InterBase 5

Programmer’s

Guide

InterBase

SOFTWARE CORPORATION

100 Enterprise Way, Suite B2~ Scotts Valley, CA 95066 http://www.interbase.com

InterBase Software Corp. and INPRISE Corporation may have patents and/or pending patent applications
covering subject matter in this document. The furnishing of this document does not convey any license to
these patents.

Copyright 1998 InterBase Software Corporation. All rights reserved. All InterBase products are trademarks
or registered trademarks of InterBase Software Corporation. All Borland products are trademarks or
registered trademarks of INPRISE Corporation, Borland and Visibroker Products. Other brand and product
names are trademarks or registered trademarks of their respective holders.

1INTO050WW21003 5E4R0898

9899000102-987654321

D4

Table of Contents

ListofTables
Listof Figures

Chapter1 Using the
Programmer’s Guide
Who should use this guide

Topics covered in this guide

Sample database and applications

Chapter 2 Application Requirements
Requirements for all applications

Porting considerations for SQL.
Porting considerations for DSQL.
Declaring host variables.
Declaring and initializing databases
Using SET DATABASE
Using CONNECT
Working with a single database
SQL statements

Error handling and recovery

Closing transactions
Accepting changes
Undoing changes.

Closing databases

DSQL requirements
Declaring an XSQLDA

DSQL limitations
Using database handles
Using the active database

Using transaction names

PROGRAMMER'S GUIDE

Preprocessing programs 30
Chapter 3 Working with Databases
Declaring a database 31
Declaring multiple databases 32
Preprocessing and run time databases . . 34
Controlling SET DATABASE scope 35
Specifying a connection character set 36
Opening a database 37
Using simple CONNECT statements. . . . 37
Additional CONNECT syntax. 41
Attaching to multiple databases. 41
Handling CONNECT errors 42
Setting database cache buffers 43
Accessing an open database 44
Differentiating table names 44
Closing a database 45
With DISCONNECT 45
With COMMIT and ROLLBACK 46
Chapter4 Working with Transactions
Starting the default transaction 49
Starting without SET TRANSACTION. . . 49
Starting with SET TRANSACTION. 50
Starting a named transaction 51
Naming transactions 52

Specifying SET TRANSACTION behavior . 54
Using transaction names in data statements 66
Ending a transaction 67

Using COMMIT 68

Using ROLLBACK 71

Working with multiple transactions 73
The default transaction 73
Usingcursors. 74
A multi-transaction example 75

Working with multiple transactions in DSQL 76

Modifying transaction behavior with “?” 77

Chapter 5 Working with Data
Definition Statements

Creating metadata 80
Creating a database 81
Creatingadomain 83
Creatingatable 84
Creatingaview. 86
Creating anindex 89
Creating generators 90

Dropping metadata 90
Dropping anindex. 91
Droppingaview 91
Droppingatable. 92

Altering metadata 92
Alteringatable. 93
Alteringaview 97
Altering an index. 97

Chapter 6 Working with Data
Supported datatypes 100

Understanding SQL expressions 102
Using the string operator in expressions 104

Using arithmetic operators in expressions .
105

Using logical operators in expressions 105

Using comparison operators in expressions
106

Determining precedence of operators . 114
Using CAST() for datatype conversions. 116
Using UPPER() on textdata 117
Understanding data retrieval with SELECT 118
Listing columns to retrieve with SELECT 119
Specifying host variables with INTO . . 123

Listing tables to search with FROM. . . 123
Restricting row retrieval with WHERE . 126
Sorting rows with ORDERBY 129
Grouping rows with GROUP BY 131
Restricting grouped rows with HAVING 132
Appending tables with UNION 133
Specifying a query plan with PLAN. . . 134
Selecting a singlerow 135
Selecting multiple rows 136
Declaringa cursor 136
Openingacursor 138
Fetching rows with a cursor. 138
Closing the cursor 140

A complete cursor example 141
Selecting rows with NULL values 142
Selecting rows through a view 143
Selecting multiple rows in DSQL 144
Declaring a DSQL cursor. 144
Opening a DSQL cursor 145
Fetching rows with a DSQL cursor . . . 146
Joining tables 146
Choosing join columns. 147
Using innerjoins 147
Using outer joins 150
Using nested joins 152
INTERBASE 5

Using subqueries 153

Simple subqueries 153
Correlated subqueries 154
Insertingdata 155
Using VALUES to insert columns. . . . 156
Using SELECT to insert columns 157

Inserting rows with NULL column values . .
157
Inserting data through a view 160

Specifying transaction names in an INSERT
161

Updatingdata 161
Updating multiple rows 162
NULLing columns with UPDATE 165
Updating through a view 165

Specifying transaction names in UPDATE. .
166

Deletingdata 167
Deleting multiple rows 168
Deleting through a view. 170

Specifying transaction names in a DELETE .
171

Chapter 7 Working with Dates

Selecting dates 174
Inserting dates 175
Updating dates 176
Using CAST() to convert dates 176
Using date literals 177

Chapter 8 Working with Blob Data

WhatisaBlob? 179
How are Blob data stored? 180
Blob subtypes. 181

PROGRAMMER'S GUIDE

Blob database storage 182
Blob segment length 183
Overriding segment length 184
Accessing Blob data with SQL 184
Selecting Blobdata. 184
Inserting Blobdata. 187
Updating Blobdata. 188
Deleting Blobdata 189
Accessing Blob data with API calls 190
Filtering Blobdata 191
Using the standard InterBase text filters 191
Using an external Blob filter 191
Writing an external Blob filter 193
Filter types. 194
Read-only and write-only filters. 194
Defining the filter function 194

Chapter 9 Using Arrays

Creating arrays 203
Multi-dimensional arrays 204
Specifying subscript ranges 205

Accessing arrays 206
Selecting data from an array 206
Inserting data into an array 207
Selecting from an array slice 208
Updating data in an array slice 209

Testing a value in a search condition. . 211
Using host variables in array subscripts 211

Using arithmetic expressions with arrays .
211

Chapter 10 Working with
User-Defined Functions
CreatingaUDF 214

Writing and compiling functions 214

Writing a function module 214
Writinga BlobUDF 217
Compiling a function module. 220
Creating a UDF library 220
Modifying a UDF library. 220
Declaring a UDF to a database 221
Declaringa BlobUDF 223
CallingaUDF 223
Using a UDF with SELECT. 223
Using a UDF with INSERT. 224
Using a UDF with UPDATE 224
Using a UDF with DELETE 224

Chapter 11 Working with Stored Procedures

Using stored procedures 226
Procedures and transactions 226
Security for procedures 227

Using select procedures 227
Calling a select procedure. 228

Using a select procedure with cursors. 228
Using executable procedures 229
Executing a procedure. 229

Executing a procedure in a DSQL application
230

Chapter 12 Working with Events

Understanding the event mechanism 233
Signaling event occurrences 234
Registering interest in events 235
Registering interest in multiple events . . . 236
Waiting for events with EVENT WAIT . . . 236
Responding toevents 237
vi

Chapter 13 Error Handling and Recovery

Standard error handling 239
WHENEVER statements 240
Testing SQLCODE directly 242
Combining error-handling techniques . 244
Guidelines for error handling 245

Additional InterBase error handling . . . 246
Displaying error messages. 247
Capturing SQL error messages 247
Capturing InterBase error messages . . 248
Handling InterBase error codes. 250

Chapter 14 Using Dynamic SQL
Overview of the DSQL programming process

253

DSQL limitations 254
Accessing databases 254
Handling transactions 255
Creating a database. 256
Processing Blobdata. 257
Processing arraydata 257

Writing a DSQL application 257
SQL statements that DSQL can process. 258
SQL character strings. 259
Value parameters in statement strings . 259

Understanding the XSQLDA 260
XSQLDA field descriptions. 262
XSQLVAR field descriptions 263
Input descriptors 264
Output descriptors 264
Using the XSQLDA_LENGTH macro. . . 265
SQL datatype macro constants 266
Handling varying string datatypes . . . 268
NUMERIC and DECIMAL datatypes . . . 268

INTERBASE 5

Coercing datatypes. 269
Aligning numerical data. 270
DSQL programming methods 271
MethodNon-quergtatementwithouparameters
271
Method Non-querytatementswithparameters
272
Method3:Querystatementswithoutparameters
276

Method 4: Query statements with parameters
280

Chapter 15 Preprocessing, Compiling,
and Linking
Preprocessing 289

PROGRAMMER'S GUIDE

Usinggpre. 290

Using a file extension to specify language .

294

Specifying the source file 294
Compiling and linking 296
Compiling an Ada program 296
Linking. 296

Appendix A InterBase Document

Conventions

The InterBase documentation set 300
Printing conventions 301
Syntax conventions 302

vii

viii INTERBASE 5

List of Tables

Table 1.1
Table 3.1
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 5.1
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 6.6
Table 6.7
Table 6.8
Table 6.9
Table 6.10
Table 6.11
Table 6.12
Table 8.1
Table 8.2
Table 8.3
Table 8.4
Table 8.5
Table 10.1
Table 13.1
Table 14.1
Table 14.2
Table 14.3
Table 14.4

Chapters in the InterBase 5 Programmer’s Guide
CONNECT syntax summary o o o v v v v v v o ..
SQL transaction management statements
Default transaction default behavior
SET TRANSACTION parameters
ISOLATION LEVEL options oo
InterBase management of classic transaction conflicts
Isolation level Interaction with SELECT and UPDATE
Table reservation options for the RESERVING clause
Data definition statements supported for embedded applications

Datatypes supported by InterBase
Elements of SQL expressions
Arithmetic operators o
InterBase comparison operators requiring subqueries
Operator precedence by operator type
Mathematical operator precedence
Comparison operator precedence
Logical operator precedence
Compatible datatypes for CASTO
SELECT statement clauses

Aggregate functions in SQLo
Elements of WHERE clause SEARCH conditions
BLOB subtypes defined by InterBase
APIBlobcalls
isc_blob_ctl structure field descriptions
Blob access operations

Blob filter status values L
DECLARE EXTERNAL FUNCTION parameters
Possible SQLCODE values
XSQLDA field descriptions L
XSQLVAR field descriptions L
SQL datatypes, macro expressions, and C datatypes
SQL statement strings and recommended processing methods . . .

PROGRAMMER'S GUIDE

100
102
105
107
114
115
115
116
117
118
121
127
181
190
197
199
201
221
239
262
203
266

271

LIST OF TABLES

Table 15.1 gpre language switches available on all platforms 290
Table 15.2 Additional gpre language switches 290
Table 15.3 gpre option switches 292
Table 15.4 Language-specific gpre option switches 293
Table 15.5 File extensions for language specification 294
Table A.1 Books in the InterBase 5 documentation set 300
Table A.2 Text conventions 301
Table A.3 Syntax conventions Lo 302

X INTERBASE 5

List of Figures

Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 14.1

Relationship of a Blob ID to Blob segments in a database 183
Filtering from lowercase to uppercase 192
Filtering from uppercase to lowercase 193
Filter interaction with an application and a database 195
XSQLDA and XSQLVAR relationship 261

PROGRAMMER'S GUIDE Xi

‘- -
'y W e
w w
W

CHAPTER

Using the
Programmer’s Guide

The InterBase Programmer’s Guide is a task-oriented explanation of how to write,
preprocess, compile, and link embedded SQL and DSQL database applications using
InterBase and a host programming language, either C or C++. This chapter describes
who should read this book, and provides a brief overview of its chapters.

