, D. DEPARTMENT, D. MNGR_NO, D. DEPT_NO
FROM DEPARTMENT D
LEFT OQUTER JO N DEPARTMENT H ON D. HEAD DEPT = H. DEPT_NO
CRDER BY D. DEPT_NO
I NTO : head_dept, :department, :mngr_no, :dno

INTERBASE 5

USING STORED PROCEDURES

BEG N
IF (:mmgr_no IS NULL) THEN
BEG N
mgr_name = "--TBH-";
title ="";
END
ELSE

SELECT FULL_NAME, JOB_CODE
FROM EMPLOYEE
WHERE EMP_NO = : mmgr_no
I NTO : rmgr _name, :title;

SELECT COUNT(EMP_NO

FROM EMPLOYEE

WHERE DEPT _NO = :dno

I NTO : enp_cnt,;

SUSPEND;

END
END !'!

ORG_CHART is invoked from isql as follows:
SELECT * FROM ORG_CHART;

For each department, the procedure displays the department name, the department’s
“head department” (managing department), the department manager’s name and title,
and the number of employees in the department.

HEAD DEPT DEPARTMENT MNGR_NAME TITLE EMP_CNT
Cor porate Bender, Qiver H CEO 2
Headquarters

Corporate Headquarters Sales and Marketing MacDonal d, Mary S. VP 2

Sal es and Marketing Pacific R'm Bal dwi n, Janet Sal es 2
Headquarters

Pacific R'm Field Ofice: Japan Yamanoto, Takashi SRep 2

Headquarters

Pacific Rm Field Ofice: —TBH— 0

Headquarters Si ngapor e

DATA DEFINITION GUIDE 155

CHAPTER 9 WORKING WITH STORED PROCEDURES

ORG_CHART must be used as a select procedure to display the full organization. If called
with EXECUTE PROCEDURE, then the first time it encounters the SUSPEND statement, the
procedure terminates, returning the information for Corporate Headquarters only.

SELECT can specify columns to retrieve from a procedure. For example, if ORG_CHART is
invoked as follows:

SELECT DEPARTMENT FROM ORG_CHART;

then only the second column, DEPARTMENT, is displayed.

» Using WHERE and ORDER BY clauses

A SELECT from a stored procedure can contain WHERE and ORDER BY clauses, just as in a
SELECT from a table or view.

The WHERE clause limits the results returned by the procedure to rows matching the
search condition. For example, the following statement returns only those rows where
the HEAD_DEPT is Sales and Marketing:

SELECT * FROM ORG_CHART WHERE HEAD DEPT = "Sal es and Marketing";

The stored procedure then returns only the matching rows, for example:

HEAD DEPT DEPARTVENT MNGR_NANVE TITLE EMP_ONT
Sal es and Marketing Pacific R'm Bal dwi n, Janet Sales 2
Headquarters
Sal es and Marketing Eur opean Headquarters Reeves, Roger Sales 3
Sal es and Marketing Field Ofice: East Cost Weston, K J. SRep 2
The ORDER BY clause can be used to order the results returned by the procedure. For
example, the following statement orders the results by EMP_CNT, the number of
employees in each department, in ascending order (the default):
SELECT * FROM ORG_CHART ORDER BY EMP_CNT,
b Selecting aggregates from procedures
In addition to selecting values from a procedure, you can use aggregate functions. For
example, to use ORG_CHART to display a count of the number of departments, use the
following statement:
SELECT COUNT(DEPARTMENT) FROM ORG_CHART;
156 INTERBASE 5

USING STORED PROCEDURES

The results are:

24
Similarly, to use ORG_CHART to display the maximum and average number of employees
in each department, use the following statement:
SELECT MAX(EMP_CNT), AVG EMP_CNT) FROM ORG CHART;
The results are:

5 2
If a procedure encounters an error or exception, the aggregate functions do not return
the correct values, since the procedure terminates before all rows are processed.

Viewing arrays with stored procedures

If a table contains columns defined as arrays, you cannot view the data in the column
with a simple SELECT statement, since only the array ID is stored in the table. Arrays can
be used to display array values, as long as the dimensions and datatype of the array
column are known in advance.

For example, in the employee database, the JOB table has a column named LANGUAGE_REQ
containing the languages required for the position. The column is defined as an array of
five VARCHAR(15).

In isql, if you perform a simple SELECT statement, such as:
SELECT JOB_CODE, JOB_GRADE, JOB_COUNTRY, LANGUAGE_REQ FROM JOCB;

part of the results look like this:

JOB_CODE JOB_GRADE JOB_COUNTRY LANGUAGE_REQ
Sal es 3 USA <nul | >

Sal es 3 Engl and 20: af

SRep 4 USA 20: b0

SRep 4 Engl and 20: b2

SRep 4 Canada 20: b4

DATA DEFINITION GUIDE 157

CHAPTER 9 WORKING WITH STORED PROCEDURES

To view the contents of the LANGUAGE_REQ column, use a stored procedure, such as the
following:

SET TERM !! ;
CREATE PROCEDURE VI EW LANGS
RETURNS (code VARCHAR(5), grade SMALLINT, cty VARCHAR(15),
| ang VARCHAR(15))

AS
DECLARE VARI ABLE i | NTECER;
BEGA N
FOR SELECT JOB_CODE, JOB_GRADE, JOB_COUNTRY
FROM JOB
WHERE LANGUAGE_REQ | S NOT NULL
I NTO : code, :grade, :cty
DO
BEGA N
i =1;
WH LE (i <= 5) DO
BEGA N
SELECT LANGUAGE_REQ :i] FROM JOB
WHERE ((JOB_CODE = :code) AND (JOB_GRADE = :grade)
AND (JOB_COUNTRY = :cty)) INTO :Iang;
i =i + 1;
SUSPEND;
END
END
END! !
SET TERM ; !!

This procedure, VIEW_LANGS, uses a FOR ... SELECT loop to retrieve each row from JOB for
which LANGUAGE_REQ is not NULL. Then a WHILE loop retrieves each element of the
LANGUAGE_REQ array and returns the value to the calling application (in this case, isql).

For example, if this procedure is invoked with:
SELECT * FROM VI EW LANGS;

158 INTERBASE 5

EXCEPTIONS

the output is:
CODE GRADE CTY LANG

Eng 3 Japan Japanese
Eng 3 Japan Mandarin
Eng 3 Japan Engli sh
Eng 3 Japan

Eng 3 Japan

Eng 4 Engl and Engl i sh
Eng 4 England Gernman
Eng 4 Engl and French

This procedure can easily be modified to return only the language requirements for a
particular job, when passed JOB_CODE, JOB_GRADE, and JOB_COUNTRY as input
parameters.

Exceptions

An exception is a named error message that can be raised from a stored procedure.
Exceptions are created with CREATE EXCEPTION, modified with ALTER EXCEPTION, and
dropped with DROP EXCEPTION. A stored procedure raises an exception with EXCEPTION
name.

When raised, an exception returns an error message to the calling program and
terminates execution of the procedure that raised it, unless the exception is handled by
a WHEN statement.

IMPORTANT Like procedures, exceptions are created and stored in a database, where they can be
used by any procedure that needs them. Exceptions must be created and committed
before they can be raised.

For more information on raising and handling exceptions, see “Raising an exception in
a stored procedure” on page 161.

DATA DEFINITION GUIDE 159

160

CHAPTER 9 WORKING WITH STORED PROCEDURES

Creating exceptions

To create an exception, use the following CREATE EXCEPTION syntax:
CREATE EXCEPTI ON nanme " <nessage>",

For example, the following statement creates an exception named
REASSIGN_SALES:

CREATE EXCEPTI ON REASSI GN_SALES "Reassi gn the sal es records before
deleting this enployee.";

Altering exceptions

To change the message returned by an exception, use the following syntax:
ALTER EXCEPTI ON nane " <nmessage>";

Only the creator of an exception can alter it. For example, the following statement
changes the text of the exception created in the previous section:

ALTER EXCEPTION REASSIGN_SALES "Can't delete employee--Reassign

Sales";

You can alter an exception even though a database object depends on it. If the exception
is raised by a trigger, you cannot drop the exception unless you first drop the trigger or
stored procedure. Use ALTER EXCEPTION instead.

Dropping exceptions
To delete an exception, use the following syntax:
DROP EXCEPTIONnane,
For example, the following statement drops the exception, REASSIGN_SALES:
DROP EXCEPTION REASSIGN_SALES;
The following restrictions apply to dropping exceptions:
® Only the creator of an exception can drop it.
= Exceptions used in existing procedures and triggers cannot be dropped.

= Exceptions currently in use cannot be dropped.

INTERBASE 5

HANDLING ERRORS

Tip In isql, SHOW PROCEDURES displays a list of dependencies, the procedures, exceptions,
and tables which the stored procedure uses. SHOW PROCEDURE name displays the body
and header information for the named procedure. SHOW TRIGGERS fable displays the
triggers defined for fable. SHOW TRIGGER name displays the body and header
information for the named trigger.

Raising an exception in a stored procedure

To raise an exception in a stored procedure, use the following syntax:

EXCEPTI ON nane,
where name is the name of an exception that already exists in the database.

When an exception is raised, it does the following:

® Terminates the procedure in which it was raised and undoes any actions performed
(directly or indirectly) by the procedure.

® Returns an error message to the calling application. In isql, the error message is displayed
on the screen.

Note If an exception is handled with a WHEN statement, it behaves differently. For more
information on exception handling, see “Handling exceptions” on page 162.

The following statements raise the exception, REASSIGN_SALES:

I F (any_sales > 0) THEN
EXCEPTI ON REASSI GN_SALES;

Handling errors

Procedures can handle three kinds of errors with a WHEN ... DO statement:

= Exceptions raised by EXCEPTION statements in the current procedure, in a nested
procedure, or in a trigger fired as a result of actions by such a procedure.

= SQL errors reported in SQLCODE.
® InterBase errors reported in GDSCODE.
The WHEN ANY statement handles any of the three types of errors.

For more information about InterBase error codes and SQLCODE values, see the Language
Reference.

The syntax of the WHEN ... DO statement is:

DATA DEFINITION GUIDE 161

CHAPTER 9 WORKING WITH STORED PROCEDURES

WHEN {<error> [, <error>..]| ANY}
DO <conpound_st at enent >
<error>=
{EXCEPTION excepti on_nane | SQLCODE nunber | GDSCODE errcode}

IMPORTANT If used, WHEN must be the last statement in a BEGIN ... END block. It should come after
SUSPEND, if present.

Handling exceptions

Instead of terminating when an exception occurs, a procedure can respond to and
perhaps correct the error condition by handling the exception. When an exception is
raised, it does the following:

= Seeks a WHEN statement that handles the exception. If one is not found, it terminates
execution of the BEGIN ... END block containing the exception and undoes any actions
performed in the block.

® Backs out one level to the surrounding BEGIN ... END block and seeks a WHEN statement
that handles the exception, and continues backing out levels until one is found. If no
WHEN statement is found, the procedure is terminated and all its actions are undone.

® Performs the ensuing statement or block of statements specified by the WHEN statement
that handles the exception.

® Returns program control to the block in the procedure following the WHEN statement.

Note An exception that is handled does 70t return an error message.

Handling SQL errors

Procedures can also handle error numbers returned in SQLCODE. After each SQL
statement executes, SQLCODE contains a status code indicating the success or failure of
the statement. SQLCODE can also contain a warning status, such as when there are no
more rows to retrieve in a FOR SELECT loop.

For example, if a procedure attempts to insert a duplicate value into a column defined as
a PRIMARY KEY, InterBase returns SQLCODE -803. This error can be handled in a procedure
with the following statement:

VWHEN SQLCODE - 803
DO
BEG N

162 INTERBASE 5

HANDLING ERRORS

The following procedure includes a WHEN statement to handle SQLCODE -803 (attempt to
insert a duplicate value in a UNIQUE key column). If the first column in TABLE1 is a UNIQUE
key, and the value of parameter a is the same as one already in the table, then SQLCODE
-803 is generated, and the WHEN statement sets an error message returned by the
procedure.

SET TERM !!;
CREATE PROCEDURE NUMBERPROC (a | NTEGER, b | NTEGER)
RETURNS (e CHAR(60)) AS
BEGA N
BEGA N
| NSERT | NTO TABLE1 VALUES (:a, :b);
WHEN SQLCCDE - 803 DO
e = "Error Attenpting to Insert in TABLElL - Duplicate
Val ue. ";
END;
END! !
SET TERM !!

For more information about SQLCODE, see the Language Reference.

Handling InterBase errors

Procedures can also handle InterBase errors. For example, suppose a statement in a
procedure attempts to update a row already updated by another transaction, but not yet
committed. In this case, the procedure might receive an InterBase error lock_conflict. If the
procedure retries its update, the other transaction might have rolled back its changes and
released its locks. By using a WHEN GDSCODE statement, the procedure can handle lock
conflict errors and retry its operation.

To handle InterBase error codes, use the following syntax:

WHEN GDSCODE errcode DO <conpound_st at enent >;

For more information about InterBase error codes, see the Language Reference.

Examples of error behavior and handling

When a procedure encounters an error—either an SQLCODE error, GDSCODE error, or
user-defined exception—the statements since the last SUSPEND are undone.

DATA DEFINITION GUIDE 163

164

CHAPTER 9 WORKING WITH STORED PROCEDURES

SUSPEND should not be used in executable procedures. EXIT should be used to terminate
the procedure. If this recommendation is followed, then when an executable procedure
encounters an error, the entire procedure is undone. Since select procedures can have
multiple SUSPENDs, possibly inside a loop statement, only the actions since the last

SUSPEND are undone.

For example, here is a simple executable procedure that attempts to insert the same

values twice into the PROJECT table.

SET TERM !'! ;

CREATE PROCEDURE NEW PRQJECT
(id CHAR(5), name VARCHAR(20), product VARCHAR(12))
RETURNS (result VARCHAR(80))

AS

BEG N

| NSERT | NTO PRQJECT (PRQJ_I D, PRQJ_NAME, PRODUCT)
VALUES (:id, :name, :product);

result = "Values inserted OK.";

| NSERT | NTO PRQJECT (PRQJ_I D, PRQJ_NAME, PRODUCT)
VALUES (:id, :name, :product);

result = "Values Inserted Again.";

EXIT;

WHEN SQLCCDE - 803 DO

BEG N
result = "Could Not Insert Into Table - Duplicate Val ue";

EXIT;

END

END! !

SET TERM ; !!

This procedure can be invoked with a statement such as:
EXECUTE PROCEDURE NEW PRQJIECT " XXX', "Project X', "NA";

The second INSERT generates an error (SQLCODE -803, “invalid insert—no two rows can
have duplicate values.”). The procedure returns the string, “Could Not Insert Into Table
- Duplicate Value,” as specified in the WHEN clause, and the entire procedure is undone.

The next example is written as a select procedure, and invoked with the SELECT statement

that follows it:

I NSERT | NTO PRQJIECT (PRQJ_I D, PRQJ_NAME, PRODUCT)
VALUES (:id, :name, :product);

result = "Values inserted OK. ";

SUSPEND,;

INTERBASE 5

HANDLING ERRORS

I NSERT | NTO PRQJIECT (PRQJ_I D, PRQJ_NAME, PRODUCT)
VALUES (:id, :name, :product);

result = "Values Inserted Again.";

SUSPEND,;

WHEN SQLCODE - 803 DO

BEA N
result = "Could Not Insert Into Table - Duplicate Val ue";

EXI T,

END

END! !

SET TERM ; !!

SELECT * FROM SI MPLE("XXX", "Project X', "NA");

The first INSERT is performed, and SUSPEND returns the result string, “Values Inserted OK.”
The second INSERT generates the error because there have been no statements performed
since the last SUSPEND, and no statements are undone. The WHEN statement returns the
string, “Could Not Insert Into Table - Duplicate Value”, in addition to the previous result
string.

The select procedure successfully performs the insert, while the executable procedure
does not.

The next example is 2 more complex stored procedure that demonstrates SQLCODE error
handling and exception handling. It is based on the previous example of a select
procedure, and does the following:

Accepts a project ID, name, and product type, and ensures that the ID is in all capitals,
and the product type is acceptable.

Inserts the new project data into the PROJECT table, and returns a string confirming the
operation, or an error message saying the project is a duplicate.

Uses a FOR ... SELECT loop with a correlated subquery to get the first three employees not
assigned to any project and assign them to the new project using the ADD_EMP_PROJ
procedure.

If the CEO’s employee number is selected, raises the exception, CEO, which is handled
with a WHEN statement that assigns the CEO’s administrative assistant (employee number
28) instead to the new project.

Note that the exception, CEO, is handled within the FOR ... SELECT loop, so that only the
block containing the exception is undone, and the loop and procedure continue after the
exception is raised.

CREATE EXCEPTION CEO "Can't Assign CEO to Project.";

SET TERM II';
CREATE PROCEDURE NEW_PROJECT

DATA DEFINITION GUIDE 165

CHAPTER 9 WORKING WITH STORED PROCEDURES

(id CHAR(5), name VARCHAR(20), product VARCHAR(12))
RETURNS (result VARCHAR(30), num smallint)

AS
DECLARE VARI ABLE enp_wo_proj smallint;
DECLARE VARI ABLE i snallint;

BEGA N
id = UPPER(id); /* Project id must be in uppercase. */
I NSERT | NTO PRQJECT (PRQJ_I D, PRQJ_NAME, PRODUCT)

VALUES (:id, :name, :product);

result = "New Project Inserted OK. ";
SUSPEND;
/* Add Enpl oyees to the new project */
i = 0;
result = "Project Got Enpl oyee Nunber:";

FOR SELECT EMP_NO FROM EMPLOYEE
VWHERE EMP_NO NOT I N (SELECT EMP_NO FROM EMPLOYEE_PRQIECT)
I NTO : enp_wo_pr oj
DO
BEG N
IF (i < 3) THEN
BEG N
I F (emp_wo_proj = 5) THEN
EXCEPTI ON CEQ,
EXECUTE PROCEDURE ADD EMP_PRQJ :enp_wo_proj, :id;
num = enp_Wo_proj;
SUSPEND,;
END
ELSE
EXI T,
i =i + 1;
VHEN EXCEPTI ON CEO DO
BEG N
EXECUTE PROCEDURE ADD EMP_PRQJ 28, :id;
num = 28;
SUSPEND,;
END
END
/* Error Handling */
VWHEN SQLCCDE - 625 DO
BEG N
IF ((:product <> "software") OR (:product <> "hardware") OR
(:product <> "other") OR (:product <> "N A")) THEN

166 INTERBASE 5

HANDLING ERRORS

result = "Enter product: software, hardware, other, or NA";
END
WHEN SQL.CODE - 803 DO
result = "Could not insert into table - Duplicate Val ue";
END! !
SET TERM ; !!

This procedure can be called with a statement such as:
SELECT * FROM NEW PROQJECT(" XYZ", "Al pha project", "software");

With results (in isql) such as:
RESULT NUM

New Project Inserted OK <null>
Proj ect Got Enpl oyee Nunmber: 28
Proj ect Got Enpl oyee Nunmber: 29
Proj ect Got Enpl oyee Nunmber: 36

DATA DEFINITION GUIDE 167

CHAPTER 9 WORKING WITH STORED PROCEDURES

168 INTERBASE 5

CHAPTER

10

Creating Triggers

A trigger is a self-contained routine associated with a table or view that automatically
performs an action when a row in the table or view is inserted, updated, or deleted.

A trigger is never called directly. Instead, when an application or user attempts to INSERT,
UPDATE, or DELETE a row in a table, any triggers associated with that table and operation
are automatically executed, or fired.

Triggers can make use of exceptions, named messages called for error handling. When
an exception is raised by a trigger, it returns an error message, terminates the trigger, and

undoes any changes made by the trigger, unless the exception is handled with a WHEN
statement in the trigger.

The advantages of using triggers are:

® Automatic enforcement of data restrictions, to make sure users enter only valid values
into columns.

® Reduced application maintenance, since changes to a trigger are automatically reflected
in all applications that use the associated table without the need to recompile and relink.

® Automatic logging of changes to tables. An application can keep a running log of changes
with a trigger that fires whenever a table is modified.

= Automatic notification of changes to the database with event alerters in triggers.

DATA DEFINITION GUIDE 169

CHAPTER 10 CREATING TRIGGERS

Working with triggers

With isql, you can create, alter, and drop triggers and exceptions. Each of these operations
is explained in this chapter. There are two ways to create, alter, and drop triggers with isql:

® Interactively
® With an input file containing data definition statements

It is preferable to use data definition files, because it is easier to modify these files and
provide a record of the changes made to the database. For simple changes to existing
triggers or exceptions, the interactive interface can be convenient.

Using a data definition file

To create or alter a trigger through a data definition file, follow these steps:
1. Use a text editor to write the data definition file.

2. Save the file.

3. Process the file with isql. Use the command:

isql -input filenane database_nane

where filename is the name of the data definition file and database_name is the
name of the database used. Alternatively, from within isql, you can interactively
process the file using the command:

SQL> i nput filenane,

Note If you do not specify the database on the command line or interactively, the data
definition file must include a statement to create or open a database.

The data definition file may include:

®= Statements to create, alter, or drop triggers. The file can also include statements to create,
alter, or drop procedures and exceptions. Exceptions must be created and committed
before they can be referenced in procedures and triggers.

® Any other isql statements.

170 INTERBASE 5

CREATING TRIGGERS

Creating triggers

IMPORTANT

A trigger is defined with the CREATE TRIGGER statement, which is composed of a header
and a bodly. The trigger header contains:

= A trigger name, unique within the database.
= A table name, identifying the table with which to associate the trigger.
= Statements that determine when the trigger fires.
The trigger body contains:
® An optional list of local variables and their datatypes.

= A block of statements in InterBase procedure and trigger language, bracketed by BEGIN
and END. These statements are performed when the trigger fires. A block can itself include
other blocks, so that there may be many levels of nesting.

Because each statement in the trigger body must be terminated by a semicolon, you
must define a different symbol to terminate the trigger body itself. In isql, include a SET
TERM statement before CREATE TRIGGER to specify a terminator other than a semicolon.
After the body of the trigger, include another SET TERM to change the terminator back to
a semicolon.

CREATE TRIGGER syntax

The syntax of CREATE TRIGGER is:

CREATE TRI GGER nane FOR {table | view

[ACTI VE | | NACTI VE]

{BEFORE | AFTER} {DELETE | | NSERT | UPDATE}
[POSI TI ON number]

AS <trigger_body>

<trigger_body> =
[<variabl e_decl aration_Iist>]
<bl ock>

<vari abl e _decl aration _|ist> =
DECLARE VARI ABLE vari abl e dat at ype;
[DECLARE VARI ABLE vari abl e dat at ype; ...]

DATA DEFINITION GUIDE 171

172

TABLE10.1

<bl ock> =
BEG N

CHAPTER 10 CREATING TRIGGERS

<conpound_st at enent >
[<conpound_st at enent > ...]

END

<conpound_st at ement>={< bl ock> |

st at ement ;}

Argument Description
name Name of the trigger. The name must be unique in the database.
table Name of the table or view that causes the trigger to fire when the

ACTIVE|INACTIVE

BEFORE|AFTER

DELETE|INSERT | UPDATE

POSITION number

DECLARE VARIABLE var
<datatype>

statement

terminator

specified operation occurs on the table or view.

Optional. Specifies trigger action at transaction end:
ACTIVE: (Default). Trigger takes effect.
INACTIVE: Trigger does not take effect.

Required. Specifies whether the trigger fires:
BEFORE: Before associated operation.

AFTER: After associated operation.

Associated operations are DELETE, INSERT, or UPDATE.

Specifies the table operation that causes the trigger to fire.

Specifies firing order for triggers before the same action or after the same
action. number must be an integer between 0 and 32,767, inclusive.
Lower-number triggers fire first. Default: 0 = first trigger to fire.

Triggers for a table need not be consecutive. Triggers on the same action
with the same position number will fire in alphabetic order by name.

Declares local variables used only in the trigger. Each declaration must be
preceded by DECLARE VARIABLE and followed by a semicolon (;).

var: Local variable name, unique in the trigger.
<datatype>: The datatype of the local variable.

Any single statement in InterBase procedure and trigger language. Each
statement except BEGIN and END must be followed by a semicolon (;).

Terminator defined by the SETTERM statement which signifies the end of
the trigger body. Used in isql only.

Arguments of the CREATE TRIGGER statement

INTERBASE 5

CREATING TRIGGERS

InterBase procedure and trigger language

InterBase procedure and trigger language is a complete programming language for
stored procedures and triggers. It includes:

® SQL data manipulation statements: INSERT, UPDATE, DELETE, and singleton SELECT.

® SQL operators and expressions, including UDFs that are linked with the database server
and generators.

= Powerful extensions to SQL, including assignment statements, control-flow statements,
context variables, event-posting statements, exceptions, and error-handling statements.

Although stored procedures and triggers are used in entirely different ways and for
different purposes, they both use procedure and trigger language. Both triggers and
stored procedures may use any statements in procedure and trigger language, with some
exceptions:

= Context variables are unique to triggers.

® Input and output parameters, and the SUSPEND and EXIT statements which return values
are unique to stored procedures.

The following table summarizes the language extensions for triggers:

Statement Description

BEGIN ... END Defines a block of statements that executes as one. The BEGIN
keyword starts the block; the END keyword terminates it.
Neither should be followed by a semicolon.

variable = expression Assignment statement which assigns the value of
expression to local variable, variable.

/* comment_text */ Programmer’s comment, where comment_text can be any
number of lines of text.

EXCEPTION exception_name Raises the named exception. An exception is a user-defined
error, which returns an error message to the calling application
unless handled by a WHEN statement.

EXECUTE PROCEDURE Executes stored procedure, proc_name, with the listed input
proc_name [var [, var ...]] arguments, returning values in the listed output arguments.
[RETURNING_VALUES Input and output arguments must be local variables.

var [, var ...1]

TABLE10.2 Procedure and trigger language extensions

DATA DEFINITION GUIDE 173

CHAPTER 10 CREATING TRIGGERS

Statement Description

FOR <select_statement> Repeats the statement or block following DO for every
DO <compound_statement> qualifying row retrieved by <select_statement>.

<select_statement>: a normal SELECT statement, except the
INTO clause is required and must come last.

<compound_statement> Either a single statement in procedure and trigger language or
a block of statements bracketed by BEGIN and END.

IF (<condition>) Tests <condition>, and if it is TRUE, performs the statement or
THEN <compound_statement> block following THEN, otherwise performs the statement or
[ELSE <compound_statement>] block following ELSE, if present.

<condition>: a Boolean expression (TRUE, FALSE, or
UNKNOWN), generally two expressions as operands of a
comparison operator.

NEW.column New context variable that indicates a new column value in an
INSERT or UPDATE operation.

OLD.column Old context variable that indicates a column value before an
UPDATE or DELETE operation.

POST_EVENT event_name Posts the event, event_name.

WHILE (<condition>) While <condition> is TRUE, keep performing

DO <compound_statement> <compound_statement>. First <condition> is tested, and if it
is TRUE, then <compound_statement> is performed. This
sequence is repeated until <condition> is no longer TRUE.

WHEN Error-handling statement. When one of the specified errors
{<error>[, <error> ...]JANY} occurs, performs <compound_statement>. WHEN statements,
DO <compound_statement> if present, must come at the end of a block, just before END.

<error>: EXCEPTION exception_name, SQLCODE errcode or
GDSCODE number.

ANY: handles any errors.

TABLE10.2 Procedure and trigger language extensions (continued)

174 INTERBASE 5

CREATING TRIGGERS

» Using SET TERM in isql

Because each statement in a trigger body must be terminated by a semicolon, you must
define a different symbol to terminate the trigger body itself. In isql, include a SET TERM
statement before CREATE TRIGGER to specify a terminator other than a semicolon. After
the body of the trigger, include another SET TERM to change the terminator back to a
semicolon.

The following example illustrates the use of SET TERM for a trigger. The terminator is
temporarily set to a double exclamation point (!!).

SET TERM !'I ;

CREATE TRI GGER SI MPLE FOR EMPLOYEE
AFTER UPDATE AS

BEG N

END !!
SET TERM ; Il

There must be a space after SET TERM. Each SET TERM is itself terminated with the current
terminator.

» Syntax errors in lriggers

InterBase may generate errors during parsing if there is incorrect syntax in the CREATE
TRIGGER statement. Error messages look similar to this:

Statement failed, SQLCODE = -104
Dynamic SQL Error

-SQL error code = -104

-Token unknown - line 4, char 9
-tmp

The line numbers are counted from the beginning of the CREATE TRIGGER statement, not
from the beginning of the data definition file. Characters are counted from the left, and
the unknown token indicated will either be the source of the error or immediately to the
right of the source of the error. When in doubt, examine the entire line to determine the
source of the syntax error.

The trigger header

Everything before the AS clause in the CREATE TRIGGER statement forms the trigger
header. The header must specify the name of the trigger and the name of the associated
table or view. The table or view must exist before it can be referenced in CREATE TRIGGER.

DATA DEFINITION GUIDE 175

CHAPTER 10 CREATING TRIGGERS

The trigger name must be unique among triggers in the database. Using the name of an
existing trigger or a system-supplied constraint name results in an error.

The remaining clauses in the trigger header determine when and how the trigger fires:

® The trigger status, ACTIVE or INACTIVE, determines whether a trigger is activated when the
specified operation occurs. ACTIVE is the default, meaning the trigger fires when the
operation occurs. Setting status to INACTIVE with ALTER TRIGGER is useful when
developing and testing applications and triggers.

= The trigger time indicator, BEFORE or AFTER, determines when the trigger fires relative to
the specified operation. BEFORE specifies that trigger actions are performed before the
operation. AFTER specifies that trigger actions are performed after the operation.

= The trigger statement indicator specifies the SQL operation that causes the trigger to fire:
INSERT, UPDATE, or DELETE. Exactly one indicator must be specified. To use the same
trigger for more than one operation, duplicate the trigger with another name and specify
a different operation.

= The optional sequence indicator, POSITION number, specifies the order in which the
trigger fires in relation to other triggers on the same table and event. number can be any
integer between zero and 32,767. The default is zero. Lower-numbered triggers fire first.
Multiple triggers can have the same position number; they will fire in random order.

The following example demonstrates how the POSITION clause determines trigger firing
order. Here are four headers of triggers for the ACCOUNTS table:

CREATE TRIGGER A FOR ACCOUNTS BEFORE UPDATE POSITION 5 AS ...
CREATE TRIGGER B FOR ACCOUNTS BEFORE UPDATE POSITION 0 AS ...
CREATE TRIGGER C FOR ACCOUNTS AFTER UPDATE POSITION 5 AS ...
CREATE TRIGGER D FOR ACCOUNTS AFTER UPDATE POSITION 3 AS ...

When this update takes place:
UPDATE ACCOUNTS SET C = "canceled" WHERE C2 = 5;

The following sequence of events happens: trigger B fires, A fires, the update occurs,
trigger D fires, then C fires.

The trigger body

Everything following the AS keyword in the CREATE TRIGGER statement forms the
procedure body. The body consists of an optional list of local variable declarations
followed by a block of statements.

176 INTERBASE 5

CREATING TRIGGERS

A block is composed of statements in the InterBase procedure and trigger language,
bracketed by BEGIN and END. A block can itself include other blocks, so that there may
be many levels of nesting.

InterBase procedure and trigger language includes all standard InterBase SQL statements
except data definition and transaction statements, plus statements unique to procedure
and trigger language.

Statements unique to InterBase procedure and trigger language include:
= Assignment statements, to set values of local variables.

® Control-flow statements, such as IF ... THEN, WHILE ... DO, and FOR SELECT ... DO, to
perform conditional or looping tasks.

® EXECUTE PROCEDURE statements to invoke stored procedures.

® Exception statements, to return error messages, and WHEN statements, to handle specific
error conditions.

® NEW and OLD context variables, to temporarily hold previous (old) column values and to
insert or update (new) values.

® Generators, to generate unique numeric values for use in expressions. Generators can be
used in procedures and applications as well as triggers, but they are particularly useful
in triggers for inserting unique column values.

Note All of these statements (except context variables) can be used in both triggers and
stored procedures. For a full description of these statements, see Chapter 9, “Working
with Stored Procedures.”

b NEW and OLD context variables

Triggers can use two context variables, OLD, and NEW. The OLD context variable refers to
the current or previous values in a row being updated or deleted. OLD is not used for
inserts. NEW refers to a new set of INSERT or UPDATE values for a row. NEW is not used for
deletes. Context variables are often used to compare the values of a column before and
after it is modified.

The syntax for context variables is as follows:

NEW col umm
OLD. col unm

where column is any column in the affected row. Context variables can be used anywhere
a regular variable can be used.

DATA DEFINITION GUIDE 177

178

CHAPTER 10 CREATING TRIGGERS

New values for a row can only be altered before actions. A trigger that fires after INSERT
and tries to assign a value to NEW.column will have no effect. The actual column values
are not altered until after the action, so triggers that reference values from their target
tables will not see a newly inserted or updated value unless they fire after UPDATE or
INSERT.