Who should use this guide

The InterBase Programmer’s Guide is intended for database applications programmers.
It assumes a general knowledge of:

= SQL
® Relational database programming
® C programming

The Programmer’s Guide assumes little or no previous experience with InterBase. See

the Operations Guide for an introduction to InterBase and the Language Reference for
an introduction to SQL.

13

CHAPTER 1 USING THE PROGRAMMER'S GUIDE

Note The Programmer’s Guide focuses on embedded SQL and DSQL programming in C
or C++. It does not address Delphi-specific topics.

Topics covered in this guide

The following table provides a brief description of each chapter in this Programmer’s

Guide:

Chapter Description

Chapter 1, “Using the Programmer’s Guide” Introduces the structure of the book and describes its
intended audience.

Chapter 2, “Application Requirements” Describes elements common to programming all SQL and
DSQL applications.

Chapter 3, “Working with Databases” Describes using SQL statements that deal with databases.

Chapter 4, “Working with Transactions” Explains how to use and control transactions with SQL
statements.

Chapter 5, “Working with Data Definition Describes how to embed SQL data definition statements in

Statements” applications.

Chapter 6, “Working with Data” Explains how to select, insert, update, and delete standard
SQL data in applications.

Chapter 7, “Working with Dates” Describes how to select, insert, update, and delete DATE data
in applications.

Chapter 8, “Working with Blob Data” Describes how to select, insert, update, and delete Blob data
in applications.

Chapter 9, “Using Arrays” Describes how to select, insert, update, and delete array data

in applications.

Chapter 10, “Working with User-Defined Functions” Describes how to write UDFs, how to call UDFs in applications,
how to write Blob filters, and how to create Blob filter libraries.

Chapter 11, “Working with Stored Procedures” Explains how to call stored procedures in applications.

TABLE1.1 Chaptersin the InterBase 5 Programmer’s Guide

14 INTERBASE 5

SAMPLE DATABASE AND APPLICATIONS

Chapter Description

Chapter 12, “Working with Events” Explains how triggers interact with applications. Describes
how to register interest in events, wait on them, and respond
to them in applications.

Chapter 13, “Error Handling and Recovery” Describes how to trap and handle SQL statement errors in
applications.

Chapter 14, “Using Dynamic SQL” Describes how to write DSQL applications.

Chapter 15, “Preprocessing, Compiling, and Linking” Describes how to convert source code into an executable
application.

Appendix A, “InterBase Document Conventions” Lists typefaces and special characters used in this book to

describe syntax and identify object types.

TABLE1.1 Chapters in the InterBase 5 Programmer’s Guide (continued)

Sample database and applications

The InterBase examples subdirectory contains several useful items worth noting,
including:

® The ib_udjf.sql file, which declares the UDFs in the library provided by InterBase; the
library of UDFs is in the InterBase /ib subdirectory and is named ib_udf.dll on Wintel
platforms and ib_udf on UNIX platforms

= A sample database, employee.gdb

= Sample application source code, which produces several sample applications when
compiled; see the makefile and the readme in the examples directory for more
information about the sample applications and how to compile them

The Programmer’s Guide makes use of the sample database and source code for its
examples wherever possible.

PROGRAMMER'S GUIDE

15

16

CHAPTER 1 USING THE PROGRAMMER'S GUIDE

INTERBASE 5

CHAPTER

Application Requirements

This chapter describes programming requirements for InterBase SQL and dynamic SQL
(DSQL) applications. Many of these requirements may also affect developers moving
existing applications to InterBase.

Requirements for all applications

All embedded applications must include certain declarations and statements to ensure
proper handling by the InterBase preprocessor, gpre, and to enable communication

between SQL and the host language in which the application is written. Every application
must:

® Declare host variables to use for data transfer between SQL and the application.
® Declare and set the databases accessed by the program.

= Create transaction handles for each non-default transaction used in the program.
® Include SQL (and, optionally, DSQL) statements.

® Provide error handling and recovery.

= Close all transactions and databases before ending the program.

PROGRAMMER'S GUIDE 17

18

CHAPTER 2 APPLICATION REQUIREMENTS

Dynamic SQL applications, those applications that build SQL statements at run time, or
enable users to build them, have additional requirements. For more information about
DSQL requirements, see “DSQL requirements” on page 26.

For more information about using gpre, see Chapter 15, “Preprocessing, Compiling,
and Linking.”

Porting considerations for SQL

When porting existing SQL applications to InterBase, other considerations may be
necessary. For example, many SQL variants require that host variables be declared
between BEGIN DECLARE SECTION and END DECLARE SECTION statements; InterBase has no
such requirements, but gpre can correctly handle section declarations from ported
applications. For additional portability, declare all host-language variables within
sections.

Porting considerations for DSQL

When porting existing DSQL applications to InterBase, statements that use another
vendor’s SQL descriptor area (SQLDA) must be modified to accommodate the extended
SQLDA (XSQLDA) used by InterBase.

Declaring host variables

A host variable is a standard host-language variable used to hold values read from a
database, to assemble values to write to a database, or to store values describing database
search conditions. SQL uses host variables in the following situations:

® During data retrieval, SQL moves the values in database fields into host variables where
they can be viewed and manipulated.

® When a user is prompted for information, host variables are used to hold the data until
it can be passed to InterBase in an SQL INSERT or UPDATE statement.

® When specifying search conditions in a SELECT statement, conditions can be entered
directly, or in a host variable. For example, both of the following SQL statement fragments
are valid WHERE clauses. The second uses a host-language variable, country, for
comparison with a column, COUNTRY:

... WHERE COUNTRY = "Mexico";
... WHERE COUNTRY = :country;

INTERBASE 5

REQUIREMENTS FOR ALL APPLICATIONS

One host variable must be declared for every column of data accessed in a database. Host
variables may either be declared globally like any other standard host-language variable,
or may appear within an SQL section declaration with other global declarations. For more
information about reading from and writing to host variables in SQL programs, see
Chapter 6, “Working with Data.”

Host variables used in SQL programs are declared just like standard language variables.
They follow all standard host-language rules for declaration, initialization, and
manipulation. For example, in C, variables must be declared before they can be used as
host variables in SQL statements:

i nt enpno; char fnanme[26], | name[26];
For compatibility with other SQL variants, host variables can also be declared between
BEGIN DECLARE SECTION and END DECLARE SECTION statements.

b Section declarations

Many SQL implementations expect host variables to be declared between BEGIN DECLARE
SECTION and END DECLARE SECTION statements. For portability and compatibility,
InterBase supports section declarations using the following syntax:

EXEC SQL
BEG N DECLARE SECTI ON;
<host var>;

EXEC SQL

END DECLARE SECTI ON,
For example, the following C code fragment declares three host variables, empno, fname,
and Iname, within a section declaration:

EXEC SQL
BEG N DECLARE SECTI ON,
i nt enpno;

char fname[26];
char | name[26] ;
EXEC SQL
END DECLARE SECTI ON;

Additional host-language variables not used in SQL statements can be declared outside
DECLARE SECTION statements.

PROGRAMMER'S GUIDE 19

20

CHAPTER 2 APPLICATION REQUIREMENTS

» Using BASED ON fo declare variables

InterBase supports a declarative clause, BASED ON, for creating C language character
variables based on column definitions in a database. Using BASED ON ensures that the
resulting host-language variable is large enough to hold the maximum number of
characters in a CHAR or VARCHAR database column, plus an extra byte for the
null-terminating character expected by most C string functions.

BASED ON uses the following syntax:
BASED ON <dbcol urm> host var;

For example, the following statements declare two host variables, fname, and lname,
based on two column definitions, FIRSTNAME, and LASTNAME, in an employee database:
BASED ON EMP. FI RSTNAME f nane;

BASED ON EMP. LASTNAME | nane;

Embedded in a C or C++ program, these statements generate the following host- variable
declarations during preprocessing:

char fname[26];

char | name[26] ;

To use BASED ON, follow these steps:

1. Use SET DATABASE to specify the database from which column definitions are
to be drawn.

2. Use CONNECT to attach to the database.
3. Declare a section with BEGIN DECLARE SECTION.

4. Use the BASED ON statement to declare a string variable of the appropriate
type.

The following statements show the previous BASED ON declarations in context:

EXEC SQL
SET DATABASE EMP = "enpl oyee. gdb";
EXEC SQL
CONNECT EMP;
EXEC SQL
BEG N DECLARE SECTI ON;
i nt enpno;

BASED ON EMP. FI RSTNAME f nane;
BASED ON EMP. LASTNAME | nane;
EXEC SQL
END DECLARE SECTI ON;

INTERBASE 5

DECLARING AND INITIALIZING DATABASES

) Host-language data structures

If a host language supports data structures, data fields within a structure can correspond
to a collection of database columns. For example, the following C declaration creates a
structure, BILLING_ADDRESS, that contains six variables, or data members, each of which
corresponds to a similarly named column in a table:

struct

{
char fnane[25];
char | nane[25];
char street[30];
char city[20];
char state[3];
char zip[11];

} billing_address;

SQL recognizes data members in structures, but information read from or written to a
structure must be read from or written to individual data members in SQL statements. For
example, the following SQL statement reads data from a table into variables in the C
structure, BILLING_ADDRESS:

EXEC SQL
SELECT FNAME, LNAME, STREET, CITY, STATE, ZIP
I NTO : billing_address.fnane, :billing_address.| nane,
:billing_address.street, :billing_address.city,
:billing_address.state, :billing_address.zip

FROM ADDRESSES WHERE CI TY = "Brighton";

Declaring and initializing databases

An SQL program can access multiple InterBase databases at the same time. Each database
used in a multiple-database program must be declared and initialized before it can be
accessed in SQL transactions. Programs that access only a single database need not
declare the database or assign a database handle if, instead, they specify a database on
the gpre command line.

IMPORTANT ~ DSQL programs cannot connect to multiple databases.
InterBase supports the following SQL statements for handling databases:

® SET DATABASE declares the name of a database to access, and assigns it to a database
handle.

PROGRAMMER'S GUIDE 21

22

CHAPTER 2 APPLICATION REQUIREMENTS

® CONNECT opens a database specified by a handle, and allocates it system resources.

Database handles replace database names in CONNECT statements. They can also be used
to qualify table names within transactions. For a complete discussion of database
handling in SQL programs, see Chapter 3, “Working with Databases.”

Using SET DATABASE

The SET DATABASE statement is used to:

Declare a database handle for each database used in an SQL program.

Associate a database handle with an actual database name. Typically, a database handle
is a mnemonic abbreviation of the actual database name.

SET DATABASE instantiates a host variable for the database handle without requiring an
explicit host variable declaration. The database handle contains a pointer used to
reference the database in subsequent SQL statements. To include a SET DATABASE
statement in a program, use the following syntax:

EXEC SQL
SET DATABASE handl e = "<dbnane>";

A separate statement should be used for each database. For example, the following
statements declare a handle, DB1, for the employee.gdb database, and another handle,
DB2, for employee2.gdb:

EXEC SQL

SET DATABASE DB1
EXEC SQL

SET DATABASE DB2 = "enpl oyee2. gdb";

"enpl oyee. gdb";

Once a database handle is created and associated with a database, the handle can be used
in subsequent SQL database and transaction statements that require it, such as CONNECT.

Note SET DATABASE also supports user name and password options. For a complete
discussion of SET DATABASE options, see Chapter 3, “Working with Databases.”

Using CONNECT

The CONNECT statement attaches to a database, opens the database, and allocates system
resources for it. A database must be opened before its tables can be used. To include
CONNECT in a program, use the following syntax:

INTERBASE 5

DECLARING AND INITIALIZING DATABASES

EXEC SQL
CONNECT hand| e;

A separate statement can be used for each database, or a single statement can connect to
multiple databases. For example, the following statements connect to two databases:

EXEC SQL
CONNECT DB1,;
EXEC SQL
CONNECT DB2;
The next example uses a single CONNECT to establish both connections:

EXEC SQL
CONNECT DB1, DB2;

Once a database is connected, its tables can be accessed in subsequent transactions. Its
handle can qualify table names in SQL applications, but not in DSQL applications. For a
complete discussion of CONNECT options and using database handles, see Chapter 3,
“Working with Databases.”

Working with a single database

In single-database programs preprocessed without the gpre -m switch, SET DATABASE and
CONNECT are optional. The -m switch suppresses automatic generation of transactions.
Using SET DATABASE and CONNECT is strongly recommended, however, especially as a way
to make program code as self-documenting as possible. If you omit these statements, take
the following steps:

1. Insert a section declaration in the program code where global variables are
defined. Use an empty section declaration if no host-language variables are
used in the program. For example, the following declaration illustrates an
empty section declaration:

EXEC SQL
BEG N DECLARE SECTI ON,
EXEC SQL
END DECLARE SECTI ON,
2. Specify a database name on the gpre command line at precompile time. A
database need not be specified if a program contains a CREATE DATABASE
statement.

For more information about working with a single database in an SQL program, see
Chapter 3, “Working with Databases.”

PROGRAMMER'S GUIDE 23

CHAPTER 2 APPLICATION REQUIREMENTS

SQL statements

An SQL application consists of a program written in a host language, like C or C++, into
which SQL and dynamic SQL (DSQL) statements are embedded. Any SQL or DSQL
statement supported by InterBase can be embedded in a host language. Each SQL or
DSQL statement must be:

® Preceded by the keywords EXEC SQL.

® Ended with the statement terminator expected by the host language. For example, in C
and C++, the host terminator is the semicolon (;).

For a complete list of SQL and DSQL statements supported by InterBase, see the
Language Reference.

Error handling and recovery

Every time an SQL statement is executed, it returns an error code in the SQLCODE variable.
SQLCODE is declared automatically for SQL programs during preprocessing with gpre. To
catch run-time errors and recover from them when possible, SQLCODE should be
examined after each SQL operation.

SQL provides the WHENEVER statement to monitor SQLCODE and direct program flow to
recovery procedures. Alternatively, SQLCODE can be tested directly after each SQL
statement executes. For a complete discussion of SQL error handling and recovery, see
Chapter 13, “Error Handling and Recovery.”

Closing transactions

Every transaction should be closed when it completes its tasks, or when an error occurs
that prevents it from completing its tasks. Failure to close a transaction before a program
ends can cause limbo transactions, where records are entered into the database, but are
neither committed or rolled back. Limbo transactions can be cleaned up using the
database administration tools provided with InterBase.

24 INTERBASE 5

CLOSING TRANSACTIONS

Accepting changes

The COMMIT statement ends a transaction, makes the transaction’s changes available to
other users, and closes cursors. A COMMIT is used to preserve changes when all of a
transaction’s operations are successful. To end a transaction with COMMIT, use the
following syntax:

EXEC SQL
COW T TRANSACTI ON nane,
For example, the following statement commits a transaction named MYTRANS:
EXEC SQL
COM T TRANSACTI ON MYTRANS;

For a complete discussion of SQL transaction control, see Chapter 4, “Working with
Transactions.”

Undoing changes

The ROLLBACK statement undoes a transaction’s changes, ends the current transaction,
and closes open cursors. Use ROLLBACK when an error occurs that prevents all of a
transaction’s operations from being successful. To end a transaction with ROLLBACK, use
the following syntax:

EXEC SQL
ROLLBACK TRANSACTI ON nane;
For example, the following statement rolls back a transaction named MYTRANS:
EXEC SQL
ROLLBACK TRANSACTI ON MYTRANS;
To roll back an unnamed transaction (i.e., the default transaction), use the following
statement:
EXEC SQL
ROLLBACK;

For a complete discussion of SQL transaction control, see Chapter 4, “Working with
Transactions.”

PROGRAMMER'S GUIDE 25

CHAPTER 2 APPLICATION REQUIREMENTS

Closing databases

Once a database is no longer needed, close it before the program ends, or subsequent
attempts to use the database may fail or result in database corruption. There are two ways
to close a database:

= Use the DISCONNECT statement to detach a database and close files.
= Use the RELEASE option with COMMIT or ROLLBACK in a program.
DISCONNECT, COMMIT RELEASE, and ROLLBACK RELEASE perform the following tasks:
® Close open database files.
= Close remote database connections.

= Release the memory that holds database descriptions and InterBase engine-compiled
requests.

Note Closing databases with DISCONNECT is preferred for compatibility with the SQL-92
standard.

For a complete discussion of closing databases, see Chapter 3, “Working with
Databases.”

DSQL requirements

26

DSQL applications must adhere to all the requirements for all SQL applications and meet
additional requirements as well. DSQL applications enable users to enter ad hoc SQL
statements for processing at run time. To handle the wide variety of statements a user
might enter, DSQL applications require the following additional programming steps:

® Declare as many extended SQL descriptor areas (XSQLDAs) as are needed in the
application; typically a program must use one or two of these structures. Complex
applications may require more.

® Declare all transaction names and database handles used in the program at compile time;
names and handles are not dynamic, so enough must be declared to accommodate the
anticipated needs of users at run time.

® Provide a mechanism to get SQL statements from a user.

® Prepare each SQL statement received from a user for processing.
PREPARE loads statement information into the XSQLDA.

® EXECUTE each prepared statement.

INTERBASE 5

DSQL REQUIREMENTS

EXECUTE IMMEDIATE combines PREPARE and EXECUTE in a single statement. For more
information, see the Language Reference.

In addition, the syntax for cursors involving Blob data differs from that of cursors for
other datatypes. For more information about Blob cursor statements, see the Language
Reference.

Declaring an XSQLDA

The extended SQL descriptor area (XSQLDA) is used as an intermediate staging area for
information passed between an application and the InterBase engine. The XSQLDA is used
for either of the following tasks:

Pass input parameters from a host-language program to SQL.

Pass output, from a SELECT statement or stored procedure, from SQL to the host-language
program.

A single XSQLDA can be used for only one of these tasks at a time. Many applications
declare two XSQLDAs, one for input, and another for output.

The XSQLDA structure is defined in the InterBase header file, ibase.b, that is automatically
included in programs when they are preprocessed with gpre.

Note DSQL applications written using versions of InterBase prior to 3.3 use an older SQL
descriptor area, the SQLDA. For backward compatibility, the SQLDA continues to be
supported. You can examine its structure in ibase.h. The new structure, XSQLDA, is used
automatically when preprocessing an application with gpre. To use the old structure,
specify the gpre-sqlda old switch. As convenient, older applications should be modified to
use the XSQLDA.

To create an XSQLDA for a program, a host-language datatype of the appropriate type must
be set up in a section declaration. For example, the following statement creates two
XSQLDA structures, inxsqlda, and outxsqlda:

EXEC SQL
BEG N DECLARE SECTI ON,
XSQLDA i nxsql da;
XSQLDA out xsql da;

EXEC SQL
END DECLARE SECTI ON;

PROGRAMMER'S GUIDE 27

CHAPTER 2 APPLICATION REQUIREMENTS

When an application containing XSQLDA declarations is preprocessed, gpre automatically
includes the header file, ibase.h, which defines the XSQLDA as a host-language datatype.
For a complete discussion of the structure of the XSQLDA, see Chapter 14, “Using
Dynamic SQL.”

DSQL limitations

28

DSQL enables programmers to create flexible applications that are capable of handling a
wide variety of user requests. Even so, not every SQL statement can be handled in a
completely dynamic fashion. For example, database handles and transaction names must
be specified when an application is written, and cannot be changed or specified by users
at run time. Similarly, while InterBase supports multiple databases and multiple
simultaneous transactions in an application, the following limitations apply:

Only a single database can be accessed at a time.
Transactions can only operate on the currently active database.

Users cannot specify transaction names in DSQL statements; instead, transaction names
must be supplied and manipulated when an application is coded.

Using database handles

Database handles are always static, and can only be declared when an application is
coded. Enough handles must be declared to satisfy the expected needs of users. Once a
handle is declared, it can be assigned to a user-specified database at run time with SET
DATABASE, as in the following C code fragment:

EXEC SQL

SET DATABASE DBL = "dummydb. gdb";
EXEC SQL

SET DATABASE DB2 = "dummydb. gdb";

printf("Specify first database to open: ");
get s(fnanel);
printf("\nSpecify second database to open: ");
get s(fnanme2);
EXEC SQL

SET DATABASE DBl = :fnanel;
EXEC SQL

INTERBASE 5

DSQL LIMITATIONS

SET DATABASE DB2 = :fnane2;

For a complete discussion of SET DATABASE, see Chapter 3, “Working with Databases.”

Using the active database

A DSQL application can only work with one database at a time, even if the application
attaches to multiple databases. All DSQL statements operate only on the currently active
database, the last database associated with a handle in a SET DATABASE statement.

Embedded SQL statements within a DSQL application can operate on any open database.
For example, all DSQL statements entered by a user at run time might operate against a
single database specified by the user, but the application might also contain non-DSQL
statements that record user entries in a log database.

For a complete discussion of SET DATABASE, see Chapter 3, “Working with Databases.”

Using transaction names

Many SQL statements support an optional transaction name parameter, used to specify
the controlling transaction for a specific statement. Transaction names can be used in
DSQL applications, too, but must be set up when an application is compiled. Once a
name is declared, it can be directly inserted into a user statement only by the application
itself.

After declaration, use a transaction name in an EXECUTE or EXECUTE IMMEDIATE statement
to specify the controlling transaction, as in the following C code fragment:

EXEC SQL
BEG N DECLARE SECTI ON:
long first, second; /* declare transaction names */
EXEC SQL
END DECLARE SECTI ON;

first = second = OL; /* initialize names to zero */
EXEC SQL
SET TRANSACTION first; /* start transaction 1 */

EXEC SQL
SET TRANSACTI ON second; /* start transaction 2 */

PROGRAMMER'S GUIDE 29

CHAPTER 2 APPLICATION REQUIREMENTS

printf("\nSQ> ");
gets(userstatenent);
EXEC SQL
EXECUTE | MVEDI ATE TRANSACTI ON first userstatenent;

For complete information about named transactions, see Chapter 4, “Working with
Transactions.”

Preprocessing programs

30

After an SQL or DSQL program is written, and before it is compiled and linked, it must
be preprocessed with gpre, the InterBase preprocessor. gpre translates SQL statements and
variables into statements and variables that the host-language compiler accepts. For
complete information about preprocessing with gpre, see Chapter 15, “Preprocessing,
Compiling, and Linking.”

INTERBASE 5

CHAPTER

Working with Databases

This chapter describes how to use SQL statements in embedded applications to control
databases. There are three database statements that set up and open databases for access:

B SET DATABASE declares a database handle, associates the handle with an actual database
file, and optionally assigns operational parameters for the database.

® SET NAMES optionally specifies the character set a client application uses for CHAR,
VARCHAR, and text Blob data. The server uses this information to transliterate from a
database’s default character set to the client’s character set on SELECT operations, and to
transliterate from a client application’s character set to the database character set on
INSERT and UPDATE operations.

® CONNECT opens a database, allocates system resources for it, and optionally assigns
operational parameters for the database.