For example, the following trigger fires after the EMPLOYEE table is updated, and
compares an employee’s old and new salary. If there is a change in salary, the trigger
inserts an entry in the SALARY_HISTORY table.

SET TERM !'! ;
CREATE TRI GGER SAVE_SALARY_CHANGE FOR EMPLOYEE
AFTER UPDATE AS
BEG N
IF (ol d.salary <> new. sal ary) THEN
I NSERT | NTO SALARY_HI STORY
(EMP_NO, CHANGE DATE, UPDATER | D, OLD_SALARY,
PERCENT_CHANGE)
VALUES (ol d.enp_no, "now', USER, old.salary,
(new.salary - old.salary) * 100 / old.salary);
END !'!
SET TERM ; !!

Note Context variables are never preceded by a colon, even in SQL statements.

» Using generators

A generator is a database object which is automatically incremented each time the special
function, GEN_ID(), is called. GEN_ID() can be used in a statement anywhere that a variable
can be used. Generators are typically used to ensure that a number inserted into a column
is unique, or in sequential order. Generators can be used in procedures and applications
as well as triggers, but they are particularly useful in triggers for inserting unique column
values.

A generator is created with the CREATE GENERATOR statement and initialized with the SET
GENERATOR statement. If not initialized, a generator starts with a value of one. For more
information about creating and initializing a generator, see the Language Reference.

A generator must be created with CREATE GENERATOR before it can be called by GEN_IDQ.
The syntax for using GEN_ID(in a statement is:

GEN_I D(gennane, step)

genname must be the name of an existing generator, and step is the amount by which
the current value of the generator is incremented. step may be an integer or an expression
that evaluates to an integer.

INTERBASE 5

ALTERING TRIGGERS

The following trigger uses GEN_IDO to increment a new customer number before values
are inserted into the CUSTOMER table:

SET TERM !'! ;
CREATE TRI GGER SET_CUST_NO FOR CUSTOMER
BEFORE | NSERT AS
BEG N

NEW cust _no = GEN_I D(CUST_NO GEN, 1);
END !!
SET TERM ; !!

Note This trigger must be defined to fire before the insert, since it assigns values to
NEW.cust_no.

Altering triggers

To update a trigger definition, use ALTER TRIGGER. A trigger can be altered only by its
creator.

ALTER TRIGGER can change:

® Only trigger header information, including the trigger activation status, when it performs
its actions, the event that fires the trigger, and the order in which the trigger fires
compared to other triggers.

® Only trigger body information, the trigger statements that follow the AS clause.

= Both trigger header and trigger body information. In this case, the new trigger definition
replaces the old trigger definition.

To alter a trigger defined automatically by a CHECK constraint on a table, use ALTER TABLE
to change the table definition. For more information on the ALTER TABLE statement, see
Chapter 6, “Working with Tables.”

The ALTER TRIGGER syntax is as follows:

ALTER TRI GGER nane
[ACTI VE | | NACTI VE]
[{BEFORE | AFTER} {DELETE | I NSERT | UPDATE}]
[POSI TI ON nunber]
AS <trigger_body>;
The syntax of ALTER TRIGGER is the same as CREATE TRIGGER, except:

= The CREATE keyword is replaced by ALTER.

DATA DEFINITION GUIDE 179

180

CHAPTER 10 CREATING TRIGGERS

® FOR fable is omitted. ALTER TRIGGER cannot be used to change the table with which the
trigger is associated.

® The statement need only include parameters that are to be altered in the existing trigger,
with certain exceptions listed in the following sections.

Altering a trigger header

When used to change only a trigger header, ALTER TRIGGER requires at least one altered
setting after the trigger name. Any setting omitted from ALTER TRIGGER remains
unchanged.

The following statement makes the trigger, SAVE_SALARY_CHANGE, inactive:

ALTER TRI GGER SAVE_SALARY_CHANGE | NACTI VE;

If the time indicator (BEFORE or AFTER) is altered, then the operation (UPDATE, INSERT, or
DELETE) must also be specified. For example, the following statement reactivates the
trigger, VERIFY_FUNDS, and specifies that it fire before an UPDATE instead of after:

ALTER TRI GGER SAVE_SALARY_CHANGE
ACTI VE
BEFORE UPDATE;

Altering a trigger body

When a trigger body is altered, the new body definition replaces the old definition. When
used to change only a trigger body, ALTER TRIGGER need contain any header information
other than the trigger’s name.

To make changes to a trigger body:

1. Copy the original data definition file used to create the trigger. Alternatively,
use isql -extract to extract a trigger from the database to a file.

2. Edit the file, changing CREATE to ALTER, and delete all trigger header
information after the trigger name and before the AS keyword.

3. Change the trigger definition as desired. Retain whatever is still useful. The
trigger body must remain syntactically and semantically complete.

For example, the following ALTER statement modifies the previously introduced trigger,
SET_CUST_NO, to insert a row into the (assumed to be previously defined) table,
NEW_CUSTOMERS, for each new customer.

SET TERM Il

INTERBASE 5

DROPPING TRIGGERS

ALTER TRI GGER SET_CUST_NO
BEFORE | NSERT AS
BEG N
new. cust _no = GEN_I D(CUST_NO GEN, 1);
I NSERT | NTO NEW CUSTOMERS(hew. cust _no, TODAY)
END !!
SET TERM ; !!

Dropping triggers

During database design and application development, a trigger may no longer be useful.
To permanently remove a trigger, use DROP TRIGGER.
The following restrictions apply to dropping triggers:

® Only the creator of a trigger can drop it.

= Triggers currently in use cannot be dropped.
To temporarily remove a trigger, use ALTER TRIGGER and specify INACTIVE in the header.
The DROP TRIGGER syntax is as follows:
DRCP TRI GGER nane,

The trigger name must be the name of an existing trigger. The following example drops
the trigger, SET_CUST_NO:
DROP TRI GGER SET_CUST_NG,

Note You cannot drop a trigger if it is in use by a CHECK constraint (a system-defined
trigger). Use ALTER TABLE to remove or modify the CHECK clause that defines the trigger.

Using triggers

Triggers are a powerful feature with a variety of uses. Among the ways that triggers can
be used are:

= To make correlated updates. For example, to keep a log file of changes to a database or
table.

® To enforce data restrictions, so that only valid data is entered in tables.

® Automatic transformation of data. For example, to automatically convert text input to
uppercase.

DATA DEFINITION GUIDE 181

CHAPTER 10 CREATING TRIGGERS

® To notify applications of changes in the database using event alerters.
® To perform cascading referential integrity updates.

Triggers are stored as part of a database, like stored procedures and exceptions. Once
defined to be ACTIVE, they remain active until deactivated with ALTER TRIGGER or removed
from the database with DROP TRIGGER.

A trigger is never explicitly called. Rather, an active trigger automatically fires when the
specified action occurs on the specified table.

IMPORTANT If a trigger performs an action that causes it to fire again—or fires another trigger that
performs an action that causes it to fire—an infinite loop results. For this reason, it is
important to ensure that a trigger’s actions never cause the trigger to fire, even
indirectly. For example, an endless loop will occur if a trigger fires on INSERT to a table
and then performs an INSERT into the same table.

Triggers and transactions

Triggers operate within the context of the transaction in the program where they are
fired. Triggers are considered part of the calling program’s current unit of work.

If triggers are fired in a transaction, and the transaction is rolled back, then any actions
performed by the triggers are also rolled back.

Triggers and security

Triggers can be granted privileges on tables, just as users or procedures can be granted
privileges. Use the GRANT statement, but instead of using TO username, use TO TRIGGER
trigger_name. Triggers’ privileges can be revoked similarly using REVOKE. For more
information about GRANT and REVOKE, see Chapter 13, “Planning Security.”

When a user performs an action that fires a trigger, the trigger will have privileges to
perform its actions if:

= The trigger has privileges for the action.
® The user has privileges for the action.

So, for example, if a user performs an UPDATE of table A, which fires a trigger, and the
trigger performs an INSERT on table B, the INSERT will occur if the user has INSERT
privileges on the table or the trigger has insert privileges on the table.

182 INTERBASE 5

USING TRIGGERS

If there are insufficient privileges for a trigger to perform its actions, InterBase will set
the appropriate SQLCODE error number. The trigger can handle this error with a WHEN
clause. If it does not handle the error, an error message will be returned to the
application, and the actions of the trigger and the statement which fired it will be undone.

Triggers as event alerters

Triggers can be used to post events when a specific change to the database occurs. For
example, the following trigger, POST_NEW_ORDER, posts an event named “new_order”
whenever a new record is inserted in the SALES table:

SET TERM !'! ;
CREATE TRI GGER POST_NEW CORDER FOR SALES
AFTER | NSERT AS
BEG N
POST_EVENT "new_order";
END !'!
SET TERM ; !!

In general, a trigger can use a variable for the event name:
POST_EVENT : event _nane;

The parameter, event_name, is declared as a string variable, the statement could post

different events, depending on the value of the string variable, event_name. Then, for
example, an application can wait for the event to occur, if the event has been declared
with EVENT INIT and then instructed to wait for it with EVENT WAIT:

EXEC SQL

EVENT INIT order_wait enpdb ("new_ order")
EXEC SQL

EVENT WAI'T order_wai t;

For more information on event alerters, see the Programmer’s Guide.

Updating views with triggers

Views that are based on joins—including reflexive joins—and on aggregates cannot be
updated directly. You can, however, write triggers that will perform the correct writes to
the base tables when a DELETE, UPDATE, or INSERT is performed on the view. This
InterBase feature turns non-updatable views into updatable views.

DATA DEFINITION GUIDE 183

184

Tip

CHAPTER 10 CREATING TRIGGERS

You can specify nondefault behavior for updatable views, as well. InterBase does not
perform writethroughs on any view that has one or more triggers defined on it. This
means that you can have complete control of what happens to any base table when
users modify a view based on it.

For more information about updating and read-only views, see “Iypes of views:
read-only and updatable” on page 127.

The following example creates two tables, creates a view that is a join of the two tables,
and then creates three triggers—one each for DELETE, UPDATE, and INSERT—that will pass
all updates on the view through to the underlying base tables.

CREATE TABLE Tabl el (

Col A | NTEGER NOT NULL,

Col B VARCHAR(20) ,

CONSTRAI NT pk_tabl e PRI MARY KEY(Col A)

)

CREATE TABLE Tabl e2 (

Col A I NTEGER NOT NULL,

Col C VARCHAR(20) ,

CONSTRAI NT fk_tabl e2 FOREI GN KEY REFERENCES Tabl el(Col A)
)

CREATE VI EW Tabl eVi ew AS
SELECT Tabl el. Col A,
Tabl el. Col B,
Tabl e2. Col C
FROM Tabl el, Tabl e2
WHERE Tabl el. Col A = Tabl e2. Col A;

CREATE TRI GGER Tabl eVi ew_Del et e FOR Tabl eVi ew BEFORE DELETE AS
BEG N

DELETE FROM Tabl el

WHERE Col A = QOLD. Col A

DELETE FROM Tabl e2

WHERE Col A = OLD. Col A
END;

CREATE TRI GGER Tabl eVi ew_Updat e FOR Tabl eVi ew BEFORE UPDATE AS
BEG N

UPDATE Tabl el

SET Col B = NEW Col B

WHERE Col A = QLD. Col A;

INTERBASE 5

EXCEPTIONS

UPDATE Tabl e2

SET Col C = NEW Col C

VWHERE Col A = OLD. Col A
END;

CREATE TRI GGER Tabl eVi ew I nsert FOR Tabl eVi ew BEFORE | NSERT AS
BEGA N
I NSERT | NTO Tabl el val ues (
NEW Col A, NEW Col B) ;
I NSERT | NTO Tabl e2 val ues (
NEW Col A, NEW Col C) ;
END;

Exceptions

An exception is a named error message that can be raised from a trigger or a stored
procedure. Exceptions are created with CREATE EXCEPTION, modified with ALTER
EXCEPTION, and removed from the database with DROP EXCEPTION. For more information
about these statements, see Chapter 9, “Working with Stored Procedures.”

When raised in a trigger, an exception returns an error message to the calling program
and terminates the trigger, unless the exception is handled by a WHEN statement in the
trigger. For more information on error handling with WHEN, see Chapter 9, “Working
with Stored Procedures.”

For example, a trigger that fires when the EMPLOYEE table is updated might compare the
employee’s old salary and new salary, and raise an exception if the salary increase
exceeds 50%. The exception could return an message such as:

New sal ary exceeds old by nore than 50% Cannot update record.
IMPORTANT Like procedures and triggers, exceptions are created and stored in a database, where

they can be used by any procedure or trigger in the database. Exceptions must be
created and committed before they can be used in triggers.

Raising an exception in a trigger

To raise an existing exception in a trigger, use the following syntax:
EXCEPTI ON nane,

DATA DEFINITION GUIDE 185

186

CHAPTER 10 CREATING TRIGGERS

Where name is the name of an exception that already exists in the database. Raising an
exception:

Terminates the trigger, undoing any changes caused (directly or indirectly) by the trigger.

Returns the exception message to the application which performed the action that fired
the trigger. If an isql command fired the trigger, the error message is displayed on the
screen.

Note If an exception is handled with a WHEN statement, it will behave differently. For
more information on exception handling, see Chapter 9, “Working with
Stored Procedures.”

For example, suppose an exception is created as follows:

CREATE EXCEPTI ON RAI SE_TOO HI GH "New sal ary exceeds old by nore than
50% Cannot update record.";

The trigger, SAVE_SALARY_CHANGE, might raise the exception as follows:

SET TERM !! ;
CREATE TRI GGER SAVE_SALARY_CHANGE FOR EMPLOYEE
AFTER UPDATE AS
DECLARE VARI ABLE pcnt _rai se;
BEGA N
pcnt _raise = (new.salary - old.salary) * 100 / ol d.sal ary;
IF (ol d.salary <> new.sal ary) THEN
I F (pcnt _raise > 50) THEN
EXCEPTI ON RAI SE_TOO HI GH;
ELSE
BEGA N
| NSERT | NTO SALARY_HI STORY (EMP_NO, CHANGE_DATE,
UPDATER | D, OLD_SALARY, PERCENT_CHANGE)
VALUES (ol d. enp_no, "now', USER, old.salary,
pcnt _rai se);
END !!
SET TERM ; !!

Error handling in triggers

Errors and exceptions that occur in triggers may be handled using the WHEN statement.
If an exception is handled with WHEN, the exception does not return a message to the
application and does not necessarily terminate the trigger.

INTERBASE 5

EXCEPTIONS

Error handling in triggers works the same as for stored procedures: the actions performed
in the blocks up to the error-handling (WHEN) statement are undone and the statements
specified by the WHEN statement are performed.

For more information on error handling with WHEN, see Chapter 9, “Working with
Stored Procedures.”

DATA DEFINITION GUIDE 187

CHAPTER 10 CREATING TRIGGERS

188 INTERBASE 5

CHAPTER

11

Declaring User-Defined
Functions and BLOB Filters

User-defined functions (UDFs) are host-language programs for performing customized,
often-used tasks in applications. UDFs enable the programmer to modularize an
application by separating it into more reusable and manageable units.

BLOB filters are host-language programs that convert BLOB data from one format to
another.

You can access UDFs and BLOB filters through isql or a host-language program. You can
also access UDFs in stored procedures and trigger definitions.

IMPORTANT ~ UDFs and BLOB filters are not supported on NetWare servers.

DATA DEFINITION GUIDE 189

CHAPTER 11 DECLARING USER-DEFINED FUNCTIONS AND BLOB FILTERS

Creating user-defined functions

190

TABLET1.1

To create a user-defined function (UDF), you must code the UDF in a host language, then
build a shared function library that contains the UDF. You must then use DECLARE
EXTERNAL FUNCTION to declare each individual UDF to each database where you need to
it. Each UDF needs to be declared to each database only once.

The steps for creating UDFs are explained in detail in Chapter 10 of the Programmer’s
Guide, including “Handling memory for return values” on page 223 (a detailed
description of how to allocate and return memory for return values); “Declaring a UDF
to a database” on page 226; and “Writing a Blob UDF” on page 229.

Declaring the external function

Once a UDF has been written and compiled into a library, you must declare it to each
database where you want to use it, using the DELCARE EXTERNAL FUNCTION statement.
Each UDF in a library must be declared separately, but needs to be declared only once to
each database. As long as the entry point, module name, and path do not change, there
is no need to redelcare a UDF, even if the function itself is modified.
DECLARE EXTERNAL FUNCTI ON nanme [dat atype | CSTRI NG (i nt)

[, datatype | CSTRING (int) ...]]
RETURNS { dat at ype [BY VALUE] | CSTRING (int)} [FREE_IT]
ENTRY_PO NT ' ent rynange’
MODULE _NAME ' nodul enane’

Note Whenever a UDF returns a value by reference to dynamically allocated memory,
you must declare it using the FREE_IT keyword in order to free the allocated memory.