All databases must be closed before a program ends. A database can be closed by using
DISCONNECT, or by appending the RELEASE option to the final COMMIT or ROLLBACK in a
program.

Declaring a database

Before a database can be opened and used in a program, it must first be declared with
SET DATABASE to:

PROGRAMMER'S GUIDE 31

32

CHAPTER 3 WORKING WITH DATABASES

® Establish a database handle.
= Associate the database handle with a database file stored on a local or remote node.

A database handle is a unique, abbreviated alias for an actual database name. Database
handles are used in subsequent CONNECT, COMMIT RELEASE, and ROLLBACK RELEASE
statements to specify which databases they should affect. Except in dynamic SQL (DSQL)
applications, database handles can also be used inside transaction blocks to qualify, or
differentiate, table names when two or more open databases contain identically named
tables.

Each database handle must be unique among all variables used in a program. Database
handles cannot duplicate host-language reserved words, and cannot be InterBase
reserved words.

The following statement illustrates a simple database declaration:

EXEC SQL
SET DATABASE DB1 = "enpl oyee. gdb";

This database declaration identifies the database file, employee.gdb, as a database the
program uses, and assigns the database a handle, or alias, DB1.

If a program runs in a directory different from the directory that contains the database
file, then the file name specification in SET DATABASE must include a full path name, too.
For example, the following SET DATABASE declaration specifies the full path to
employee.gdb:
EXEC SQL

SET DATABASE DB1 = "/int erbase/ exanpl es/ enpl oyee. gdb";

If a program and a database file it uses reside on different hosts, then the file name
specification must also include a host name. The following declaration illustrates how a
Unix host name is included as part of the database file specification on a TCP/IP network:

EXEC SQL
SET DATABASE DB1 = "jupiter:/usr/interbase/ exanpl es/ enpl oyee. gdb";
On a Windows network that uses the Netbeui protocol, specify the path as follows:

EXEC SQL
SET DATABASE DB1 = "//venus/ C. /I nterbasel/ exanpl es/ enpl oyee. gdb";

Declaring multiple databases

An SQL program, but not a DSQL program, can access multiple databases at the same
time. In multi-database programs, database handles are required. A handle is used to:

INTERBASE 5

DECLARING A DATABASE

IMPORTANT

PROGRAMMER'S GUIDE

= Reference individual databases in a multi-database transaction.

® Qualify table names.

® Specify databases to open in CONNECT statements.

® Indicate databases to close with DISCONNECT, COMMIT RELEASE, and ROLLBACK RELEASE.

DSQL programs can access only a single database at a time, so database handle use is
restricted to connecting to and disconnecting from a database.

In multi-database programs, each database must be declared in a separate SET DATABASE
statement. For example, the following code contains two SET DATABASE statements:

EXEC SQL

SET DATABASE DB2
EXEC SQL

SET DATABASE DB1 = "enpl oyee. gdb";

"enpl oyee2. gdb";

» Using handles for table names

When the same table name occurs in more than one simultaneously accessed database,
a database handle must be used to differentiate one table name from another. The
database handle is used as a prefix to table names, and takes the form handle.table.

For example, in the following code, the database handles, TEST and EMP, are used to
distinguish between two tables, each named EMPLOYEE:

EXEC SQL
DECLARE | DMATCH CURSOR FOR
SELECT TESTNO | NTO : mat chi d FROM TEST. EMPLOYEE
WHERE TESTNO > 100;
EXEC SQL
DECLARE EI DVATCH CURSCR FOR
SELECT EMPNO | NTO : enpi d FROM EMP. EMPLOYEE
WHERE EMPNO = : nat chi d;

This use of database handles applies only to embedded SQL applications. DSQL
applications cannot access multiple databases simultaneously.

33

IMPORTANT

34

CHAPTER 3 WORKING WITH DATABASES

» Using handles with operations

In multi-database programs, database handles muust be specified in CONNECT statements
to identify which databases among several to open and prepare for use in subsequent
transactions.

Database handles can also be used with DISCONNECT, COMMIT RELEASE, and ROLLBACK
RELEASE to specify a subset of open databases to close.

To open and prepare a database with CONNECT, see “Opening a database” on page 37.
To close a database with DISCONNECT, COMMIT RELEASE, or ROLLBACK RELEASE, see
“Closing a database” on page 45. To learn more about using database handles in
transactions, see “Accessing an open database” on page 44.

Preprocessing and run time databases

Normally, each SET DATABASE statement specifies a single database file to associate with a
handle. When a program is preprocessed, gpre uses the specified file to validate the
program’s table and column references. Later, when a user runs the program, the same
database file is accessed. Different databases can be specified for preprocessing and run
time when necessary.

» Using the COMPILETIME clause

A program can be designed to run against any one of several identically structured
databases. In other cases, the actual database that a program will use at runtime is not
available when a program is preprocessed and compiled. In such cases, SET DATABASE can
include a COMPILETIME clause to specify a database for gpre to test against during
preprocessing. For example, the following SET DATABASE statement declares that
employee.gdb is to be used by gpre during preprocessing:

EXEC SQL
SET DATABASE EMP = COMPI LETI ME "enpl oyee. gdb";

The file specification that follows the COMPILETIME keyword must always be a
hard-coded, quoted string.

When SET DATABASE uses the COMPILETIME clause, but no RUNTIME clause, and does not
specify a different database file specification in a subsequent CONNECT statement, the
same database file is used both for preprocessing and run time. To specify different
preprocessing and runtime databases with SET DATABASE, use both the COMPILETIME and
RUNTIME clauses.

INTERBASE 5

DECLARING A DATABASE

) Using the RUNTIME clause

When a database file is specified for use during preprocessing, SET DATABASE can specify
a different database to use at run time by including the RUNTIME keyword and a runtime
file specification:

EXEC SQL
SET DATABASE EMP = COWPI LETI ME "enpl oyee. gdb"
RUNTI ME " enpl oyee2. gdb";

The file specification that follows the RUNTIME keyword can be either a hard-coded,
quoted string, or a host-language variable. For example, the following C code fragment
prompts the user for a database name, and stores the name in a variable that is used later
in SET DATABASE:

char db_nane[125];

printf("Enter the desired database name, including node and
path):\n");
get s(db_nan®);
EXEC SQL
SET DATABASE EMP = COWPI LETI ME "enpl oyee. gdb" RUNTI ME : db_nane;

Note Host-language variables in SET DATABASE must be preceded, as always, by a colon.

Controlling SET DATABASE scope

By default, SET DATABASE creates a handle that is global to all modules in an application.
A global handle is one that may be referenced in all host-language modules comprising
the program. SET DATABASE provides two optional keywords to change the scope of a
declaration:

STATIC limits declaration scope to the module containing the SET DATABASE statement. No
other program modules can see or use a database handle declared STATIC.

® EXTERN notifies gpre that a SET DATABASE statement in a module duplicates a
globally-declared database in another module. If the EXTERN keyword is used, then
another module must contain the actual SET DATABASE statement, or an error occurs
during compilation.

The STATIC keyword is used in a multi-module program to restrict database handle access
to the single module where it is declared. The following example illustrates the use of the
STATIC keyword:

PROGRAMMER'S GUIDE 35

CHAPTER 3 WORKING WITH DATABASES

EXEC SQL
SET DATABASE EMP = STATI C "enpl oyee. gdb";

The EXTERN keyword is used in a multi-module program to signal that SET DATABASE in
one module is not an actual declaration, but refers to a declaration made in a different
module. gpre uses this information during preprocessing. The following example
illustrates the use of the EXTERN keyword.:

EXEC SQL
SET DATABASE EMP = EXTERN "enpl oyee. gdb";

If an application contains an EXTERN reference, then when it is used at run time, the
actual SET DATABASE declaration must be processed first, and the database connected
before other modules can access it.

A single SET DATABASE statement can contain either the STATIC or EXTERN keyword, but not
both. A scope declaration in SET DATABASE applies to both
COMPILETIME and RUNTIME databases.

Specifying a connection character set

36

When a client application connects to a database, it may have its own character set
requirements. The server providing database access to the client does not know about
these requirements unless the client specifies them. The client application specifies its
character set requirement using the SET NAMES statement before it connects to the
database.

SET NAMES specifies the character set the server should use when translating data from
the database to the client application. Similarly, when the client sends data to the
database, the server translates the data from the client’s character set to the database’s
default character set (or the character set for an individual column if it differs from the
database’s default character set).

For example, the following statements specify that the client is using the DOS437
character set, then connect to the database:
EXEC SQL

SET NAMES DOS437,

EXEC SQL
CONNECT " eur ope. gdb" USER "JAMES' PASSWORD " U4EEAH' ;

For more information about character sets, see the Data Definition Guide. For the
complete syntax of SET NAMES and CONNECT, see the Language Reference.

INTERBASE 5

OPENING A DATABASE

Opening a database

After a database is declared, it must be attached with a CONNECT statement before it can
be used. CONNECT:

= Allocates system resources for the database.

® Determines if the database file is local, residing on the same host where the application
itself is running, or remote, residing on a different host.

® Opens the database and examines it to make sure it is valid.

InterBase provides transparent access to all databases, whether local or remote. If the
database structure is invalid, the on-disk structure (ODS) number does not correspond to
the one required by InterBase, or if the database is corrupt, InterBase reports an error,
and permits no further access.

Optionally, CONNECT can be used to specify:

= A user name and password combination that is checked against the server’s security
database before allowing the connect to succeed. User names can be up to 31 characters.
Passwords are restricted to 8 characters.

= An SQL role name that the user adopts on connection to the database, provided that the
user has previously been granted membership in the role. Regardless of role
memberships granted, the user belongs to no role unless specified with this ROLE clause.
The client can specify at most one role per connection, and cannot switch roles except
by reconnecting.

= The size of the database buffer cache to allocate to the application when the default cache
size is inappropriate.

Using simple CONNECT statements

In its simplest form, CONNECT requires one or more database parameters, each specifying
the name of a database to open. The name of the database can be a:

® Database handle declared in a previous SET DATABASE statement.
® Host-language variable.

® Hard-coded file name.

» Using a database handle

If a program uses SET DATABASE to provide database handles, those handles should be
used in subsequent CONNECT statements instead of hard-coded names. For example,

PROGRAMMER'S GUIDE 37

CHAPTER 3 WORKING WITH DATABASES

EXEC SQL

SET DATABASE DB1
EXEC SQL

SET DATABASE DB2 = "enpl oyee2. gdb";
EXEC SQL

CONNECT DB1;
EXEC SQL

CONNECT DB2;

"enpl oyee. gdb";

There are several advantages to using a database handle with CONNECT:
® Long file specifications can be replaced by shorter, mnemonic handles.

® Handles can be used to qualify table names in multi-database transactions. DSQL
applications do not support multi-database transactions.

® Handles can be reassigned to other databases as needed.

= The number of database cache buffers can be specified as an additional CONNECT
parameter.

For more information about setting the number of database cache buffers, see “Setting
database cache buffers” on page 43.

b Using strings or host-language variables

Instead of using a database handle, CONNECT can use a database name supplied at run
time. The database name can be supplied as either a host-language variable or a
hard-coded, quoted string.

The following C code demonstrates how a program accessing only a single database
might implement CONNECT using a file name solicited from a user at run time:

char fnane[125];
printf("Enter the desired database name, including node and
path):\n");
get s(f name);
EXEC SQL
CONNECT : f nane;

38 INTERBASE 5

OPENING A DATABASE

Tip

This technique is especially useful for programs that are designed to work with many
identically structured databases, one at a time, such as CAD/CAM or architectural
databases.

MULTIPLE DATABASE IMPLEMENTATION

To use a database specified by the user as a host-language variable in a CONNECT
statement in multi-database programs, follow these steps:

1. Declare a database handle using the following SET DATABASE syntax:

EXEC SQL
SET DATABASE handl e = COVPI LETI ME " dbnane";

Here, handle is a hard-coded database handle supplied by the programmer, dbname
is a quoted, hard-coded database name used by gpre during preprocessing.

2. Prompt the user for a database to open.
3. Store the database name entered by the user in a host-language variable.

4. Use the handle to open the database, associating the host-language variable
with the handle using the following CONNECT syntax:

EXEC SQL
CONNECT : vari abl e AS handl e;

The following C code illustrates these steps:

char fnane[125];
EXEC SQL
SET DATABASE DB1 = "enpl oyee. gdb";
printf("Enter the desired database name, including node and
path):\n");
get s(fnane);
EXEC SQL
CONNECT : f nane AS DBL,

In this example, SET DATABASE provides a hard-coded database file name for
preprocessing with gpre. When a user runs the program, the database specified in the
variable, fname, is used instead.

PROGRAMMER'S GUIDE 39

IMPORTANT

40

CHAPTER 3 WORKING WITH DATABASES

» Using a hard-coded database names

IN SINGE-DATABASE PROGRAMS

In a single-database program that omits SET DATABASE, CONNECT st contain a
hard-coded, quoted file name in the following format:

EXEC SQL
CONNECT "[host[path]]fil enane";

host is only required if a program and a database file it uses reside on different nodes.
Similarly, path is only required if the database file does not reside in the current working
directory. For example, the following CONNECT statement contains a hard-coded file name
that includes both a Unix host name and a path name:

EXEC SQL
CONNECT "val dez: usr/int erbase/ exanpl es/ enpl oyee. gdb";

Note Host syntax is specific to each server platform.

A program that accesses multiple databases cannot use this form of CONNECT.

IN MULTI-DATABASE PROGRAMS

A program that accesses multiple databases must declare handles for each of them in
separate SET DATABASE statements. These handles must be used in subsequent CONNECT
statements to identify specific databases to open:

EXEC SQL

SET DATABASE DB1 = "enpl oyee. gdb";
EXEC SQL

SET DATABASE DB2
EXEC SQL

CONNECT DB1;
EXEC SQL

CONNECT DB2;

"enpl oyee2. gdb";

Later, when the program closes these databases, the database handles are no longer in
use. These handles can be reassigned to other databases by hard-coding a file name in a
subsequent CONNECT statement. For example,

EXEC SQL
DI SCONNECT DB1, DB2;
EXEC SQL

INTERBASE 5

OPENING A DATABASE

CONNECT " proj ect.gdb" AS DB1;

Additional CONNECT syntax

CONNECT supports several formats for opening databases to provide programming
flexibility. The following table outlines each possible syntax, provides descriptions and
examples, and indicates whether CONNECT can be used in programs that access single or
multiple databases:

Single Multiple

Syntax Description Example access access
CONNECT “dbfile”; Opens a single, hard-coded database file, EXEC SQL Yes No
dbfile. CONNECT
“employee.gdb”;
CONNECT handle; Opens the database file associated with a EXECSQL Yes Yes

previously declared database handle. Thisis ~ CONNECTEMP;
the preferred CONNECT syntax.

CONNECT “dbfile” AS Opens a hard-coded database file, dbfile,and EXECSQL Yes Yes
handle; assigns a previously declared database handle CONNECT
toit. “employee.gdb”
AS EMP;
CONNECT :varname AS Opens the database file stored in the EXECSQL Yes Yes
handle; host-language variable, varname, and assignsa CONNECT :fname AS
previously declared database handle to it. EMP;

TABLE3.1 CONNECT syntax summary

For a complete discussion of CONNECT syntax and its uses, see the Language Reference.

Attaching to multiple databases

CONNECT can attach to multiple databases. To open all databases specified in previous SET
DATABASE statements, use either of the following CONNECT syntax options:

EXEC SQL
CONNECT ALL;

PROGRAMMER'S GUIDE a4

Tip

CHAPTER 3 WORKING WITH DATABASES

EXEC SQL
CONNECT DEFAULT;

CONNECT can also attach to a specified list of databases. Separate each database request
from others with commas. For example, the following statement opens two databases
specified by their handles:

EXEC SQL
CONNECT DB1, DB2;

The next statement opens two hard-coded database files and also assigns them to
previously declared handles:

EXEC SQL
CONNECT "enpl oyee. gdb" AS DB1, "enpl oyee2.gdb" AS DB2;

Opening multiple databases with a single CONNECT is most effective when a program’s
database access is simple and clear. In complex programs that open and close several
databases, that substitute database names with host-language variables, or that assign
multiple handles to the same database, use separate CONNECT statements to make
program code easier to read, debug, and modify.

Handling CONNECT errors

The WHENEVER statement should be used to trap and handle runtime errors that occur
during database declaration. The following C code fragment illustrates an error-handling
routine that displays error messages and ends the program in an orderly fashion:

EXEC SQL
WHENEVER SQLERROR
GOTO error_exit;

.error_exit
isc_print_sqlerr(sqglcode, status_vector);
EXEC SQL
DI SCONNECT ALL;
exit(1);

For a complete discussion of SQL error handling, see Chapter 13, “Error Handling and
Recovery.”

INTERBASE 5

OPENING A DATABASE

Setting database cache buffers

Besides opening a database, CONNECT can set the number of cache buffers assigned to a
database for that connection. When a program establishes a connection to a database,
InterBase allocates system memory to use as a private buffer. The buffers are used to store
accessed database pages to speed performance. The number of buffers assigned for a
program determine how many simultaneous database pages it can have access to in the
memory pool. Buffers remain assigned until a program finishes with a database.

The default number of database cache buffers assigned to a database is 256. This default
can be changed either for a specific database or for an entire server.

= Use the gfix utility to set a new default cache buffer size for a database. See the
Operations Guide for more information about setting database buffer size with gfix.

® Change the value of DATABASE_CACHE_PAGES in the InterBase configuration file to change
the default cache buffer size on a server-wide basis. Use this option with care, since it
makes it easy to overuse memory or create unusably small caches.

» Setting individual database buffers

For programs that access or change many rows in many databases, performance can
sometimes be improved by increasing the number of buffers. The maximum number of
buffers allowed is system dependent.

® Use the CACHE n parameter with CONNECT to change the number of buffers assigned to a
database for the duration of the connection, where 7 is the number of buffers to reserve.
To set the number of buffers for an individual database, place CACHE # after the database
name. The following CONNECT specifies 500 buffers for the database pointed to by the
EMP handle:

EXEC SQL
CONNECT EMP CACHE 500;

Note If you specify a buffer size that is less than the smallest one currently in use for the

database, the request is ignored.

The next statement opens two databases, TEST and EMP. Because CACHE is not specified
for TEST, its buffers default to 256. EMP is opened with the CACHE clause specifying 400
buffers:

EXEC SQL
CONNECT TEST, EMP CACHE 400;

PROGRAMMER'S GUIDE 43

CHAPTER 3 WORKING WITH DATABASES

» Specifying buffers for all databases

To specify the same number of buffers for all databases, use CONNECT ALL with the CACHE
n parameter. For example, the following statements connect to two databases, EMP, and
EMP2, and allot 400 buffers to each of them:

EXEC SQL

SET DATABASE EMP = "enpl oyee. gdb";
EXEC SQL

SET DATABASE EMP2 = "test.gdb";
EXEC SQL

CONNECT ALL CACHE 400;

The same effect can be achieved by specifying the same amount of cache for individual
databases:
EXEC SQL

CONNECT EMP CACHE 400, TEST CACHE 400;

Accessing an open database

Once a database is connected, its tables can be accessed as follows:
® One database can be accessed in a single transaction.
® One database can be accessed in multiple transactions.
® Multiple databases can be accessed in a single transaction.
® Multiple databases can be accessed in multiple transactions.

For general information about using transactions, see Chapter 4, “Working with
Transactions.”

Differentiating table names

44

In SQL, using multiple databases in transactions sometimes requires extra precautions to
ensure intended behavior. When two or more databases have tables that share the same
name, a database handle must be prefixed to those table names to differentiate them from
one another in transactions.

INTERBASE 5

CLOSING A DATABASE

A table name differentiated by a database handle takes the form:

handl e. tabl e

For example, the following cursor declaration accesses an EMPLOYEE table in TEST, and
another EMPLOYEE table in EMP. TEST and EMP are used as prefixes to indicate which
EMPLOYEE table should be referenced:

EXEC SQL
DECLARE | DVATCH CURSOR FOR

SELECT TESTNO | NTO : mat chi d FROM TEST. EMPLOYEE
WHERE (SELECT EMPNO FROM EMP. EMPLOYEE WHERE EMPNO = TESTNO) ;

Note DSQL does not support access to multiple databases in a single statement.

Closing a database

When a program is finished with a database, the database should be closed. In SQL, a
database can be closed in either of the following ways:

= [ssue a DISCONNECT to detach a database and close files.

= Append a RELEASE option to a COMMIT or ROLLBACK to disconnect from a database and
close files.

DISCONNECT, COMMIT RELEASE, and ROLLBACK RELEASE perform the following tasks:
® Close open database files.
® Disconnect from remote database connections.

® Release the memory that holds database metadata descriptions and InterBase
engine-compiled requests.

Note Closing databases with DISCONNECT is preferred for compatibility with the SQL-92
standard. Do not close a database until it is no longer needed. Once closed, a database
must be reopened, and its resources reallocated, before it can be used again.

With DISCONNECT

To close all open databases by disconnecting from them, use the following DISCONNECT
syntax:

PROGRAMMER'S GUIDE 45

46

CHAPTER 3 WORKING WITH DATABASES

EXEC SQL
DI SCONNECT {ALL | DEFAULT};

For example, each of the following statements closes all open databases in a
program:

EXEC SQL

DI SCONNECT ALL;
EXEC SQL

DI SCONNECT DEFAULT;

To close specific databases, specify their handles as comma-delimited parameters, using
the following syntax:
EXEC SQL
DI SCONNECT handl e [, handle ...];
For example, the following statement disconnects from two databases:
EXEC SQL
DI SCONNECT DB1, DB2;

Note A database should not be closed until all transactions are finished with it, or it must
be reopened and its resources reallocated.

With coMmIT and ROLLBACK

To close all open databases when you COMMIT or ROLLBACK, use the following syntax:
EXEC SQL
{COMWM T | ROLLBACK} RELEASE;
For example, the following COMMIT closes all open databases:
EXEC SQL
COW T RELEASE;
To close specific databases, provide their handles as parameters following the RELEASE
option with COMMIT or ROLLBACK, using the following syntax:
EXEC SQL
COW T | ROLLBACK RELEASE handle [, handle ...];
In the following example, the ROLLBACK statement closes two databases:

EXEC SQL
ROLLBACK RELEASE DB1, DB2;

INTERBASE 5

CLOSING A DATABASE

PROGRAMMER'S GUIDE

47

48

CHAPTER 3 WORKING WITH DATABASES

INTERBASE 5

CHAPTER

Working with Transactions

All SQL data definition and data manipulation statements take place within the context
of a transaction, a set of SQL statements that works to carry out a single task. This chapter
explains how to open, control, and close transactions using the following SQL transaction
management statements:

PROGRAMMER'S GUIDE 49

CHAPTER 4 WORKING WITH TRANSACTIONS

Statement Purpose

SETTRANSACTION Starts a transaction, assigns it a name, and specifies its behavior. The following
behaviors can be specified:

Access mode describes the actions a transaction’s statements can perform.
Lock resolution describes how a transaction should react if a lock conflict occurs.