The following table lists the arguments to DECLARE EXTERNAL FUNCTION:

Argument Description

name Name of the UDF to use in SQL statements; can be different from the name of the
function specified after the ENTRY_POINT keyword

datatype Datatype of an input or return parameter
« All input parameters are passed to a UDF by reference
* Return parameters can be passed by value
+ Cannot be an array element

Arguments to DECLARE EXTERNAL FUNCTION

INTERBASE 5

CREATING USER-DEFINED FUNCTIONS

TABLE11.1

Argument Description

RETURNS Specifies the return value of a function

BY VALUE Specifies that a return value should be passed by value rather than by reference
CSTRING (int) Specifies a UDF that returns a null-terminated string int bytes in length

FREE_IT Frees memory of the return value after the UDF finishes running

+ Use only if the memory is allocated dynamically in the UDF
« See also Language Reference, Chapter 5

‘entryname’ Quoted string specifying the name of the UDF in the source code and as stored in
the UDF library

'modulename’ Quoted file specification identifying the library that contains the UDF

+ The library must reside on the server; path names must refer to the library’s
location on the server

+ On any platform, the module can be safely referenced with no path name if it is
in ib_install_dir/lib

+ Use the full library filename including the extension, even if you don’t specify the
pathname

+ See “UDF library placement” for more about how the operating system finds the
library

Arguments to DECLARE EXTERNAL FUNCTION

UDF library placement

When you specify the module (library) name in the DECLARE EXTERNAL FUNCTION
statement, you can use an absolute path, a relative path, or the library name only.
Absolute paths are, of course, inflexible and relative paths are subject to misinterpretation
by the OS. If you use the module name only, the operating system will always find it in
the /ib subdirectory of the InterBase install directory. If you want to place the library
elsewhere, the operating system looks in the following places, in sequence:

Note “Library” in this context is a shared object that typically has a .dll extention on
Wintel platforms, .so on Solaris, and .s/ on HP-UX.

Windows

- ib_install_dir\bin on the server

- win_install_dir\system32 when present

DATA DEFINITION GUIDE 191

CHAPTER 11 DECLARING USER-DEFINED FUNCTIONS AND BLOB FILTERS

- win_install_dir\system
- All directories in PATH
- ib_install_dir/lib

Solaris

- fusr/lib
- Directories in the LD_LIBRARY_PATH environment variable on the server
- ib_install_dir/lib

HP-UX
- Directories in the SH_LIB environment variable on the server
- ib_install_dir/lib

DECLARE EXTERNAL FUNCTION example

The following statement declares the tops() UDF to a database:

DECLARE EXTERNAL FUNCTI ON t ops
CHAR(256), | NTEGER, BLOB

RETURNS | NTEGER BY VALUE

ENTRY_POI NT 'tel’ MODULE_NAME 'tni.dll’;

This example does not need the FREE_IT keyword because only cstrings, CHAR, and
VARCHAR return types require memory allocation.

For more information about creating UDFs, see Chapter 10, “Working with
User-Defined Functions” in the Programmer’s Guide and Chapter 5, “User-Defined
Functions” in the Language Reference.

Dedlaring Blob filters

192

You can use BLOB filters to convert data from one BLOB subtype to another. You can access
BLOB filters from any program that contains SQL statements.

BLOB filters are user-written utility programs that convert data in columns of BLOB
datatype from one InterBase or user-defined subtype to another. Declare the filter to the
database with the DECLARE FILTER statement. For example:

DECLARE FI LTER BLOB_FORVAT

INTERBASE 5

DECLARING BLOB FILTERS

I NPUT_TYPE 1 OUTPUT_TYPE -99
ENTRY_PO NT "Text _filter"™ MODULE_NAME "Filter_99.dl1";

InterBase invokes BLOB filters in either of the following ways:
= SQL statements in an application
® interactively through isql.

isql automatically uses a built-in ASCII BLOB filter for a BLOB defined without a subtype,
when asked to display the BLOB. It also automatically filters BLOB data defined with
subtypes to text, if the appropriate filters have been defined.

To use BLOB filters, follow these steps:

1. Write the filters and compile them into object code.

2. Create a shared filter library.

3. Make the filter library available to InterBase at run time.
4. Define the filters to the database using DECLARE FILTER.
5. Write an application that requests filtering.

You can use BLOB subtypes and BLOB filters to do a large variety of processing. For
example, you can define one BLOB subtype to hold:

® Compressed data and another to hold decompressed data. Then you can write BLOB filters
for expanding and compressing BLOB data.

® Generic code and other BLOB subtypes to hold system-specific code. Then you can write
BLOB filters that add the necessary system-specific variations to the generic code.

= Word processor input and another to hold word processor output. Then you can write a
BLOB filter that invokes the word processor.

For more information about creating and using BLOB filters, see the Programmer’s Guide.
For the complete syntax of DECLARE FILTER, see the Language Reference.

DATA DEFINITION GUIDE 193

CHAPTER 11 DECLARING USER-DEFINED FUNCTIONS AND BLOB FILTERS

194 INTERBASE 5

CHAPTER

Working with Generators

This chapter explains how to create, alter, and use database generators.

About generators

A generator is a mechanism that creates a unique, sequential number that is
automatically inserted into a column by the database when SQL data manipulation
operations such as INSERT or UPDATE occur. Generators are typically used to produce
unique values that can be inserted into a column that is used as a PRIMARY KEY. For
example, a programmer writing an application to log and track invoices may want to
ensure that each invoice number entered into the database is unique. The programmer
can use a generator to create the invoice numbers automatically, rather than writing
specific application code to accomplish this task.

Any number of generators can be defined for a database, as long as each generator has
a unique name. A generator is global to the database where it is declared. Any transaction
that activates the generator can use or update the current sequence number. InterBase
will not assign duplicate generator values across transactions.

DATA DEFINITION GUIDE 195

CHAPTER 12 WORKING WITH GENERATORS

Creating generators

To create a unique number generator in the database, use the CREATE GENERATOR
statement. CREATE GENERATOR declares a generator to the database and sets its starting
value to zero (the default). If you want to set the starting value for the generator to a
number other than zero, use SET GENERATOR to specify the new value.

The syntax for CREATE GENERATOR is:

CREATE GENERATOR nane,

The following statement creates the generator, EMPNO_GEN:
CREATE GENERATCOR EMPNO_GEN,

Note Once defined, a generator cannot be deleted.

Setting or resetting generator values

IMPORTANT

196

SET GENERATOR sets a starting value for a newly created generator, or resets the value of
an existing generator. The new value for the generator, int, can be an integer from 231
to 231~ 1. When the GEN_ID(function is called, that value is int plus the increment
specified in the GEN_IDQ step parameter.

The syntax for SET GENERATOR is:

SET GENERATOR nane TO int;

The following statement sets a generator value to 1,000:
SET GENERATOR CUST_NO_GEN TO 1000;

Don’t reset a generator unless you are certain that duplicate numbers will not occur. For
example, a generators are often used to assign a number to a column that has PRIMARY
KEY or UNIQUE integrity constraints. If you reset such a generator so that it generates
duplicates of existing column values, all subsequent insertions and updates fail with a
“Duplicate key” error message.

INTERBASE 5

USING GENERATORS

Using generators

After creating the generator, the data definition statements that make the specific number
generator known to the database have been defined; no numbers have been generated
yet. To invoke the number generator, you must call the InterBase GEN_ID(function.
GEN_ID() takes two arguments: the name of the generator to call, which must already be
defined for the database, and a step value, indicating the amount by which the current
value should be incremented (or decremented, if the value is negative). GEN_IDO can be
called from within a trigger, a stored procedure, or an application whenever an INSERT,
UPDATE, or DELETE operation occurs.

The syntax for GEN_IDQ is:

GEN_I D(gennane, step);

GEN_IDQ can be called directly from within an application or stored procedure using
INSERT, UPDATE, or DELETE statements. For example, the following statement uses

GEN_IDO to call the generator, g, to increment a purchase order number in the SALES table
by one:

| NSERT | NTO SALES (PO _NUMBER) VALUES (GEN I D(g, 1));
A number is generated by the following sequence of events:
1. The generator is created and stored in the database.

2. Atrigger, stored procedure, or application references the generator with a call
to GEN_IDQ.

3. A generator returns a value when a trigger fires, or when a stored procedure
or application executes. It is up to the trigger, stored procedure, or
application to use the value. For example, a trigger can insert the value into
a column.

For more information on using generators in triggers, see Chapter 10, “Creating
Triggers.” For more information on using generators in stored procedures, see Chapter
9, “Working with Stored Procedures.”

To stop inserting a generated number in a database column, delete or modify the trigger,
stored procedure, or application so that it no longer invokes GEN_ID().

Note There is no “drop generator” statement. To remove a generator, delete it from the
system table. For example:

DELETE FROM RDB$GENERATORS WHERE RDB$GENERATORS_NAME = ‘EMP_NO’;

DATA DEFINITION GUIDE 197

CHAPTER 12 WORKING WITH GENERATORS

198 INTERBASE 5

CHAPTER

13

Planning Security

This chapter describes the following:
= Available SQL access privileges.
® Granting access to a table.
® Granting privileges to execute stored procedures.
® Granting access to views.
= Revoking access to tables and views.
= Using views to restrict data access.

® Providing additional security.

DATA DEFINITION GUIDE 199

CHAPTER 13 PLANNING SECURITY

Overview of SQL access privileges

SQL security is controlled at the table level with access privileges, a list of operations that
a user is allowed to perform on a given table or view. The GRANT statement assigns access
privileges for a table or view to specified users, to a role, or to objects such as stored
procedures or triggers. GRANT can also enable users or stored procedures to execute
stored procedures through the EXECUTE privilege and can grant roles to users. Use REVOKE
to remove privileges assigned through GRANT.

GRANT can be used in the following ways:

® Grant SELECT, INSERT, UPDATE, DELETE, and REFERENCES privileges for a table to users,
triggers, stored procedures, or views (optionally WITH GRANT OPTION)

® Grant SELECT, INSERT, UPDATE, and DELETE privileges for a view to users, triggers, stored
procedures, or views (optionally WITH GRANT OPTION)

® Grant SELECT, INSERT, UPDATE, DELETE, and REFERENCES privileges for a table to a role
® Grant SELECT, INSERT, UPDATE, and DELETE privileges for a view to a role
® Grant a role to users (optionally WITH ADMIN OPTION)

® Grant EXECUTE permission on a stored procedure to users, triggers, stored procedures, or
views (optionally WITH GRANT OPTION)

Default security and access

All tables and stored procedures are secured against unauthorized access when they are
created. Initially, only a table’s creator, its owner, has access to a table, and only its owner
can use GRANT to assign privileges to other users or to procedures. Only a procedure’s
creator, its owner, can execute or call the procedure, and only its owner can assign
EXECUTE privilege to other users or to other procedures.

InterBase also supports a SYSDBA user who has access to all database objects;
furthermore, on platforms that support the concept of a superuser, or user with root or
locksmith privileges, such a user also has access to all database objects.

200 INTERBASE 5

OVERVIEW OF SQL ACCESS PRIVILEGES

TABLE13.1

Privileges available

The following table lists the SQL access privileges that can be granted and revoked:

Privilege Access

ALL Select, insert, update, delete data, and reference a primary key from a foreign key
SELECT Read data

INSERT Write new data

UPDATE Modify existing data

DELETE Delete data

EXECUTE Execute or call a stored procedure

REFERENCES Reference a primary key with a foreign key

role All privileges assigned to the role

SQL access privileges

The ALL keyword provides a mechanism for assigning SELECT, DELETE, INSERT, UPDATE,
and REFERENCES privileges using a single keyword. ALL does not grant a role or the
EXECUTE privilege. SELECT, DELETE, INSERT, UPDATE, and REFERENCES privileges can also be
granted or revoked singly or in combination.

Note Statements that grant or revoke either the EXECUTE privilege or a role cannot grant
or revoke other privileges.

SQL ROLES

InterBase 5 implements features for assigning SQL privileges to groups of users, fully
supporting SQL group-level security as described in the ISO-ANSI Working Draft for
Database Language SQL sections 11.54. role definition, 11.53. GRANT statement, 11.58.
REVOKE statement, and 11.57. DROP ROLE statement. It partially supports section 11.55
GRANT ROLE and 11.56 REVOKE ROLE.

Note These features replace the Security Classes feature in past versions of InterBase. In
the past, group privileges could be granted only through the InterBase-proprietary GDML
language. In Version 5, new SQL features have been added to assist in migrating InterBase
users from GDML to SQL.

DATA DEFINITION GUIDE 201

CHAPTER 13 PLANNING SECURITY

Using roles

Implementing roles is a four-step process.

1. Create a role using the CREATE ROLE statement.

2. Assign privileges to the role using GRANT privilege TO rolename.
3. Grant the role to users using GRANT rolename TO user.

4. Specify the role when attaching to a database.

These steps are described in detail in this chapter. In addition, the CONNECT, CREATE ROLE,
GRANT, and REVOKE statements are described in the Language Reference.

Granting privileges

You can grant access privileges on an entire table or view or to only certain columns of
the table or view. This section discusses the basic operation of granting privileges.

® Granting multiple privileges at one time, or granting privileges to groups of users is
discussed in “Multiple privileges and multiple grantees” on page 205.

= “Using roles to grant privileges” on page 207 discusses both how to grant privileges to
roles and how to grant roles to users.

® You can grant access privileges to views, but there are limitations. See “Granting access
to views” on page 211.

® The power to grant GRANT authority is discussed in “Granting users the right to grant
privileges” on page 209.

® Granting EXECUTE privileges on stored procedures is discussed in “Granting privileges
to execute stored procedures” on page 211.

Granting privileges to a whole table

Use GRANT to give a user or object privileges to a table, view, or role. At a minimum,
GRANT requires the following parameters:

® An access privilege
= The table to which access is granted

® The name of a user to whom the privilege is granted

202 INTERBASE 5

GRANTING PRIVILEGES

The access privileges can be one or more of SELECT, INSERT, UPDATE, DELETE, REFERENCE.
The privilege granted can also be a role to which one or more privileges have been
assigned.

The user name is typically a user is the InterBase security database, isc4.gdb, but on UNIX
systems can also be a user who is in /et¢/password on both the server and client
machines. In addition, you can grant privileges to a stored procedure, trigger, or role.

The syntax for granting privileges to a table is:

GRANT{
<privileges> ON [TABLE] {tablenane | viewnane}
TO {<object> | <userlist>| GROUP UN X group}
| <role_granted> TO {PUBLIC | <role_grantee_list>}};

<privileges> = {ALL [PRIVILEGES] | <privilege_ |list>}

<privilege list> = {
SELECT
| DELETE
| | NSERT
| UPDATE [(col [, col ...])]
| REFERENCES [(col [, col ...])]
[,< privilege_ list>..]}

<obj ect>={
PROCEDUREpr ocnane
| TRIGGER trignane
| VIEW vi ewnane
| PUBLIC
[[<object>... 1}

<userlist> = {
[USER] username
| rolename

| Unix_user }
[, <userlist >..]
[WITH GRANT OPTION]

<rol e_granted>= rol enane|[, rolename ...]

<role_grantee_list> = [USER] username [, [USER] username ...]
[WTH ADM N OPTI ON]

Notice that this syntax includes the provisions for restricting UPDATE or REFERENCES to
certain columns, discussed on the next section, “Granting access to columns in a
table.”

DATA DEFINITION GUIDE 203

Tip

IMPORTANT

204

CHAPTER 13 PLANNING SECURITY

The following statement grants SELECT privilege for the DEPARTMENTS table to a user, EMIL:
GRANT SELECT ON DEPARTMENTS TO EM L;
The next example grants REFERENCES privileges on DEPARTMENTS to EMIL, permitting EMIL

to create a foreign key that references the primary key of the DEPARTMENTS table, even
though he doesn’t own that table:

GRANT REFERENCES ON DEPARTMENTS(DEPT_NO) TO EM L;

Views offer a way to further restrict access to tables, by restricting either the columns or
the rows that are visible to the user. See Chapter 8, “Working with Views” for more
information.

Granting access to columns in a table

In addition to assigning access rights for an entire table, GRANT can assign UPDATE or
REFERENCES privileges for certain columns of a table or view. To specify the columns,
place the comma-separated list of columns in parentheses following the privileges to be
granted in the GRANT statement.