Isolation level describes the view of the database given a transaction as it relates to
actions performed by other simultaneously occurring transactions.

Table reservation, an optional list of tables to lock for access at the start of the
transaction rather than at the time of explicit reads or writes.

Database specification, an optional list limiting the open databases to which a
transaction may have access.

CoMMIT Saves a transaction’s changes to the database and ends the transaction.

ROLLBACK Undoes a transaction’s changes before they have been committed to the database,
and ends the transaction.

TABLE4.1 SQL transaction management statements

Transaction management statements define the beginning and end of a transaction.
They also control its behavior and interaction with other simultaneously running
transactions that share access to the same data within and across applications.

There are two types of transactions in InterBase:

= ods__trans is a default transaction that InterBase uses when it encounters a statement
requiring a transaction without first finding a SET TRANSACTION statement. A default
behavior is defined for gds__trans, but it can be changed by starting the default
transaction with SET TRANSACTION and specifying alternative behavior as parameters.
Treat gds__trans as a global variable of type isc_tr_bandle.

Note When using the default transaction without explicitly starting it with SET
TRANSACTION, applications must be preprocessed without the gpre -m switch.

® Named transactions are always started with SET TRANSACTION statements. These
statements provide unique names for each transaction, and usually include parameters
that specify a transaction’s behavior.

Except for naming conventions and use in multi-transaction programs, both the default
and named transactions offer the same control over transactions. SET TRANSACTION has
optional parameters for specifying access mode, lock resolution, and isolation level.

INTERBASE 5

STARTING THE DEFAULT TRANSACTION

For more information about gpre, see Chapter 15, “Preprocessing, Compiling,
and Linking.” For more information about transaction behavior, see “Specifying SET
TRANSACTION behavior” on page 56.

Starting the default transaction

If a transaction is started without a specified behavior, the following default behavior is
used:

READ WRI TE WAI T | SOLATI ON LEVEL SNAPSHOT

The default transaction is especially useful for programs that use only a single
transaction. It is automatically started in programs that require a transaction context
where none is explicitly provided. It can also be explicitly started in a program with SET
TRANSACTION.

To learn more about transaction behavior, see “Starting the default transaction” on
page 51.

Starting without SET TRANSACTION

Simple, single transaction programs can omit SET TRANSACTION. The following program
fragment issues a SELECT statement without starting a transaction:

EXEC SQL
SELECT * FROM Cl TI ES
WHERE POPULATI ON > 4000000
ORDER BY POPULATION, Ol TY;

A programmer need only start the default transaction explicitly in a single transaction
program to modify its operating characteristics or when writing a DSQL application that
is preprocessed with the gpre -m switch.

During preprocessing, when gpre encounters a statement, such as SELECT, that requires a
transaction context without first finding a SET TRANSACTION statement, it automatically
generates a default transaction as long as the -m switch is not specified. A default
transaction started by gpre uses a predefined, or default, behavior that dictates how the
transaction interacts with other simultaneous transactions attempting to access the same
data.

PROGRAMMER'S GUIDE 51

CHAPTER 4 WORKING WITH TRANSACTIONS

IMPORTANT ~ DSQL programs should be preprocessed with the gpre-m switch if they start a transaction
through DSQL. In this mode, gpre does not generate the default transaction as needed,
but instead reports an error if there is no transaction.

For more information about transaction behaviors that can be modified, see “Specifying
SET TRANSACTION behavior” on page 56. For more information about using the gpre
-m switch, see Chapter 15, “Preprocessing, Compiling, and Linking.”
Starting with SET TRANSACTION
SET TRANSACTION issued without parameters starts the default transaction, gds__trans,
with the following default behavior:
READ WRI TE WAI T | SOLATI ON LEVEL SNAPSHOT
The following table summarizes these settings:

Parameter Setting Purpose

Access mode READ WRITE Access mode. This transaction can select, insert, update, and

delete data.
Lock resolution ~ WAIT Lock resolution. This transaction waits for locked tables and rows

Isolation level

to be released to see if it can then update them before reporting
alock conflict.

ISOLATION LEVEL SNAPSHOT This transaction receives a stable, unchanging view of the
database as it is at the moment the transaction starts; it never
sees changes made to the database by other active transactions.

TABLE4.2 Default transaction default behavior

52

Note Explicitly starting the default transaction is good programming practice. It makes
a program’s source code easier to understand.

The following statements are equivalent. They both start the default transaction with the
default behavior.

EXEC SQL
SET TRANSACTI ON;
EXEC SQL
SET TRANSACTI ON NAME gds__trans READ WRI TE WAI T | SOLATI ON LEVEL
SNAPSHOT;

INTERBASE 5

STARTING A NAMED TRANSACTION

To start the default transaction, but change its characteristics, SET TRANSACTION must be
used to specify those characteristics that differ from the default. Characteristics that do

not differ from the default can be omitted. For example, the following statement starts

the default transaction for READ ONLY access, WAIT lock resolution, and ISOLATION LEVEL
SNAPSHOT:

EXEC SQL
SET TRANSACTI ON READ ONLY;

As this example illustrates, the NAME clause can be omitted when starting the default
transaction.

IMPORTANT In DSQL, changing the characteristics of the default transaction is accomplished as with
PREPARE and EXECUTE in a manner similar to the one described, but the program must
be preprocessed using the gpre -m switch.

For more information about preprocessing programs with the -m switch, see Chapter 15,
“Preprocessing, Compiling, and Linking.” For more information about transaction
behavior and modification, see “Specifying SET TRANSACTION behavior” on page 56.

Starting a named transaction

A single application can start simultaneous transactions. InterBase extends transaction
management and data manipulation statements to support transaction names, unique
identifiers that specify which transaction controls a given statement among those
transactions that are active.

Transaction names must be used to distinguish one transaction from another in programs
that use two or more transactions at a time. Each transaction started while other
transactions are active requires a unique name and its own SET TRANSACTION statement.
SET TRANSACTION can include optional parameters that modify a transaction’s behavior.

There are four steps for using transaction names in a program:

1. Declare a unique host-language variable for each transaction name. In C and
C++, transaction names should be declared as long pointers.

2. Initialize each transaction name to zero.

3. Use SET TRANSACTION to start each transaction using an available transaction
name.

4. Include the transaction name in subsequent transaction management and
data manipulation statements that should be controlled by a specified
transaction.

PROGRAMMER'S GUIDE 53

IMPORTANT

54

CHAPTER 4 WORKING WITH TRANSACTIONS

Using named transactions in dynamic SQL statements is somewhat different. For
information about named transactions in DSQL, see “Working with multiple
transactions in DSQL” on page 79.

For additional information about creating multiple transaction programs, see “Working
with multiple transactions” on page 76.

Naming transactions

A transaction name is a programmer-supplied variable that distinguishes one transaction
from another in SQL statements. If transaction names are not used in SQL statements that
control transactions and manipulate data, then those statements operate only on the
default transaction, gds__trans.

The following C code declares and initializes two transaction names using the
isc_tr_handle datatype. It then starts those transactions in SET TRANSACTION statements.

EXEC SQL
BEG N DECLARE SECTI ON,
isc_tr_handle t1, t2; /* declare transaction nanes */
EXEC SQL
END DECLARE SECTI ON,

tl =t2 = (isc_tr_handle) NULL; /* initialize names to zero */
EXEC SQL
SET TRANSACTION NAME t1; /* start trans. w. default behavior */

EXEC SQL
SET TRANSACTI ON NAME t2; /* start trans2. w. default behavior */

Each of these steps is fully described in the following sections.

A transaction name can be included as an optional parameter in any data manipulation
and transaction management statement. In multi-transaction programs, omitting a
transaction name causes a statement to be executed for the default transaction,
gds__trans.

For more information about using transaction names with data manipulation statements,
see Chapter 6, “Working with Data.”

INTERBASE 5

STARTING A NAMED TRANSACTION

» Declaring transaction names

Transaction names must be declared before they can be used. A name is declared as a
host-language pointer. In C and C++, transaction names should be declared as long
pointers.

The following code illustrates how to declare two transaction names:

EXEC SQL
BEG N DECLARE SECTI ON,
isc_tr_handle t1;
isc_tr_handle t2;
EXEC SQL
END DECLARE SECTI ON,

Note In this example, the transaction declaration occurs within an SQL section
declaration. While InterBase does not require that host-language variables occur within
a section declaration, putting them there guarantees compatibility with other SQL
implementations that do require section declarations.

Transaction names are usually declared globally at the module level. If a transaction
name is declared locally, ensure that:

® The transaction using the name is completely contained within the function where the
name is declared. Include an error-handling routine to roll back transactions when errors
occur. ROLLBACK releases a transaction name, and sets its value to NULL.

® The transaction name is not used outside the function where it is declared.

To reference a transaction name declared in another module, provide an external
declaration for it. For example, in C, the external declaration for #7 and 2 might be as
follows:

EXEC SQL
BEG N DECLARE SECTI ON,
extern isc_tr_handle t1, t2;
EXEC SQL
END DECLARE SECTI ON,

y Initializing transaction names

Once transaction names are declared, they should be initialized to zero before being used
for the first time. The following C code illustrates how to set a starting value for two
declared transaction names:

tl=t2=(isc_tr_handle) NULL; /* initialize transaction nanes to zero
*/

PROGRAMMER'S GUIDE 55

CHAPTER 4 WORKING WITH TRANSACTIONS

Once a transaction name is declared and initialized, it can be used to:

® Start and name a transaction. Using a transaction name for all transactions except for the
default transaction is required if a program runs multiple, simultaneous transactions.

® Specify which transactions control data manipulation statements. Transaction names are
required in multi-transaction programs, unless a statement affects only the default
transaction.

= Commit or roll back specific transactions in a multi-transaction program.

Specifying SET TRANSACTION behavior

Use SET TRANSACTION to start a named transaction, and optionally specify its behavior.
The syntax for starting a named transaction using default behavior is:

SET TRANSACTI ON NAME nane;

For a summary of the default behavior for a transaction started without specifying
behavior parameters, see table 4.2 on page 52. The following statements are equivalent:
they both start the transaction named #1, using default transaction behavior.

EXEC SQL
SET TRANSACTI ON NAME t 1;
EXEC SQL
SET TRANSACTI ON NAME t1 READ WRI TE WAI T | SOLATI ON LEVEL SNAPSHOT;

The following table lists the optional SET TRANSACTION parameters for specifying the
behavior of the default transaction:

Parameter Setting Purpose

Access Mode READ ONLY or READ WRITE Describes the type of access this transaction is
permitted for a table. For more information about
access mode, see “Access mode” on page 58.

Lock WAIT or NO WAIT Specifies what happens when this transaction

Resolution encounters a locked row during an update or delete. It
either waits for the lock to be released so it can
attempt to complete its actions, or it returns an
immediate lock conflict error message. For more
information about lock resolution, see “Lock
resolution” on page 65.