The following statement assigns UPDATE access to all users for the CONTACT and PHONE
columns in the CUSTOMERS table:

GRANT UPDATE (CONTACT, PHONE) ON CUSTOMERS TO PUBLI C

You can add to the rights already assigned to users at the table level, but you cannot
subtract from them. To restrict user access to a table, use the REVOKE statement.

Granting privileges to a stored procedure or trigger

A stored procedure, view, or trigger sometimes needs privileges to access a table or view
that has a different owner. To grant privileges to a stored procedure, put the PROCEDURE
keyword before the procedure name. Similarly, to grant privileges to a trigger or view, put
the TRIGGER or VIEW keyword before the object name.

When a trigger, stored procedure or view needs to access a table or view, it is sufficient
for either the accessing object or the user who is executing it to have the necessary
permissions.

The following statement grants the INSERT privilege for the ACCOUNTS table to the
procedure, MONEY_TRANSFER:

GRANT | NSERT ON ACCOUNTS TO PROCEDURE MONEY_TRANSFER;

INTERBASE 5

MULTIPLE PRIVILEGES AND MULTIPLE GRANTEES

Tip

As a security measure, privileges to tables can be granted to a procedure instead of to
individual users. If a user has EXECUTE privilege on a procedure that accesses a table,
then the user does not need privileges to the table.

Multiple privileges and multiple grantees

This section discusses ways to grant several privileges at one time, and ways to grant one
or more privileges to multiple users or objects.

Granting multiple privileges

To give a user several privileges on a table, separate the granted privileges with commas
in the GRANT statement. For example, the following statement assigns INSERT and UPDATE
privileges for the DEPARTMENTS table to a user, LI:

GRANT | NSERT, UPDATE ON DEPARTMENTS TO LI ;
To grant a set of privileges to a procedure, place the PROCEDURE keyword before the

procedure name. Similarly, to grant privileges to a trigger or view, precede the object
name with the TRIGGER or VIEW keyword.

The following statement assigns INSERT and UPDATE privileges for the ACCOUNTS table to
the MONEY_TRANSFER procedure:

GRANT | NSERT, UPDATE ON ACCOUNTS TO PROCEDURE MONEY_TRANSFER;

The GRANT statement can assign any combination of SELECT, DELETE, INSERT, UPDATE, and
REFERENCES privileges. EXECUTE privileges must be assigned in a separate statement.

Note REFERENCES privileges cannot be assigned for views.

Granting all privileges

The ALL privilege combines the SELECT, DELETE, INSERT, UPDATE, and REFERENCES privileges
for a table in a single expression. It is a shorthand way to assign that group of privileges
to a user or procedure. For example, the following statement grants all access privileges
for the DEPARTMENTS table to a user, SUSAN:

GRANT ALL ON DEPARTMENTS TO SUSAN;

SUSAN can now perform SELECT, DELETE, INSERT, UPDATE, and REFERENCES operations on
the DEPARTMENTS table.

DATA DEFINITION GUIDE 205

206

CHAPTER 13 PLANNING SECURITY

Procedures can be assigned ALL privileges. When a procedure is assigned privileges, the
PROCEDURE keyword must precede its name. For example, the following statement grants
all privileges for the ACCOUNTS table to the procedure, MONEY_TRANSFER:

GRANT ALL ON ACCOUNTS TO PROCEDURE MONEY_TRANSFER;

Granting privileges to multiple users

There are a number of techniques available for granting privileges to multiple users. You
can grant the privileges to a list of users, to a UNIX group, or to all users (PUBLIC). In
addition, you can assign privileges to a role, which you then assign to a user list, a UNIX
group, or to PUBLIC.

» Granting privileges to a list of users

To assign the same access privileges to a number of users at the same time, provide a
comma-separated list of users in place of the single user name. For example, the
following statement gives INSERT and UPDATE privileges for the DEPARTMENTS table to
users FRANCIS, BEATRICE, and HELGA:

GRANT | NSERT, UPDATE ON DEPARTMENTS TO FRANCI S, BEATRI CE, HELGA,

) Granting privileges to a UNIX group

OS-level account names are implicit in InterBase security on UNIX. A client running as a
UNIX user adopts that user identity in the database, even if the account is not defined in
the InterBase security database (isc4.gdb). Now OS-level groups share this behavior, and
database administrators can assign SQL privileges to UNIX groups through SQL
GRANT/REVOKE statements. This allows any OS-level account that is a member of the
group to inherit the privileges that have been given to the group. For example:

GRANT UPDATE ON tabl el TO GROUP group_nane;
where group_name is a UNIX-level group defined in /etc/group.

Note Integration of UNIX groups with database security is not an SQL standard feature.

» Granting privileges to all users

To assign the same access privileges for a table to all users, use the PUBLIC keyword rather
than listing users individually in the GRANT statement.

The following statement grants SELECT, INSERT, and UPDATE privileges on the
DEPARTMENTS table to all users:

GRANT SELECT, | NSERT, UPDATE ON DEPARTMENTS TO PUBLI C,

INTERBASE 5

USING ROLES TO GRANT PRIVILEGES

IMPORTANT PUBLIC grants privileges only to users, not to stored procedures, triggers, roles, or views.
Privileges granted to users with PUBLIC can only be revoked from PUBLIC.

Granting privileges to a list of procedures
To assign privileges to a several procedures at once, provide a comma-separated list of

procedures following the word PROCEDURE in the GRANT statement.

The following statement gives INSERT and UPDATE privileges for the DEPARTMENTS table to
the procedures, ACCT_MAINT, and MONEY_TRANSFER:

GRANT | NSERT, UPDATE ON DEPARTMENTS TO PROCEDURE ACCT_MAI NT,
MONEY_TRANSFER,;

Using roles to grant privileges

In InterBase 5, you can assign privileges through the use of ROLEs. Acquiring privileges
through a role is a four-step process.

1. Create a role using the CREATE ROLE statement.
CREATE ROLE rol enane,

2. Assign one or more privileges to that role using GRANT.

GRANT privilegelist TO rol enane;

3. Use the GRANT statement once again to grant the role to one or more users.
GRANT rol ename ON table TO userlist;
The role can be granted WITH ADMIN OPTION, which allows users to grant the role to
others, just as the WITH GRANT OPTION allows users to grant privileges to others.

4. At connection time, specify the role whose privileges you want to acquire for
that connection.

CONNECT ‘dat abase” USER “ user nane” PASSWORD “passwor d’ ROLE
“rol enane”;

Use REVOKE to remove privileges that have been granted to a role or to remove roles that
have been granted to users.

See the Language Reference for more information on CONNECT, CREATE ROLE, GRANT, and
REVOKE.

DATA DEFINITION GUIDE 207

208

CHAPTER 13 PLANNING SECURITY

Granting privileges to a role

Once a role has been defined, you can grant privileges to that role, just as you would to
a user.

The syntax is as follows:

GRANT <privileges> ON [TABLE] {tablenane | viewnane}
TO rol enane;

<privileges> = {ALL [PRIVILECGES] | <privilege_ list>}

<privilege list> = {
SELECT
| DELETE
| | NSERT
| UPDATE [(col [, col ...])]
| REFERENCES [(col [, col ..])
[,< privilege list>..]}

See “Granting a role to users” for an example of creating a role, granting privileges to
it, and then granting the role to users.

Granting a role to users

When a role has been defined and has been granted privileges, you can grant that role
to one or more users, who then acquire the privileges that have been assigned to the role.

To permit users to grant the role to others, add WITH ADMIN OPTION to the GRANT
statement when you grant the role to the users.

The syntax is as follows:
GRANT {rol enane [, rolename... |} TO {PUBLIC
| {[USER] username [, [USER] username...]} }[WTH ADM N OPTI QN ;

The following example creates the DOITALL role, grants ALL privileges on DEPARTMENTS to
this role, and grants the DOITALL role to RENEE, who then has SELECT, DELETE, INSERT,
UPDATE, and REFERENCES privileges on DEPARTMENTS.

CREATE ROLE DO TALL;
GRANT ALL ON DEPARTMENTS TO DO TALL;
GRANT DO TALL TO RENEE;

INTERBASE 5

GRANTING USERS THE RIGHT TO GRANT PRIVILEGES

Granting users the right to grant privileges

Initially, only the owner of a table or view can grant access privileges on the object to
other users. The WITH GRANT OPTION clause transfers the right to grant privileges to other
users.

To assign grant authority to another user, add the WITH GRANT OPTION clause to the end
of a GRANT statement.

The following statement assigns SELECT access to user EMIL and allows EMIL to grant
SELECT access to other users:
CRANT SELECT ON DEPARTMENTS TO EM L W TH GRANT OPTI ON;

Note You cannot assign the WITH GRANT OPTION to a stored procedure.

WITH GRANT OPTION clauses are cumulative, even if issued by different users. For
example, EMIL can be given grant authority for SELECT by one user, and grant authority
for INSERT by another user. For more information about cumulative privileges, see “Grant
authority implications” on page 210.

Grant authority restrictions

There are only three conditions under which a user can grant access privileges (SELECT,
DELETE, INSERT, UPDATE, and REFERENCES) for tables to other users or objects:

= Users can grant privileges to any table or view that they own.

= Users can grant any privileges on another owner’s table or view when they have been
assigned those privileges WITH GRANT OPTION.

= Users can grant privileges that they have acquired by being granted a role WITH ADMIN
OPTION.

For example, in an earlier GRANT statement, EMIL was granted SELECT access to the
DEPARTMENTS table WITH GRANT OPTION. EMIL can grant SELECT privilege to other users.
Suppose EMIL is now given INSERT access as well, but without the WITH GRANT OPTION:

CRANT | NSERT ON DEPARTMENTS TO EM L,
EMIL can SELECT from and INSERT to the DEPARTMENTS table. He can grant SELECT
privileges to other users, but cannot assign INSERT privileges.

To change a user’s existing privileges to include grant authority, issue a second GRANT
statement that includes the WITH GRANT OPTION clause. For example, to allow EMIL to
grant INSERT privileges on DEPARTMENTS to others, reissue the GRANT statement and
include the WITH GRANT OPTION clause:

DATA DEFINITION GUIDE 209

CHAPTER 13 PLANNING SECURITY

GRANT | NSERT ON DEPARTMENTS TO EM L W TH GRANT OPTI ON;

Grant authority implications

Consider every extension of grant authority with care. Once other users are permitted
grant authority on a table, they can grant those same privileges, as well as grant authority
for them, to other users.

As the number of users with privileges and grant authority for a table increases, the
likelihood that different users can grant the same privileges and grant authority to any
single user also increases.

SQL permits duplicate privilege and authority assignment under the assumption that it is
intentional. Duplicate privilege and authority assignments to a single user have
implications for subsequent revocation of that user’s privileges and authority. For more
information about revoking privileges, see “Revoking user access” on page 214.

For example, suppose two users to whom the appropriate privileges and grant authority
have been extended, GALENA and SUDHANSHU, both issue the following statement:

GRANT | NSERT ON DEPARTMENTS TO SPI NOZA W TH GRANT OPTI ON;

Later, GALENA revokes the privilege and grant authority for SPINOZA:
REVCOKE | NSERT ON DEPARTMENTS FROM SPI NOZA,
GALENA now believes that SPINOZA no longer has INSERT privilege and grant authority for

the DEPARTMENTS table. The immediate net effect of the statement is negligible because
SPINOZA retains the INSERT privilege and grant authority assigned by SUDHANSHU.

When full control of access privileges on a table is desired, grant authority should not be
assigned indiscriminately. In cases where privileges must be universally revoked for a
user who might have received rights from several users, there are two options:

Each user who assigned rights must issue an appropriate REVOKE statement.

The table’s owner must issue a REVOKE statement for all users of the table, then issue
GRANT statements to reestablish access privileges for the users who should not lose their
rights.

For more information about the REVOKE statement, see “Revoking user access” on
page 214.

INTERBASE 5

GRANTING PRIVILEGES TO EXECUTE STORED PROCEDURES

Granting privileges to execute stored procedures

To use a stored procedure, users or other stored procedures must have
EXECUTE privilege for it, using the following GRANT syntax:

GRANT EXECUTE ON PROCEDURE procnane TO {<obj ect> | <userlist>}

<object> = {
PROCEDURE pr ocnane
| TRIGGER trignane
VI EW vi ewnane

I

| PUBLIC

[, <object>...]}
<userlist> = {

[USER] username

| rolename

| Unix_user }
[, <userlist >..]
[WITH GRANT OPTION]

You must give EXECUTE privileges on a stored procedure to any procedure or trigger that
calls that stored procedure if the caller’s owner is not the same as the owner of the called
procedure.

Note If you grant privileges to PUBLIC, you cannot specify additional users or objects as
grantees in the same statement.

The following statement grants EXECUTE privilege for the FUND_BALANCE procedure to two
users, NKOMO, and SUSAN, and to two procedures, ACCT_MAINT, and MONEY_TRANSFER:

GRANT EXECUTE ON PROCEDURE FUND_BALANCE TO NKOMO, SUSAN, PROCEDURE
ACCT_MAI NT, MONEY_TRANSFER;

Granting access to views

To a user, a view looks—and often acts—just like a table. However, there are significant
differences: the contents of a view are not stored anywhere in the database. All that is
stored is the query on the underlying base tables. Because of this, any UPDATE, DELETE,
INSERT to a view is actually a write to the table on which the view is based.

DATA DEFINITION GUIDE 211

IMPORTANT

212

Tip

CHAPTER 13 PLANNING SECURITY

Any view that is based on a join or an aggregate is considered to be a read-only or
non-updatable view, since it is not directly updateable. Views that are based on a single
table which have no aggregates or reflexive joins are often updatable. See “Types of
views: read-only and updatable” on page 127 for more information about this topic.

It is meaningful to grant INSERT, UPDATE, and DELETE privileges for a view only if the
view is updatable. Although you can grant the privileges to a read-only view without
receiving an error message, any actual write operation fails because the view is
read-only. SELECT privileges can be granted on a view just as they are on a table, since
reading data from a view does not change anything.

You cannot assign REFERENCES privileges to views.
If you are creating a view for which you plan to grant INSERT and UPDATE privileges, use

the WITH CHECK OPTION constraint so that users can update only base table rows that are
accessible through the view.

Updatable views

You can assign SELECT, UPDATE, INSERT, and DELETE privileges to updatable views, just as
you can to tables. UPDATES, INSERTS, and DELETES to a view are made to the view’s base
tables. You cannot assign REFERENCES privileges to a view.

The syntax for granting privileges to a view is:

GRANT{ <pri vi | eges> ON vi ewnane
TO {<obj ect> | <userlist>| GROUP UN X group};

<privileges> = { SELECT
| DELETE
| | NSERT
| UPDATE [(col [, col ...])]
[,< privilege_ list>..]}

<obj ect>={
PROCEDUREpr ocnane
| TRIGGER trignane
| VIEW vi ewnane
| PUBLIC
[[<object>... 1}

INTERBASE 5

GRANTING ACCESS TO VIEWS

<userlist> = {
[USER] usernane
| rol enane
| Unix_user}
[, <userlist>..]
[WITH GRANT OPTION]

When a view is based on a single table, data changes are made directly to the view’s
underlying base table.

For UPDATE, changes to the view affect only the base table columns selected through the
view. Values in other columns are invisible to the view and its users and are never
changed. Views created using the WITH CHECK OPTION integrity constraint can be updated
only if the UPDATE statement fulfills the constraint’s requirements.

For DELETE, removing a row from the view, and therefore from the base table removes all
columns of the row, even those not visible to the view. If SQL integrity constraints or
triggers exist for any column in the underlying table and the deletion of the row violates
any of those constraints or trigger conditions, the DELETE statement fails.

For INSERT, adding a row to the view necessarily adds a row with all columns to the base
table, including those not visible to the view. Inserting a row into a view succeeds only
when:

Data being inserted into the columns visible to the view meet all existing integrity
constraints and trigger conditions for those columns.

All other columns of the base table are allowed to contain NULL values.

For more information about working with views, see Chapter 8, “Working with Views.”

Read-only views

When a view definition contains a join of any kind or an aggregate, it is no longer a
legally updatable view, and InterBase cannot directly update the underlying tables.

Note You can use triggers to simulate updating a read-only view. Be aware, however, that
any triggers you write are subject to all the integrity constraints on the base tables. To see
an example of how to use triggers to “update” a read-only view, see “Updating views
with triggers” on page 183.

For more information about integrity constraints and triggers, see Chapter 10, “Creating
Triggers.”

DATA DEFINITION GUIDE 213

CHAPTER 13 PLANNING SECURITY

Revoking user access

Use the REVOKE statement to remove privileges that were assigned with the GRANT

statement.

At a minimum, REVOKE requires parameters that specify the following:

® One access privilege to remove

= The table or view to which the privilege revocation applies

® The name of the grantee for which the privilege is revoked.

In its full form, REVOKE removes all the privileges that GRANT can assign.

REVOKE <privil eges> ON [TABLE] {tabl enane |

vi ewnane}

FROM { <obj ect> | <userlist> | GROUP UN X_group};

<privileges> = {ALL [PRIVILEGES] | <privilege_ |list>}

<privilege list> = {
SELECT
| DELETE
| I NSERT
| UPDATE [(col [, col ..]]
| REFERENCES [(col [, col ..])]
[,< privilege_ list>..]}

<obj ect > ={
PROCEDUREpr ocnane
| TRIGGER trignane
| VIEW vi ewnane
| PUBLIC
[[<object>]}

<userlist>=[USER] wusernane|[, [USER] usernane ..\]

The following statement removes the SELECT privilege for the user, SUSAN, on the

DEPARTMENTS table:
REVOKE SELECT ON DEPARTMENTS FROM SUSAN,;

The following statement removes the UPDATE privilege for the procedure,

MONEY_TRANSFER, on the ACCOUNTS table:

REVOKE UPDATE ON ACCOUNTS FROM PROCEDURE MONEY_TRANSER;

214

INTERBASE 5

REVOKING USER ACCESS

The next statement removes EXECUTE privilege for the procedure, ACCT_MAINT, on the
MONEY_TRANSFER procedure:

REVOKE EXECUTE ON PROCEDURE MONEY_TRANSER FROM PROCEDURE ACCT_MAI NT;

For the complete syntax of REVOKE, see the Language Reference.

Revocation restrictions

The following restrictions and rules of scope apply to the REVOKE statement:
® Privileges can be revoked only by the user who granted them.
® Other privileges assigned by other users are not affected.

® Revoking a privilege for a user, A, to whom grant authority was given, automatically
revokes that privilege for all users to whom it was subsequently assigned by user A.

® Privileges granted to PUBLIC can only be revoked for PUBLIC.

Revoking multiple privileges

To remove some, but not all, of the access privileges assigned to a user or procedure, list
the privileges to remove, separating them with commas. For example, the following
statement removes the INSERT and UPDATE privileges for the DEPARTMENTS table from a
user, LI:

REVOKE | NSERT, UPDATE ON DEPARTMENTS FROM LI ;

The next statement removes INSERT and DELETE privileges for the ACCOUNTS table from a
stored procedure, MONEY_TRANSFER:

REVOKE | NSERT, DELETE ON ACCOUNTS FROM PROCEDURE MONEY_TRANSFER,;

Any combination of previously assigned SELECT, DELETE, INSERT, and UPDATE privileges
can be revoked.

DATA DEFINITION GUIDE 215

216

CHAPTER 13 PLANNING SECURITY

Revoking all privileges

The ALL privilege combines the SELECT, DELETE, INSERT, and UPDATE privileges for a table
in a single expression. It is a shorthand way to remove all SQL table access privileges from
a user or procedure. For example, the following statement revokes all access privileges
for the DEPARTMENTS table for a user, SUSAN:

REVOKE ALL ON DEPARTMENTS FROM SUSAN;

Even if a user does not have all access privileges for a table, ALL can still be used. Using
ALL in this manner is helpful when a current user’s access rights are unknown.

Note ALL does not revoke EXECUTE privilege.

Revoking privileges for a list of users

Use a comma-separated list of users to REVOKE access privileges for a number of users at
the same time.

The following statement revokes INSERT and UPDATE privileges on the DEPARTMENTS table
for users FRANCIS, BEATRICE, and HELGA:

REVOKE | NSERT, UPDATE ON DEPARTMENTS FROM FRANCI S, BEATRI CE, HELGA;

Revoking privileges for a role

If you have granted privileges to a role or granted a role to users, you can use REVOKE to
remove the privileges or the role.

To remove privileges from a role:

REVOKE privil eges ON tabl e FROM rol enanel i st;

To revoke a role from users:

REVOKE rol e_granted FROM {PUBLIC | rol e _grantee |ist};

The following statement revokes UPDATE privileges from the DOITALL role:
REVOKE UPDATE ON DEPARTMENTS FROM DA TALL,;

INTERBASE 5

REVOKING USER ACCESS

IMPORTANT

Now, users who were granted the DOITALL role no longer have UPDATE privileges on
DEPARTMENTS, although they retain the other privileges—SELECT, INSERT, DELETE, and
REFERENCES—that they acquired with this role.

If you drop a role using the DROP ROLE statement, all privileges that were conferred by
that role are revoked.

Revoking a role from users

Use REVOKE to remove a role that you assigned to users.

The following statement revokes the DOITALL role from RENEE.

REVOKE DO TALL FROM RENEE;

RENEE no longer has any of the access privileges that she acquired as a result of

membership in the DOITALL role. However, if any others users have granted the same
privileges to her, she still has them.

Revoking EXECUTE privileges

Use REVOKE to remove EXECUTE privileges on a stored procedure. The syntax for revoking
EXECUTE privileges is as follows:

REVOKE EXECUTE ON PROCEDURE procnane FROM { <obj ect> | <userlist>}

<obj ect> ={
PROCEDURE pr ocnane
| TRIGGER trignane
| VIEW vi ewnane
| PUBLIC
[, <object>]}

<userlist> = [USER] usernane [, [USER] usernane..]

The following statement removes EXECUTE privilege for user EMIL on the
MONEY_TRANSFER procedure:

REVOKE EXECUTE ON PROCEDURE MONEY_TRANSFER FROM EMIL;

DATA DEFINITION GUIDE 217

IMPORTANT

218

CHAPTER 13 PLANNING SECURITY

Revoking privileges from objects

REVOKE can remove the access privileges for one or more procedures, triggers, or views.
Precede each type of object by the correct keyword (PROCEDURE, TRIGGER, or VIEW) and
separate lists of one object type with commas.

The following statement revokes INSERT and UPDATE privileges for the ACCOUNTS table
from the MONEY_TRANSFER and ACCT_MAINT procedures and from the SHOW_USER trigger.

REVOKE | NSERT, UPDATE ON ACCOUNTS FROM PROCEDURE MONEY_TRANSFER,
ACCT_MAI NT TRI GGER SHOW USER,;

Revoking privileges for all users

To revoke privileges granted to all users as PUBLIC, use REVOKE with PUBLIC. For example,
the following statement revokes SELECT, INSERT, and UPDATE privileges on the
DEPARTMENTS table for all users:

REVOKE SELECT, | NSERT, UPDATE ON DEPARTMENTS FROM PUBLI C,

When this statement is executed, only the table’s owner retains full access privileges to
DEPARTMENTS.

PUBLIC does not revoke privileges for stored procedures. PUBLIC cannot be used to strip
privileges from users who were granted them as individual users.

Revoking grant authority

To revoke a user’s grant authority for a given privilege, use the following REVOKE syntax:
REVOKE GRANT OPTION FOR privilege [, privilege..]ON table

FROMuser:;
For example, the following statement revokes SELECT grant authority on the DEPARTMENTS
table from a user, EMIL:

REVOKE GRANT OPTION FOR SELECT ON DEPARTMENTS FROM EMIL;

INTERBASE 5

USING VIEWS TO RESTRICT DATA ACCESS

Using views to restrict data access

In addition to using GRANT and REVOKE to control access to database tables, you can use
views to restrict data access. A view is usually created as a subset of columns and rows
from one or more underlying tables. Because it is only a subset of its underlying tables,
a view already provides a measure of access security.

For example, suppose an EMPLOYEES table contains the columns, LAST_NAME, FIRST_NAME,
JOB, SALARY, DEPT, and PHONE. This table contains much information that is useful to all
employees. It also contains employee information that should remain confidential to
almost everyone: SALARY. Rather than allow all employees access to the EMPLOYEES table,
a view can be created which allows access to other columns in the EMPLOYEES table, but
which excludes SALARY:

CREATE VI EW EMPDATA AS
SELECT LAST_NAME, FI RST_NAME, DEPARTMENT, JOB, PHONE
FROM EMPLOYEES;

Access to the EMPLOYEES table can now be restricted, while SELECT access to the view,
EMPDATA, can be granted to everyone.

Note Be careful when creating a view from base tables that contain sensitive information.
Depending on the data included in a view, it may be possible for users to recreate or infer
the missing data.

DATA DEFINITION GUIDE 219

CHAPTER 13 PLANNING SECURITY

220 INTERBASE 5

CHAPTER

14

Character Sets and
Collation Orders

CHAR, VARCHAR, and text BLOB columns in InterBase can use many different character
sets. A character set defines the symbols that can be entered as text in a column, and its
also defines the maximum number of bytes of storage necessary to represent each
symbol. In some character sets, such as ISO8859_1, each symbol requires only a single
byte of storage. In others, such as UNICODE_FSS, each symbol requires from 1 to 3 bytes
of storage.

Each character set also has an implicit collation order that specifies how its symbols are
sorted and ordered. Some character sets also support alternative collation orders. In all
cases, choice of character set limits choice of collation orders.

This appendix lists available character sets and their corresponding collation orders.
This appendix also describes how to specify:

® Default character set for an entire database.

= Alternative character set for a particular column in a table.

= Client application character set that the server should use when translating data between
itself and the client.

= Collation order for a column.

DATA DEFINITION GUIDE 221

CHAPTER 14 CHARACTER SETS AND COLLATION ORDERS

® Collation order for a value in a comparison operation.
= Collation order in an ORDER BY clause.

= Collation order in a GROUP BY clause.

InterBase character sets and collation orders

The following table lists each character set that can be used in InterBase. For each
character set, the minimum and maximum number of bytes used to store each symbol is
listed, and all collation orders supported for that character set are also listed. The first
collation order for a given character set is that set’s implicit collation, the one that is used
if no COLLATE clause specifies an alternative order. The implicit collation order cannot be
specified in the COLLATE clause.

Character Maximum Minimum
Character set setID character size character size Collation orders

ASClI 2 1 byte 1 byte AScll
BIG_5 56 2 bytes 1 byte BIG_5

CYRL 50 1 byte 1 byte CYRL
DB_RUS
PDOX_CYRL

DOS437 10 1 byte 1 byte DOS437
DB_DEU437
DB_ESP437
DB_FIN437
DB_FRA437
DB_ITA437
DB_NLD437
DB_SVE437
DB_UK437
DB_US437
PDOX_ASCII
PDOX_INTL
PDOX_SWEDFIN

TABLE14.1 Character sets and collation orders

222 INTERBASE 5

INTERBASE CHARACTER SETS AND COLLATION ORDERS

Character set

Character
setID

Maximum
character size

Minimum
character size

Collation orders

DO0S850

D0S852

DOS857

DOS860

DOS861

D0S863

D0S865

EUCJ_0208
GB_2312

N

45

46

47

14

12

6
57

1 byte

1 byte

1 byte

1 byte

1 byte

1 byte

1 byte

2 bytes
2 bytes

1 byte

1 byte

1 byte

1 byte

1 byte

1 byte

1 byte

1 byte
1 byte

D0S850
DB_DEU850
DB_ESP850
DB_FRA850
DB_FRC850
DB_ITA850
DB_NLD850
DB_PTB850
DB_SVE850
DB_UK850
DB_US850

D0S852
DB_CSY
DB_PLK
DB_SLO
PDOX_CSY
PDOX_HUN
PDOX_PLK
PDOX_SLO

DOS857
DB_TRK

D0S860
DB_PTG860

DOS861
PDOX_ISL

DOS863
DB_FRC863

DOS865
DB_DAN865
DB_NOR865
PDOX_NORDAN4

EUJC_0208
GB_2312

TABLE14.1 Character sets and collation orders (continued)

DATA DEFINITION GUIDE

223

CHAPTER 14 CHARACTER SETS AND COLLATION ORDERS

Character Maximum Minimum
Character set setID character size character size Collation orders

1S08859 1 21 1 byte 1 byte [S08859 1
DA_DA
DE_DE
DU_NL
EN_UK
EN_US
ES_ES
FI_FI
FR_CA
FR_FR
IS_IS
IT_IT
NO_NO
PT_PT
SV_SV

KSC_5601 44 2 bytes 1 byte KSC_5601
KSC_DICTIONARY

NEXT 19 1 byte 1 byte NEXT
NXT_DEU
NXT_FRA
NXT_ITA
NXT_US

NONE 0 1 byte 1 byte NONE
OCTETS 1 1 byte 1 byte OCTETS
SJIS_0208 5 2 bytes 1 byte SJIS_0208
UNICODE_FSS 3 3 bytes 1 byte UNICODE_FSS

WIN1250 51 1 byte 1 byte WIN1250
PXW_CSY
PXW_HUNDC
PXW_PLK
PXW_SLO

WIN1251 52 1 byte 1 byte WIN1251
PXW_CYRL

TABLE14.1 Character sets and collation orders (continued)

224 INTERBASE 5

INTERBASE CHARACTER SETS AND COLLATION ORDERS

Character Maximum Minimum

Character set setID character size character size Collation orders

WIN1252 53 1 byte 1 byte WIN1252
PXW_INTL
PXW_INTL850
PXW_NORDAN4
PXW_SPAN
PXW_SWEDFIN

WIN1253 54 1 byte 1 byte WIN1253
PXW_GREEK

WIN1254 55 1 byte 1 byte WIN1254
PXW_TURK

TABLE14.1 Character sets and collation orders (continued)

Character set storage requirements

Knowing the storage requirements of a particular character set is important, because in
the case of CHAR columns, InterBase restricts the maximum amount of storage in each
field in the column to 32,767 bytes (VARCHAR is restricted to 32,765 bytes).

For character sets that require only a single byte of storage, the maximum number of
symbols that can be stored in a single field corresponds to the number of bytes. For
character sets that require up to three bytes per symbol, the maximum number of
symbols that can be safely stored in a field is 1/3 of the maximum number of bytes for
the datatype. For example, for a CHAR column defines to use the UNICODE_FSS character
set, the maximum number of characters that can be specified is 10,922 (32,767/3):

CHAR(10922) CHARACTER SET UNI CODE_FSS,

Paradox and dBASE character sets and collations

Many character sets and their corresponding collations are provided to support Borland
Paradox for DOS, Paradox for Windows, dBASE for DOS, and dBASE for Windows.

DATA DEFINITION GUIDE 225

226

TABLE 14.2

CHAPTER 14 CHARACTER SETS AND COLLATION ORDERS

Character sets for DOS

The following character sets correspond to MS-DOS code pages, and should be used to
specify character sets for InterBase databases that are accessed by Paradox for DOS and
dBASE for DOS:

Character set DOS code page
DOS437 437
DOS850 850
D0S852 852
D0S857 857
DOS860 860
DOS861 861
D0S863 863
D0S865 865

Character sets corresponding to DOS code pages

The names of collation orders for these character sets that are specific to Paradox begin
“PDOX”. For example, the DOS865 character set for DOS code page 865 supports a
Paradox collation order for Norwegian and Danish called “PDOX_NORDAN4”.

The names of collation orders for these character sets that are specific to dBASE begin
“DB”. For example, the DOS437 character set for DOS code page 437 supports a dBASE
collation order for Spanish called “DB_ESP437”.

For more information about DOS code pages, and Paradox and dBASE collation orders,
see the appropriate Paradox and dBASE documentation and driver books.

Character sets for Microsoft Windows

There are five character sets that support Windows client applications, such as Paradox
for Windows. These character sets are: WIN1250, WIN1251, WIN1252, WIN1253, and
WIN1254.

INTERBASE 5

SPECIFYING DEFAULTS

The names of collation orders for these character sets that are specific to Paradox for
Windows begin “PXW”. For example, the WIN1250 character set supports a Paradox for
Windows collation order for Norwegian and Danish called “PXW_NORDAN4”.

For more information about Windows character sets and Paradox for Windows collation
orders, see the appropriate Paradox for Windows documentation and driver books.

Additional character sets and collations

Support for additional character sets and collation orders is constantly being added to
InterBase. To see if additional character sets and collations are available for a newly
created database, connect to the database with isql, then use the following set of queries
to generate a list of available character sets and collations:

SELECT RDB$CHARACTER SET_NAVE, RDB$CHARACTER SET | D
FROM RDB$CHARACTER SETS

ORDER BY RDB$CHARACTER SET_NAME;

SELECT RDB$COLLATI ON_NAME, RDB$CHARACTER SET | D
FROM RDB$COLLATI ONS

ORDER BY RDB$COLLATI ON_NAME;

Specifying defaults

This section describes the mechanics of specifying character sets for databases, table
columns, and client connections. In addition, it describes how to specify collation orders
for columns, comparisions, ORDER BY clauses, and GROUP BY clauses.