TABLE4.3 SET TRANSACTION parameters

56 INTERBASE 5

STARTING A NAMED TRANSACTION

Parameter Setting Purpose

Isolation Level ~ SNAPSHOT provides a view of the database at Determines this transaction’s interaction with other
the moment this transaction starts, but simultaneous transactions attempting to access the
prevents viewing changes made by other same tables.
active transactions. READ COMMITTED isolation level also enables a user to
SNAPSHOT TABLE STABILITY prevents other specify which version of a row it can read. There are

transactions from making changes to tables two options:

that this transaction is reading and updating, - . gecorp_veRsion: the transaction immediately reads
but permits them to read rows in the table. he Jatest committed version of a requested row,
READ COMMITTED reads the most recently even if a more recent uncommitted version also
committed version of a row during updates resides on disk.

and deletions, and allows this transaction to « No RECORD_VERSION: if an uncommitted version of the

make changes if there is no update conflict requested row is present and waiT lock resolution is

with other transactions. specified, the transaction waits until the committed
version of the row is also the latest version; if NO WAIT
is specified, the transaction immediately returns an
error (“deadlock”) if the committed version is not the
most recent version.

Table RESERVING Specifies a subset of available tables to lock
Reservation immediately for this transaction to access.
Database USING Specifies a subset of available databases that this
Specification transaction can access; it cannot access any other

databases. The purpose of this option is to reduce the
amount of system resources used by this transaction.

Note: USING is not available in DsQL.

TABLE43 SETTRANSACTION parameters (continued)

The complete syntax of SET TRANSACTION is:

EXEC SQL
SET TRANSACTI ON [NAME nane]
[READ WRI TE| READ ONLY]
[VAIT | NO WAIT]
[[| SOLATI ON LEVEL] {SNAPSHOT [TABLE STABI LI TY]
| READ COMM TTED [[NO| RECORD VERSI ON] }]
[RESERVI NG <reservi ng_cl ause>
| USING dbhandl e [, dbhandle ...]];
<reserving_clause> = table [, table ...]
[FOR [SHARED | PROTECTED] {READ | WRITE}] [, <reserving_ cl ause>]

PROGRAMMER'S GUIDE

57

58

Tip

CHAPTER 4 WORKING WITH TRANSACTIONS

Transaction options are fully described in the following sections.

b Access mode

The access mode parameter specifies the type of access a transaction has for the tables it
uses. There are two possible settings:

® READ ONLY specifies that a transaction can select data from a table, but cannot insert,
update, or delete table data.

® READ WRITE specifies that a transaction can select, insert, update, and delete table data.
This is the default setting if none is specified.

InterBase assumes that most transactions both read and write data. When starting a
transaction for reading and writing, READ WRITE can be omitted from SET TRANSACTION
statement. For example, the following statements start a transaction, ¢7, for READ WRITE
access:

EXEC SQL
SET TRANSACTI ON NAME t 1;
EXEC SQL
SET TRANSACTI ON NAME t1 READ WRI TE;

It is good programming practice to specify a transaction’s access mode, even when it is
READ WRITE. It makes an application’s source code easier to read and debug because the
program’s intentions are clearly spelled out.

Start a transaction for READ ONLY access when you only need to read data. READ ONLY
must be specified. For example, the following statement starts a transaction, ¢1, for
read-only access:

EXEC SQL
SET TRANSACTI ON NAME t1 READ ONLY:

» Isolation level

The isolation level parameter specifies the control a transaction exercises over table
access. It determines the:

= View of a database the transaction can see.

= Table access allowed to this and other simultaneous transactions.

INTERBASE 5

STARTING A NAMED TRANSACTION

The following table describes the three isolation levels supported by InterBase:

Isolation level Purpose

SNAPSHOT Provides a stable, committed view of the database at the time the transaction starts; this
is the defaultisolation level. Other simultaneous transactions can UPDATE and INSERT rows,
but this transaction cannot see those changes. For updated rows, this transaction sees
versions of those rows as they existed at the start of the transaction. If this transaction
attempts to update or delete rows changed by another transaction, an update conflict is
reported.

SNAPSHOT TABLE STABILITY Provides a transaction sole insert, update, and delete access to the tables it uses. Other
simultaneous transactions may still be able to select rows from those tables.

READ COMMITTED Enables the transaction to see all committed data in the database, and to update rows
updated and committed by other simultaneous transactions without causing lost update
problems.

TABLE4.4 ISOLATION LEVEL options

The isolation level for most transactions should be either SNAPSHOT or READ COMMITTED.
These levels enable simultaneous transactions to select, insert, update, and delete data in
shared databases, and they minimize the chance for lock conflicts. Lock conflicts occur

in two situations:

® When a transaction attempts to update a row already updated or deleted by another

transaction. A row updated by a transaction is effectively locked for update to all other

transactions until the controlling transaction commits or rolls back. READ COMMITTED

transactions can read and update rows updated by simultaneous transactions after they

commit.

® When a transaction attempts to insert, update, or delete a row in a table locked by another
transaction with an isolation level of SNAPSHOT TABLE STABILITY. SNAPSHOT TABLE STABILITY

locks entire tables for write access, although concurrent reads by other SNAPSHOT and
READ COMMITTED transactions are permitted.

Using SNAPSHOT TABLE STABILITY guarantees that only a single transaction can make

changes to tables, but increases the chance of lock conflicts where there are simultaneous

transactions attempting to access the same tables. For more information about the
likelihood of lock conflicts, see “Isolation level interactions” on page 64.

COMPARING SNAPSHOT, READ COMMITTED,
AND SNAPSHOT TABLE STABILITY

There are five classic problems all transaction management statements must address:

PROGRAMMER'S GUIDE

59

CHAPTER 4 WORKING WITH TRANSACTIONS

® Lost updates, which can occur if an update is overwritten by a simultaneous transaction
unaware of the last updates made by another transaction.

® Dirty reads, which can occur if the system allows one transaction to select uncommitted
changes made by another transaction.

® Non-reproducible reads, which can occur if one transaction is allowed to update or
delete rows that are repeatedly selected by another transaction. READ COMMITTED
transactions permit non-reproducible reads by design, since they can see committed
deletes made by other transactions.

® Phantom rows, which can occur if one transaction is allowed to select some, but not all,
new rows written by another transaction. READ COMMITTED transactions do not prevent
phantom rows.

= Update side effects, which can occur when row values are interdependent, and their
dependencies are not adequately protected or enforced by locking, triggers, or integrity
constraints. These conflicts occur when two or more simultaneous transactions randomly
and repeatedly access and update the same data; such transactions are called interleaved
transactions.

Except as noted, all three InterBase isolation levels control these problems. The following
table summarizes how a transaction with a particular isolation level controls access to its
data for other simultaneous transactions:

Problem SNAPSHOT, READ COMMITTED SNAPSHOT TABLE STABILITY

Lost updates Other transactions cannot update rows Other transactions cannot update tables
already updated by this transaction. controlled by this transaction.

Dirty reads Other SNAPSHOT transactions can only reada Other transactions cannot access tables
previous version of a row updated by this updated by this transaction.
transaction.

Other READ COMMITTED transactions can only
read a previous version, or committed
updates.

TABLE4.5 InterBase management of classic transaction conflicts

60

INTERBASE 5

STARTING A NAMED TRANSACTION

Problem

SNAPSHOT, READ COMMITTED

SNAPSHOT TABLE STABILITY

Non-reproducible
reads

Phantom rows

SNAPSHOT and SNAPSHOT TABLE STABILITY
transactions can only read versions of rows
committed when they started.

READ COMMITTED transactions must expect that
reads cannot be reproduced.

READ COMMITTED transactions may encounter
phantom rows.

SNAPSHOT and SNAPSHOT TABLE STABILITY
transactions can only read versions of rows
committed when they started.

Other transactions cannot access tables
updated by this transaction.

Other transactions cannot access tables
controlled by this transaction.

Update side effects ~ Other SNAPSHOT transactions can onlyreada Other transactions cannot update tables
previous version of a row updated by this controlled by this transaction.
transaction. Use triggers and integrity constraints to avoid
Other READ COMMITTED transactions canonly any problems with interleaved transactions.
read a previous version, or committed
updates.
Use triggers and integrity constraints to try to
avoid any problems with interleaved
transactions.

TABLE4.5 InterBase management of classic transaction conflicts (continued)

CHOOSING BETWEEN SNAPSHOT AND READ COMMITTED

The choice between SNAPSHOT and READ COMMITTED isolation levels depends on an
application’s needs. SNAPSHOT is the default InterBase isolation level. READ COMMITTED

duplicates SNAPSHOT behavior, but can read subsequent changes committed by other

transactions. In many cases, using READ COMMITTED reduces data contention.

SNAPSHOT transactions receive a stable view of a database as it exists the moment the

transactions start. READ COMMITTED transactions can see the latest committed versions of

rows. Both types of transactions can use SELECT statements unless they encounter the

following conditions:

® Table locked by SNAPSHOT TABLE STABILITY transaction for UPDATE.

® Uncommitted inserts made by other simultaneous transactions. In this case, a SELECT is
allowed, but changes cannot be seen.

READ COMMITTED transactions can read the latest committed version of rows. A SNAPSHOT
transaction can read only a prior version of the row as it existed before the update
occurred.

PROGRAMMER'S GUIDE

61

62

Tip

CHAPTER 4 WORKING WITH TRANSACTIONS

SNAPHOT and READ COMMITTED transactions with READ WRITE access can use INSERT,
UPDATE, and DELETE unless they encounter tables locked by SNAPSHOT TABLE STABILITY
transactions.

SNAPSHOT transactions cannot update or delete rows previously updated or deleted and
then committed by other simultaneous transactions. Attempting to update a row
previously updated or deleted by another transaction results in an update conflict error.

A READ COMMITTED READ WRITE transaction can read changes committed by other
transactions, and subsequently update those changed rows.

Occasional update conflicts may occur when simultaneous SNAPSHOT and READ
COMMITTED transactions attempt to update the same row at the same time. When update
conflicts occur, expect the following behavior:

For mass or searched updates, updates where a single UPDATE modifies multiple rows in
a table, all updates are undone on conflict. The UPDATE can be retried. For READ
COMMITTED transactions, the NO RECORD_VERSION option can be used to narrow the
window between reads and updates or deletes. For more information, see “Starting a
transaction with READ COMMITTED isolation level” on page 63.

For cursor or positioned updates, where rows are retrieved and updated from an active
set one row at a time, only a single update is undone. To retry the update, the cursor must
be closed, then reopened, and updates resumed at the point of previous conflict.

For more information about UPDATE through cursors, see Chapter 6, “Working with
Data.”

STARTING A TRANSACTION WITH SNAPSHOT ISOLATION LEVEL

InterBase assumes that the default isolation level for transactions is SNAPSHOT. Therefore,
SNAPSHOT need not be specified in SET TRANSACTION to set the isolation level. For
example, the following statements are equivalent. They both start a transaction, ¢1, for
READ WRITE access and set isolation level to SNAPSHOT.

EXEC SQL
SET TRANSACTI ON NAME t 1;

EXEC SQL
SET TRANSACTI ON NAME t1 READ WRI TE SNAPSHOT;

When an isolation level is specified, it must follow the access and lock resolution modes.

It is good programming practice to specify a transaction’s isolation level, even when it is
SNAPSHOT. It makes an application’s source code easier to read and debug because the
program’s intentions are clearly spelled out.

INTERBASE 5

STARTING A NAMED TRANSACTION

STARTING A TRANSACTION WITH READ COMMITTED ISOLATION LEVEL

To start a READ COMMITTED transaction, the isolation level must be specified. For example,
the following statement starts a named transaction, £1, for READ WRITE access and sets
isolation level to READ COMMITTED:

EXEC SQL
SET TRANSACTI ON NAME t1 READ WRI TE READ COWM TTED;

Isolation level always follows access mode. If the access mode is omitted, isolation level
is the first parameter to follow the transaction name.