Specifying a default character set for a database

A database’s default character set designation specifies the character set the server uses
to tag CHAR, VARCHAR, and text BLOB columns in the database when no other character
set information is provided. When data is stored in such columns without additional
character set information, the server uses the tag to determine how to store and
transliterate that data. A default character set should always be specified for a database
when it is created with CREATE DATABASE.

To specify a default character set, use the DEFAULT CHARACTER SET clause of CREATE
DATABASE. For example, the following statement creates a database that uses the
ISO8859_1 character set:

DATA DEFINITION GUIDE 227

IMPORTANT

228

CHAPTER 14 CHARACTER SETS AND COLLATION ORDERS

CREATE DATABASE "eur ope. gdb" DEFAULT CHARACTER SET | SC8859_1;

If you do not specify a character set, the character set defaults to NONE. Using character
set NONE means that there is no character set assumption for columns; data is stored and
retrieved just as you originally entered it. You can load any character set into a column
defined with NONE, but you cannot later move that data into another column that has
been defined with a different character set. In this case, no transliteration is performed
between the source and destination character sets, and errors may occur during
assignment.

For the complete syntax of CREATE DATABASE, see the Language Reference.

Specifying a character set for a column in a table

Character sets for individual columns in a table can be specified as part of the column’s
CHAR or VARCHAR datatype definition. When a character set is defined at the column level,
it overrides the default character set declared for the database. For example, the following
isql statements create a database with a default character set of ISO8859_1, then create a
table where two column definitions include a different character set specification:

CREATE DATABASE "eur ope. gdb" DEFAULT CHARACTER SET | SC8859_1;
CREATE TABLE RUS_NAME(

LNAMVE VARCHAR(30) NOT NULL CHARACTER SET CYRL,

FNAME VARCHAR(20) NOT NULL CHARACTER SET CYRL,

)

For the complete syntax of CREATE TABLE, see the Language Reference.

Specifying a character set for a client connection

When a client application, such as isql, connects to a database, it may have its own
character set requirements. The server providing database access to the client does not
know about these requirements unless the client specifies them. The client application
specifies its character set requirement using the SET NAMES statement before it connects
to the database.

SET NAMES specifies the character set the server should use when translating data from
the database to the client application. Similarly, when the client sends data to the
database, the server translates the data from the client’s character set to the database’s
default character set (or the character set for an individual column if it differs from the
database’s default character set).

INTERBASE 5

SPECIFYING DEFAULTS

For example, the following isql command specifies thatisql is using the DOS437 character
set. The next command connects to the europe database created above, in “Specifying a
Character Set for a Column in a Table”:

SET NAMES DOS437;
CONNECT "eur ope. gdb" USER "JAMES' PASSWORD " U4AEEAH';

For the complete syntax of SET NAMES, see the Language Reference. For the complete
syntax of CONNECT, see the Language Reference.

Specifying collation order for a column

When a CHAR or VARCHAR column is created for a table, either with CREATE TABLE or ALTER
TABLE, the collation order for the column can be specified using the COLLATE clause.
COLLATE is especially useful for character sets such as ISO8859_1 or DOS437 that support
many different collation orders.

For example, the following isql ALTER TABLE statement adds a new column to a table, and
specifies both a character set and a collation order:

ALTER TABLE "FR CA EMP"
ADD ADDRESS VARCHAR(40) CHARACTER SET | S08859 1 NOT NULL
COLLATE FR CA;

For the complete syntax of ALTER TABLE, see the Language Reference.

Specifying collation order in a comparison operation

When CHAR or VARCHAR values are compared in a WHERE clause, it can be necessary to
specify a collation order for the comparisons if the values being compared use different
collation orders.

To specify the collation order to use for a value during a comparison, include a COLLATE
clause after the value. For example, in the following WHERE clause fragment from an
embedded application, the value to the left of the comparison operator is forced to be
compared using a specific collation:

WHERE LNAME COLLATE FR CA = : | nanme_search;

For the complete syntax of the WHERE clause, see the Language Reference.

DATA DEFINITION GUIDE 229

230

CHAPTER 14 CHARACTER SETS AND COLLATION ORDERS

Specifying collation order in an ORDER BY clause

When CHAR or VARCHAR columns are ordered in a SELECT statement, it can be necessary
to specify a collation order for the ordering, especially if columns used for ordering use
different collation orders.

To specify the collation order to use for ordering a column in the ORDER BY clause,
include a COLLATE clause after the column name. For example, in the following ORDER BY
clause, the collation order for two columns is specified:

CRDER BY LNAME COLLATE FR_CA, FNAME COLLATE FR_CA;

For the complete syntax of the ORDER BY clause, see the Language Reference.

Specifying collation order in a GROUP BY clause

When CHAR or VARCHAR columns are grouped in a SELECT statement, it can be necessary
to specify a collation order for the grouping, especially if columns used for grouping use
different collation orders.

To specify the collation order to use for grouping columns in the GROUP BY clause,
include a COLLATE clause after the column name. For example, in the following GROUP
BY clause, the collation order for two columns is specified:

GROUP BY LNAME COLLATE FR_CA, FNAME COLLATE FR_CA;

For the complete syntax of the GROUP BY clause, see the Language Reference.?

INTERBASE 5

APPENDIX

InterBase Document
Conventions

This appendix describes the InterBase 5 documentation set, the printing conventions
used to display information in text and in code examples, and conventions for naming
database objects and files in applications.

DATA DEFINITION GUIDE 231

APPENDIX A INTERBASE DOCUMENT CONVENTIONS

The InterBase documentation set

The InterBase documentation set is an integrated package designed for all levels of users.
It consists of five printed books. Each of these books is also provided in Adobe Acrobat
PDF format and is accessible on line through the Help menu. If Adobe Acrobat is not
already installed on your system, you can find it on the InterBase distribution CD-ROM
or at http//www.adobe.com/prodindex/acrobat/readstep.btml. Acrobat is available for
Windows NT, Windows 95, and most flavors of UNIX. Windows users also have help
available through the WinHelp system.

Book Description

Operations Guide Provides an introduction to InterBase and an explanation of tools and
procedures for performing administrative tasks on databases and database
servers. Also includes full reference on InterBase utilities, including isql,
gbak, Server Manager for Windows, and others.

Data Definition Guide ~ Explains how to create, alter, and delete database objects through isqL.
Language Reference Describes SQL and DSQL syntax and usage.

Programmer’s Guide Describes how to write embedded SQL and DSQL database applications in
a host language, precompiled through gpre.

API Guide Explains how to write database applications using the InterBase API.

TABLEA.1 Books in the InterBase 5 documentation set

232 INTERBASE 5

PRINTING CONVENTIONS

Printing conventions

The InterBase documentation set uses various typographic conventions to identify objects
and syntactic elements.

The following table lists typographic conventions used in text, and provides examples of

their use:
Convention Purpose Example
UPPERCASE SQL keywords, SQL functions, and names of ~ The following SELECT statement retrieves data from

all database objects such as tables, columns, the cITY column in the CITIES table.
indexes, and stored procedures.

italic New terms, emphasized words, file names, The isc4.gdb security database is not accessible
and host- language variables. without a valid user name and password.

bold Utility names, user-defined functions,and ~ Use gbak to back up and restore a database.
host-language function names. Function Use the datediff() function to calculate the

names are always followed by parenthesesto ,ymper of days between two dates.
distinguish them from utility names.

TABLEA.2 Text conventions

DATA DEFINITION GUIDE 233

APPENDIX A INTERBASE DOCUMENT CONVENTIONS

Syntax conventions

The following table lists the conventions used in syntax statements and sample code, and

provides examples of their use:

Convention Purpose

Example

UPPERCASE

italic

<italic>

{}

Keywords that must be typed exactly as
they appear when used.

Parameters that cannot be broken into
smaller units. For example, a table name
cannot be subdivided.

Parametersin angle brackets that can be
broken into smaller syntactic units.

Optional syntax: you do not need to
include anything that is enclosed in
square brackets.

One of the enclosed options must be
included in actual statement use. If the
contents are separated by a pipe symbol
(|), you must choose only one.

You can choose only one of a group
whose elements are separated by this
pipe symbol.

When objects separated by this symbol
occur within curly brackets, you must
choose one; when they are within
square brackets you can choose one or
none.

The clause enclosed in brackets with the
... symbol can be repeated as many
times as necessary.

SET TERM !'I;

CREATE CGENERATCR nane,

WH LE (<condition>) DO <conpound_st at enent >

CREATE [UNI QUE] [ASCENDI NG| DESCENDI NG

{SMALLI NT | | NTEGER | FLOAT | DOUBLE
PRECI S| ON}

SET { DATABASE | SCHEMA}
SELECT [DI STINCT | ALL]

(<col > [,<col >..)])

TABLEA3

234

Syntax conventions

INTERBASE 5

Index

A multi-dimensional 75
access privileges See security stored procedures and 141, 157-159
actions See events subscripts 76
activating triggers See firing triggers ASCENDING keyword 118
adding assigning values to variables 144, 149
See also inserting assignment statements 144
columns 110-111 AUTO mode 50-51

integrity constraints 111

secondary files 41, 45
aggregate functions 156
alerter (events) 147, 183

B
BEGIN keyword 141

ALTER DATABASE 39, 45 Blob data, storing 71
ALTER DOMAIN 86 BLOB datatype 57, 71-74, 81, 221
ALTER EXCEPTION 160 stored procedures and 141

BLOB filters 74, 189

ALTER INDEX 120-121 .
declaring 192-193

restrictions 121

ALTER PROCEDURE 151 BLOB segments 71-73
ALTER TABLE 14, 108-113 BLOB subtypes 73-74
block (statements) 141, 177

arguments 113

ALTER TRIGGER 179-181 buffers

database cache 37

syntax 179
altering
metadata 14 C
stored procedures 132, 133, 151 cache buffers 37
tr'iggers 170, 179-181 calling stored procedures 133, 152
views 127 cascading integrity constraints 30, 32, 91, 99, 104
applications CASTO 77-78
See also DSQL applications changes, logging 169, 170
calling stored procedures 133, 152 CHAR datatype 57, 66, 81, 221
character sets 227-229 CHARACTER datatype 66, 69
collation orders 229-230 CHARACTER SET 67-68, 94
preprocessing See gpre character sets 221-230
testing 176 additional 227
arithmetic functions See aggregate functions default 227
array elements 75 domains 85
array slices 74 retrieving 227
arrays 56, 74-76 specifying 41, 227-229
See also error status array table of 222
defining 75 character string datatypes 66-70

DATA DEFINITION GUIDE

CHARACTER VARYING datatype 66
CHECK constraints 30
defining 102-104
domains 84-85
triggers and 181
circular references 100-101
code
blocks 141, 177
comments in 147
lines, terminating 139, 175
code pages (MS-DOS) 226
COLLATE clause 85, 94
collation orders 68, 221
retrieving 227
specifying 229-230
column names
views 126
columns
adding 110-111
attributes 90-91
circular references 100-101
computed 95-96
default values 29, 96-??
defining 29, 79, 90-104
domain-based 94
dropping 110, 112
inheritable characteristics 79
local 79, 81, 83
NULL status 29
NULL values 96
specifying character sets 228
comments 147
comparing values 177
composite keys 34
computed columns 95-96
conditional shadows 51
conditions, testing 145, 146
constraints
adding 111
declaring 101-102
defining 29-32, 97-104
dropping 112
triggers and 181
context variables 177
See also triggers

converting datatypes 77-78
CREATE DATABASE 14, 39, 41-45
CREATE DOMAIN 79-85, 94
CREATE EXCEPTION 160
CREATE GENERATOR 178, 196
CREATE INDEX 116-120
CREATE PROCEDURE 134-150
RETURNS clause 140
SET TERM and 175
syntax 135-136
CREATE SHADOW 39, 48-51
CREATE TABLE 14, 90-104
EXTERNAL FILE option 104-108
CREATE TRIGGER 171-178
POSITION clause 176
syntax 171-172
CREATE VIEW 125-129
creating metadata 14

D
data
dropping 113
exporting 107-108
importing 106-107
protecting See security
retrieving 144, 153
multiple rows 134, 144
saving 109
sorting 221
storing 221
updating 178
data definition 14
data definition files 17, 40
stored procedures and 133
triggers and 170
data entry, automating 169
data manipulation statements 14
stored procedures and 136
triggers and 173
data model 20, 26
database cache buffers 37
database objects 20
databases
designing 19-38
multi-file 38, 42-43

INTERBASE 5

normalization 20, 32-36
page size 40
changing 41, 44
default 44
overriding 44
shadowing 46-52
single-file 41-42
structure 14, 20
datatypes 56-78
columns 91-93
converting 77-78
domains 80-82
DSQL applications 63
specifying 58-59
stored procedures and 141, 144
tables 91-93
XSQLVAR structure 63
DATE datatype 57, 65, 81
dBASE for DOS 225
dBASE for Windows 225
debugging stored procedures 147
DECIMAL datatype 57, 60-63, 81
DECLARE EXTERNAL FUNCTION 190-192
declaring
BLOB filters 192-193
input parameters 140, 142
integrity constraints 101-102
local variables 142
output parameters 140, 143
tables 89
default character set 227
defining
arrays 75
columns 29, 79, 90-104
integrity constraints 29-32, 97-104
DELETE
triggers and 169
deleting See dropping
DESCENDING keyword 118
designing
databases 19-38
tables 26
domain-based columns 94
domains 29, 79-87
altering 86

DATA DEFINITION GUIDE

attributes 80
creating 79-85
datatypes 80-82
dropping 87

NULL values 83
overriding defaults 83
specifying defaults 83

DOUBLE PRECISION datatype 57, 61, 62, 63-65,

81
DROP DATABASE 39, 46
DROP DOMAIN 87
DROP EXCEPTION 160
DROP INDEX 122
restrictions 122
DROP PROCEDURE 151
DROP SHADOW 39, 52
DROP TABLE 14, 113-114
DROP TRIGGER 181
dropping
columns 110, 112
constraints 112
data 113
metadata 14
views 130
DSQL
stored procedures and 133
DSQL applications
datatypes 63
duplicating triggers 176
dynamic link libraries See DLLs
dynamic SQL See DSQL

E

END 149-150

END keyword 141

entities 20, 23, 26
attributes 23

error codes 163

error messages 159, 185
stored procedures 139
triggers 175

error-handling routines
SQL 162

stored procedures 161-167
triggers 185-187

errors 163
stored procedures 139, 149, 150, 163
syntax 139, 175
triggers 175, 176, 183, 186
user-defined See exceptions
events 147
See also triggers
posting 183
EXCEPTION 161
exceptions 159-161, 169
dropping 160
handling 162
raising 185
triggers and 185-186
executable procedures 133, 153
terminating 149
EXECUTE PROCEDURE 143, 153
EXIT 149-150
exporting data 107-108
expression-based columns See computed columns
EXTERNAL FILE option 104-108
restrictions 105
external files 104
extracting metadata 39, 53

F

factorials 148
files

See also specific files

data definition 17, 40

exporting 107-108

external 104

importing 106-107

primary 41-42

secondary 41, 42-43, 45
firing triggers 172, 176, 182

security 182
fixed-decimal datatypes 60-63
FLOAT datatype 57, 63-65, 82
floating-point datatypes 63-65
FOR SELECT ... DO 144
FOREIGN KEY constraints 30-32, 98-99, 117
functions

user-defined See UDFs

G
gbak 120
GEN_IDO 178, 197
generators 178, 195-197
defined 195
resetting, caution 196
gpre
BLOB data 72
GRANT 200-213
multiple privileges 205-206
multiple users 206
privileges to roles 200, 203
REFERENCES 200
roles to user 200
specific columns 204
TO TRIGGER clause 182
WITH GRANT OPTION 209-210
grant authority
See also security
revoking 218

H
headers
procedures 134, 140-141, 143
triggers 171, 175-176
changing 180
host-language variables 144

|
I/0O See input, output
IF...THEN...ELSE 146
importing data 106-107
incorrect values 157
incremental values 178
index tree 40
indexes 37
activating/deactivating 120
altering 120-122
restrictions 121
creating 116-120
automatically 116
defined 115-116
dropping 122
restrictions 122

INTERBASE 5

improving performance 120-122
multi-column 116, 117, 118-120
page size 37
preventing duplicate entries 117
rebalancing 120
rebuilding 120
recomputing selectivity 121
single-column 116, 117
sort order 117, 118
system-defined 117, 122
unique 117
initializing
generators 178
input parameters 140, 142
See also stored procedures
INSERT
triggers and 169, 177
inserting
unique column values 178
INTEGER datatype 57, 59, 61, 62, 82
integer datatypes 59-60
integrity constraints
adding 111
declaring 101-102
defining 29-32, 97-104
dropping 112
on columns 91
triggers and 181
Interactive SQL See isql
intergrity constraints
cascading 30, 32, 91, 99, 104
international character sets 221-230
default 227
specifying 227-229
isc_decode_date(Q) 65
isc_encode_date() 65
isql 15, 16, 17, 40
stored procedures and 132, 139, 153-157, 175
triggers and 170

J

joins
views and 124

DATA DEFINITION GUIDE

K
key constraints See FOREIGN KEY constraints;
PRIMARY KEY constraints
keys
composite 34
removing dependencies 34-35

L
local columns 79, 81, 83
local variables 142
assigning values 144
lock conflict errors 163
logging changes 169, 170
loops See repetitive statements

M
MANUAL mode 50-51
metadata 14

altering 14

creating 14

dropping 14

extracting 39, 53

storing 14
modifying See altering;updating
MS-DOS code pages 226
multi-column indexes 116, 118-120
defined 117
multi-file databases 38, 42-43
multi-file shadows 49-50
multiple triggers 176

N

naming

stored procedures 134

triggers 176

variables 147
NATIONAL CHAR datatype 66, 69
NATIONAL CHAR VARYING datatype 66
NATIONAL CHARACTER datatype 66
NATIONAL CHARACTER VARYING datatype 66
NCHAR datatype 66, 70
NCHAR VARYING datatype 66
nested stored procedures 147-149
NEW context variables 177

NONE keyword 45, 68
normalization 20, 32-36
NOT NULL 83
NULL status 29
NULL values

columns 96

domains 83
numbers

incrementing 178
NUMERIC datatype 58, 60-63, 82
numeric datatypes 59-65
numeric values See values

o
objects 20
relationships 30
OLD context variables 177
ON DELETE 32, 99
ON UPDATE 32, 99
optimizing
queries 118
ORDER BY clause 118
output 153
output parameters 140, 143, 149
See also stored procedures
viewing 153
owner
stored procedures 132

P

page size 40

indexes 37

shadowing 50
Paradox for DOS 225
Paradox for Windows 225, 227
parameters

input 140, 142

output 140, 143, 149

viewing 153

partial key dependencies, removing
passwords

See also security

specifying 41, 43-44
preprocessor See gpre

Vi

34-35

primary files 41-42

PRIMARY KEY constraints 26, 29-32, 97-98, 117

privileges See security
procedures See stored procedures
protecting data See security
PUBLIC keyword 206

Q
queries
See also SQL
optimizing 118

R
raising exceptions 161, 185

RDB$RELATION_CONSTRAINTS system

table 101
read-only views 127-128

recursive stored procedures 147-149

REFERENCES privilege 100, 204

referential integrity See integrity constraints

relational model 31

repeating groups, eliminating 33-34

repetitive statements 145
retrieving data 144, 153
multiple rows 134, 144
return values, stored procedures
incorrect 157
REVOKE 214-218
grant authority 218
multiple privileges 215-218
multiple users 216
restrictions 215
stored procedures 218
roles 201-??, 203, 207
granting 203
granting privileges to 208
granting to users 208
routines 169
rows
retrieving 144, 153
multiple 134, 144

S
secondary files 42-43

140, 143

INTERBASE 5

adding 41, 45
security 38, 199-219
access privileges 200-201
granting 200-213
revoking 214-218
roles 207
triggers 182
UNIX groups 206
views 128,219
REFERENCES privilege 204
stored procedures 134, 207, 211
triggers 204
SELECT 153
FOR SELECT vs. 145
ORDER BY clause 156
views 126
WHERE clause 156
select procedures 133
creating 153-157
suspending 149
terminating 149
SELECT statements
stored procedures and 143, 144
sequence indicator (triggers) 176
sequential values 178
SET GENERATOR 178, 196
SET NAMES 228
SET STATISTICS 121
restrictions 121
SET TERM ?-139, 175
shadowing 46-52
advantages 47
automatic 51
limitations 47
page size 50
shadows
conditional 51
creating 48-51
defined 47
dropping 52
increasing size 52
modes
AUTO 50-51
MANUAL 50-51
multi-file 49-50

DATA DEFINITION GUIDE

single-file 49
SHOW DATABASE 49, 50
SHOW INDEX 117
SHOW PROCEDURES 152
SHOW TRIGGERS 161
single-column indexes 116
defined 117
single-file databases 41-42
single-file shadows 49

SMALLINT datatype 58, 59, 61, 62, 82

sorting
data 221

specifying
character sets 41, 67-68, 228
collation orders 229-230
datatypes 58-59
domain defaults 83
passwords 41, 43-44
user names 41, 43-44

SQL

stored procedures and 133, 134, 136

dropping 151
specifying variables 142
triggers and 173, 178
SQL clients
specifying character sets 228
SQLCODE variable
error-handling routines 162
statements
assignment 144
blocks 141, 177
repetitive 145
stored procedures 137, 139, 175
triggers 173
status array See error status array
status, triggers 176
stored procedures 152-159
altering 133, 151
arrays and 141, 157-159
calling 133, 152
creating 133, 134, 134-150
data definition files and 133
dependencies 151
viewing 152
documenting 132, 147

vii

dropping 151
error handling 161-167
exceptions 159-161, 162
events 147
exiting 149
headers 134, 140-141
output parameters 143
isql and 132, 139, 175
naming 134
nested 147, 149
overview 131-132
powerful SQL extensions 137
privileges 134
procedure body 134, 141-150
input parameters 140, 142
local variables 142, 144
output parameters 140, 143, 149
viewing 153
statements, terminating 139, 175
recursive 147, 149
retrieving data 134, 144, 153
return values 140, 143
incorrect 157
security 207, 211
suspending execution 149
syntax errors 139
testing conditions 145, 146
types, described 133
storing
Blob IDs 71
data 221
structures, database 14, 20
subscripts (arrays) 76
SUSPEND 149-150
syntax
assignment statements 144
context variables 177
generators 178
stored procedures 135-136
syntax errors
stored procedures 139
triggers 175
system tables 14
system-defined indexes 117, 122
system-defined triggers 181

Vi

T
tables 89-114
altering 108-113
caution 110
circular references 100-101
creating 90-104
declaring 89
defined 26
designing 26
dropping 113-114
external 104-108
terminators (syntax) 139, 175
testing
applications 176
triggers 176
text 221
time indicator (triggers) 176, 180
tokens, unknown 140, 175
transactions
triggers and 182
transitively-dependent columns, removing 35
triggers 169-187
access privileges 182
altering 170, 179-181
creating 171-179
data definition files and 170
dropping 181
duplicating 176
error handling 186
exceptions 185-186
raising 185
firing 172, 176, 182
headers 171, 175-176, 180
inserting unique values 178
isql and 170
multiple 176
naming 176
posting events 183
raising exceptions 160
referencing values 177
status 176
syntax errors 175
system-defined 181
testing 176
transactions and 182

INTERBASE 5

trigger body 171, 176-179, 180
context variables 177

U

UDFs 189-192

declaring 190-192
UNIQUE constraints 26, 29, 97-98, 117
unique indexes 117
UNIX groups, granting access to 206
unknown tokens 140, 175
updatable views 127-128
UPDATE

triggers and 169, 177
updating

See also altering

data 178

views 124, 128-129
user names

specifying 41, 43-44
user-defined errors See exceptions
user-defined functions See UDFs

\'}
VALUE keyword 84
values
See also NULL values
assigning to variables 144, 149
comparing 177
default column 96-??
incremental 178
referencing 177

returned from procedures 140, 143, 157

incorrect 157
VARCHAR datatype 58, 66, 70, 82, 221
variables

DATA DEFINITION GUIDE

context 177

host-language 144

local 142, 144

names 147

stored procedures 142
viewing

stored procedures 152
views 123-130

access privileges 128, 219

advantages 125

altering 127

column names 126

creating 125-129

defining columns 127

dropping 130

read-only 127-128

restricting data access 125

storing 123

updatable 127-128

updating 124, 128-129

with joins 124
virtual tables 125

w
WHEN 162, 163, 186
WHEN ...DO 161
WHEN GDSCODE 163
WHILE . .. DO 145
Windows applications 226
Windows clients 228

X
XSQLVAR structure
datatypes 63

‘- -
'y W e
w w
W

	Data Definition Guide
	Table of Contents
	List of Tables
	List of Figures
	Using the Data Definition�Guide
	What is data definition?
	Who should use this guide
	Related InterBase documentation
	Topics covered in this guide
	Using isql
	Using a data definition file

	Designing Databases
	Overview of design issues
	Database versus data model
	Design goals

	Design framework
	Analyzing requirements
	Collecting and analyzing data
	Identifying entities and attributes
	Designing tables
	Determining unique attributes
	Developing a set of rules
	Specifying a datatype
	Choosing international character sets
	Specifying domains
	Setting default values and NULL status
	Defining integrity constraints
	Defining CHECK constraints

	Establishing relationships between objects
	Enforcing referential integrity
	Normalizing the database
	Eliminating repeating groups
	Removing partially-dependent columns
	Removing transitively-dependent columns
	When to break the rules

	Choosing indexes
	Increasing cache size
	Creating a multi-file, distributed database

	Planning security

	Creating Databases
	What you should know
	Creating a database
	Using a data definition file
	Using CREATE DATABASE
	Creating a single-file database
	Creating a multi-file database
	Specifying user name and password
	Specifying database page size
	Specifying the default character set

	Altering a database
	Dropping a database
	Creating a database shadow
	Advantages of shadowing
	Limitations of shadowing
	Before creating a shadow
	Using CREATE SHADOW
	Creating a single-file shadow
	Creating a multi-file shadow
	Auto mode and manual�mode
	Conditional shadows

	Dropping a shadow
	Expanding the size of a shadow
	Using isql to extract data definitions
	Extracting an InterBase 4.0 database
	Extracting a 3.x database

	Specifying Datatypes
	About InterBase datatypes
	Where to specify datatypes
	Defining numeric datatypes
	Integer datatypes
	Fixed-decimal datatypes
	How InterBase stores fixed-decimal datatypes
	Specifying NUMERIC and DECIMAL without scale
	Specifying NUMERIC and DECIMAL with scale and precision
	Specifying datatypes using embedded applications

	Floating-point datatypes

	The DATE datatype
	Converting to the DATE datatype
	InterBase and the year 2000

	Character datatypes
	Specifying a character set
	Characters vs. bytes
	Using CHARACTER SET NONE
	About collation order

	Fixed-length character data
	CHAR(n) or CHARACTER(n)
	NCHAR(n) or NATIONAL CHAR(n)

	Variable-length character data
	VARCHAR(n)
	NCHAR VARYING(n)

	Defining BLOB datatypes
	BLOB columns
	BLOB segment length
	Defining segment length
	Segment syntax

	BLOB subtypes
	BLOB filters

	Defining arrays
	Multi-dimensional arrays
	Specifying subscript ranges for array dimensions

	Converting datatypes
	Implicit type conversions
	Explicit type conversions

	Working with Domains
	Creating domains
	Using CREATE DOMAIN
	Specifying the domain datatype
	Specifying domain defaults
	Specifying NOT NULL
	Specifying domain CHECK constraints
	Using the VALUE keyword
	Specifying domain collation order

	Altering domains with ALTER DOMAIN
	Dropping a domain

	Working with Tables
	Before creating a table
	Creating tables
	Defining columns
	Required attributes
	Optional attributes
	Specifying the datatype
	The COLLATE clause
	Defining domain-based columns
	Defining expression-based columns
	Specifying column default values
	Specifying NOT NULL

	Defining integrity constraints
	PRIMARY KEY and UNIQUE constraints
	Enforcing referential integrity with the FOREIGN KEY
	Referencing tables owned by others
	Circular references
	How to declare constraints

	Defining a CHECK constraint
	Using the EXTERNAL FILE option
	Restrictions
	Importing external files to InterBase tables
	Exporting InterBase tables to an external file

	Altering tables
	Before using ALTER TABLE
	Saving existing data
	Dropping columns

	Using ALTER TABLE
	Adding a new column to a table
	Adding new table constraints
	Dropping an existing column from a table
	Dropping existing constraints from a column
	Summary of ALTER TABLE arguments

	Dropping tables
	Dropping a table
	DROP TABLE syntax

	Working with Indexes
	Index basics
	When to index
	Creating indexes
	Using CREATE INDEX
	Preventing duplicate entries
	Specifying index sort order

	When to use a multi-column index
	Examples using multi-column indexes

	Improving index performance
	Using ALTER INDEX
	Using SET STATISTICS
	Using DROP INDEX

	Working with Views
	Introduction
	Advantages of views
	Creating views
	Specifying view column names
	Using the SELECT statement
	Using expressions to define columns
	Types of views: read-only and updatable
	View privileges
	Examples of views

	Inserting data through a view
	Using WITH CHECK OPTION
	Examples

	Dropping views

	Working with Stored�Procedures
	Overview of stored procedures
	Working with procedures
	Using a data definition file
	Calling stored procedures
	Privileges for stored procedures

	Creating procedures
	CREATE PROCEDURE syntax
	Procedure and trigger language
	Using SET TERM in stored procedures
	Syntax errors in stored procedures

	The procedure header
	Declaring input parameters
	Declaring output parameters

	The procedure body
	BEGIN … END statements
	Using variables
	Using assignment statements
	Using SELECT statements
	Using FOR SELECT … DO statements
	Using WHILE … DO statements
	Using IF … THEN … ELSE statements
	Using event alerters
	Adding comments
	Creating nested and recursive procedures
	Using SUSPEND, EXIT, and END

	Altering stored procedures
	Dropping procedures
	Using stored procedures
	Using executable procedures in isql
	Using select procedures in isql
	Using WHERE and ORDER BY clauses
	Selecting aggregates from procedures

	Viewing arrays with stored procedures

	Exceptions
	Creating exceptions
	Altering exceptions
	Dropping exceptions
	Raising an exception in a stored procedure

	Handling errors
	Handling exceptions
	Handling SQL errors
	Handling InterBase errors
	Examples of error behavior and handling

	Creating Triggers
	Working with triggers
	Using a data definition file
	Creating triggers
	CREATE TRIGGER syntax
	InterBase procedure and trigger language
	Using SET TERM in isql
	Syntax errors in triggers

	The trigger header
	The trigger body
	NEW and OLD context variables
	Using generators

	Altering triggers
	Altering a trigger header
	Altering a trigger body

	Dropping triggers
	Using triggers
	Triggers and transactions
	Triggers and security
	Triggers as event alerters
	Updating views with triggers

	Exceptions
	Raising an exception in a trigger
	Error handling in triggers

	Declaring User-Defined Functions�and�BLOB Filters
	Creating user-defined functions
	Declaring the external function
	UDF library placement
	DECLARE EXTERNAL FUNCTION example

	Declaring Blob filters

	Working with Generators
	About generators
	Creating generators
	Setting or resetting generator values
	Using generators

	Planning Security
	Overview of SQL access privileges
	Default security and access
	Privileges available
	SQL ROLES

	Granting privileges
	Granting privileges to a whole table
	Granting access to columns in a table
	Granting privileges to a stored procedure or trigger

	Multiple privileges and multiple grantees
	Granting multiple privileges
	Granting all privileges
	Granting privileges to multiple users
	Granting privileges to a list of users
	Granting privileges to a UNIX group
	Granting privileges to all users

	Granting privileges to a list of procedures

	Using roles to grant privileges
	Granting privileges to a role
	Granting a role to users

	Granting users the right to grant privileges
	Grant authority restrictions
	Grant authority implications

	Granting privileges to execute stored procedures
	Granting access to views
	Updatable views
	Read-only views

	Revoking user access
	Revocation restrictions
	Revoking multiple privileges
	Revoking all privileges
	Revoking privileges for a list of users
	Revoking privileges for a role
	Revoking a role from users
	Revoking EXECUTE privileges
	Revoking privileges from objects
	Revoking privileges for all users
	Revoking grant authority

	Using views to restrict data access

	Character Sets and Collation�Orders
	InterBase character sets and collation orders
	Character set storage requirements
	Paradox and dBASE character sets and collations
	Character sets for DOS
	Character sets for Microsoft Windows
	Additional character sets and collations

	Specifying defaults
	Specifying a default character set for a database
	Specifying a character set for a column in a table
	Specifying a character set for a client connection
	Specifying collation order for a column
	Specifying collation order in a comparison operation
	Specifying collation order in an ORDER BY clause
	Specifying collation order in a GROUP BY clause

	InterBase Document Conventions
	The InterBase documentation set
	Printing conventions
	Syntax conventions

	Index