READ COMMITTED supports mutually exclusive optional parameters, RECORD_VERSION and
NO RECORD_VERSION, which determine the READ COMMITTED behavior when it encounters
a row where the latest version of that row is uncommitted:

RECORD_VERSION specifies that the transaction immediately reads the latest committed
version of a row, even if a more recent uncommitted version also resides on disk.

NO RECORD_VERSION, the default, specifies that the transaction can only read the latest
version of a requested row. If the WAIT lock resolution option is also specified, then the
transaction waits until the latest version of a row is committed or rolled back, and retries
its read. If the NO WAIT option is specified, the transaction returns an immediate
deadlock error.

Because NO RECORD_VERSION is the default behavior, it need not be specified with READ
COMITTED. For example, the following statements are equivalent. They start a named
transaction, #1, for READ WRITE access and set isolation level to READ COMMITTED NO
RECORD_VERSION.

EXEC SQL
SET TRANSACTI ON NAME t1 READ WRI TE READ COMM TTED;
EXEC SQL
SET TRANSACTI ON NAME t1 READ WRI TE READ COMM TTED
NO RECORD_VERSI ON;

RECORD_VERSION must always be specified when it is used. For example, the following
statement starts a named transaction, £1, for READ WRITE access and sets isolation level to
READ COMMITTED RECORD_VERSION:

EXEC SQL
SET TRANSACTI ON NAME t1 READ WRI TE READ COWM TTED
RECORD_VERSI ON,

PROGRAMMER'S GUIDE 63

CHAPTER 4 WORKING WITH TRANSACTIONS

STARTING A TRANSACTION WITH
SNAPSHOT TABLE STABILITY ISOLATION LEVEL

To start a SNAPSHOT TABLE STABILITY transaction, the isolation level must be specified. For
example, the following statement starts a named transaction, ¢1, for READ WRITE access
and sets isolation level to SNAPSHOT TABLE STABILITY:

EXEC SQL
SET TRANSACTI ON NAME t1 READ WRI TE SNAPSHOT TABLE STABI LI TY:

Isolation level always follows the optional access mode and lock resolution parameters,
if they are present.

IMPORTANT ~ Use SNAPSHOT TABLE STABILITY with care. In an environment where multiple transactions
share database access, SNAPSHOT TABLE STABILITY greatly increases the likelihood of lock
conflicts.

ISOLATION LEVEL INTERACTIONS
To determine the possibility for lock conflicts between two transactions accessing the
same database, each transaction’s isolation level and access mode must be considered.
The following table summarizes possible combinations.
SNAPSHOT or READ COMMITTED SNAPSHOT TABLE STABILITY
UPDATE SELECT UPDATE SELECT
SNAPSHOT or UPDATE Some simultaneous — Always conflicts Always conflicts
READ COMMITTED updates may conflict
SELECT — — — —
SNAPSHOT TABLE UPDATE Always conflicts — Always conflicts Always conflicts
STABILITY
SELECT Always conflicts — Always conflicts — —

TABLE4.6 Isolation level Interaction with SELECT and UPDATE

64

As this table illustrates, SNAPSHOT and READ COMMITTED transactions offer the least
chance for conflicts. For example, if #7 is a SNAPSHOT transaction with READ WRITE
access, and £2 is a READ COMMITTED transaction with READ WRITE access, £1 and #2 only
conflict when they attempt to update the same rows. If #7 and #2 have READ ONLY access,
they never conflict with any other transaction.

INTERBASE 5

STARTING A NAMED TRANSACTION

Tip

A SNAPSHOT TABLE STABILITY transaction with READ WRITE access is guaranteed that it
alone can update tables, but it conflicts with all other simultaneous transactions except
for SNAPSHOT and READ COMMITTED transactions running in READ ONLY mode. A SNAPSHOT
TABLE STABILITY transaction with READ ONLY access is compatible with any other read-only
transaction, but conflicts with any transaction that attempts to insert, update, or delete
data.

» Lock resolution

The lock resolution parameter determines what happens when a transaction encounters
a lock conflict. There are two options:

WAIT, the default, causes the transaction to wait until locked resources are released. Once
the locks are released, the transaction retries its operation.

NO WAIT returns a lock conflict error without waiting for locks to be released.

Because WAIT is the default lock resolution, you don’t need to specify it in a SET
TRANSACTION statement. For example, the following statements are equivalent. They both
start a transaction, #1, for READ WRITE access, WAIT lock resolution, and READ COMMITTED
isolation level:

EXEC SQL
SET TRANSACTI ON NAME t1 READ WRI TE READ COWM TTED;
EXEC SQL
SET TRANSACTI ON NAME t1 READ WRI TE WAI T READ COWMM TTED;

To use NO WAIT, the lock resolution parameter must be specified. For example, the
following statement starts the named transaction, ¢1, for READ WRITE access, NO WAIT lock
resolution, and SNAPSHOT isolation level:

EXEC SQL
SET TRANSACTI ON NAMVE t1 READ WRI TE NO WAI T READ SNAPSHOT;

When lock resolution is specified, it follows the optional access mode, and precedes the
optional isolation level parameter.

It is good programming practice to specify a transaction’s lock resolution, even when it
is WAIT. It makes an application’s source code easier to read and debug because the
program’s intentions are clearly spelled out.

PROGRAMMER'S GUIDE 65

CHAPTER 4 WORKING WITH TRANSACTIONS

» RESERVING clause

The optional RESERVING clause enables transactions to guarantee themselves specific
levels of access to a subset of available tables at the expense of other simultaneous
transactions. Reservation takes place at the start of the transaction instead of only when
data manipulation statements require a particular level of access. RESERVING is only useful
in an environment where simultaneous transactions share database access. It has three
main purposes:

® To prevent possible deadlocks and update conflicts that can occur if locks are taken only
when actually needed (the default behavior).

= To provide for dependency locking, the locking of tables that may be affected by triggers
and integrity constraints. While explicit dependency locking is not required, it can assure
that update conflicts do not occur because of indirect table conflicts.

= To change the level of shared access for one or more individual tables in a transaction.
For example, a READ WRITE SNAPSHOT transaction may need exclusive update rights for a
single table, and could use the RESERVING clause to guarantee itself sole write access to
the table.

IMPORTANT A single SET TRANSACTION statement can contain either a RESERVING or a USING clause,
but not both. Use the SET TRANSACTION syntax to reserve tables for a transaction:

EXEC SQL
SET TRANSACTI ON [NAME nane]
[READ WRI TE| READ ONLY]
[VAIT | NO WAIT]
[[| SOLATI ON LEVEL] {SNAPSHOT [TABLE STABI LI TY]
| READ COMM TTED [[NO| RECORD VERSI ON] }]
RESERVI NG <reservi ng_cl ause>;
<reserving _clause> = table [, table ...]
[FOR [SHARED | PROTECTED] {READ | WRITE}] [, <reserving_ cl ause>]

66 INTERBASE 5

STARTING A NAMED TRANSACTION

TABLE4.7

Each table should only appear once in the RESERVING clause. Each table, or a list of tables
separated by commas, must be followed by a clause describing the type of reservation
requested. The following table lists these reservation options:

Reservation
option Purpose

PROTECTED READ Prevents other transactions from updating rows. All transactions can select
from the table.

PROTECTED WRITE Prevents other transactions from updating rows.
SNAPSHOT and READ COMMITTED transactions can select from the table, but only
this transaction can update rows.

SHARED READ Any transaction can select from this table. Any READ WRITE transaction can
update this table. This is the most liberal reservation mode.

SHARED WRITE Any SNAPSHOT or READ COMMITTED READ WRITE transaction can update this table.
Other SNAPSHOT and READ COMMITTED transactions can also select from this
table.

Table reservation options for the RESERVING clause

The following statement starts a SNAPSHOT transaction, ¢1, for READ WRITE access, and
reserves a single table for PROTECTED WRITE access:

EXEC SQL
SET TRANSACTI ON NAME t1 READ WRI TE WAI T SNAPSHOT
RESERVI NG EMPLOYEE FOR PROTECTED WRI TE;

The next statement starts a READ COMMITTED transaction, ¢1, for READ WRITE access, and
reserves two tables, one for SHARED WRITE, and another for PROTECTED READ:

EXEC SQL
SET TRANSACTI ON NAME t1 READ WRI TE WAI T READ COWMM TTED
RESERVI NG EMPLOYEES FOR SHARED WRI TE, EMP_PRQJ
FOR PROTECTED READ,

SNAPSHOT and READ COMMITTED transactions use RESERVING to implement more restrictive
access to tables for other simultaneous transactions. SNAPSHOT TABLE STABILITY
transactions use RESERVING to reduce the likelihood of deadlock in critical situations.

PROGRAMMER'S GUIDE 67

IMPORTANT

CHAPTER 4 WORKING WITH TRANSACTIONS

» USING clause

Every time a transaction is started, InterBase reserves system resources for each database
currently attached for program access. In a multi-transaction, multi-database program,
the USING clause can be used to preserve system resources by restricting the number of
open databases to which a transaction has access. USING restricts a transaction’s access
to tables to a listed subset of all open databases using the following syntax:

EXEC SQL
SET TRANSACTI ON [NAME nane]
[READ WRI TE | READ ONLY]
[VAIT | NO WAIT]
[[| SOLATI ON LEVEL] {SNAPSHOT [TABLE STABI LI TY]
| READ COMM TTED [[NO| RECORD VERSI ON] }]
USI NG dbhandl e> [, dbhandle ...];

A single SET TRANSACTION statement can contain either a USING or a RESERVING clause,
but not both.

The following C program fragment opens three databases, test.gdb, research.gdb, and
employee.gdb, assigning them to the database handles TEST, RESEARCH, and EMP,
respectively. Then it starts the default transaction and restricts its access to TEST and EMP:

EXEC SQL

SET DATABASE ATLAS = "test.gdb";
EXEC SQL

SET DATABASE RESEARCH = "research. gdb";
EXEC SQL

SET DATABASE EMP = "enpl oyee. gdb";
EXEC SQL

CONNECT TEST, RESEARCH, EMP; /* (Open all databases */
EXEC SQL

SET TRANSACTI ON USI NG TEST, EMP;

Using transaction names in data statements

68

Once named transactions are started, use their names in INSERT, UPDATE, DELETE, and
OPEN statements to specify which transaction controls the statement. For example, the
following C code fragment declares two transaction handles, mytransi, and mytrans2,
initializes them to zero, starts the transactions, and then uses the transaction names to
qualify the data manipulation statements that follow:

INTERBASE 5

USING TRANSACTION NAMES IN DATA STATEMENTS

EXEC SQL

BEG N DECLARE SECTI ON;

I ong *nytransl, *nytrans2;

char city[26];
EXEC SQL

END DECLARE SECTI ON;
mytransl = OL;
mytrans2 = OL;
EXEC SQL

SET DATABASE ATLAS = "atl as. gdb";
EXEC SQL

CONNECT;
EXEC SQL

DECLARE ClI TYLI ST CURSCR FOR

SELECT G TY FROM CI Tl ES
VWHERE COUNTRY = " Mexi co";

EXEC SQL

SET TRANSACTI ON NAME nytransl;
EXEC SQL

SET TRANSACTI ON nytrans2 READ ONLY READ COW TTED;

printf("Mexican city to add to database: ");
gets(city);
EXEC SQL
| NSERT TRANSACTI ON nmytransl I NTO CITIES (CI TY, COUNTRY)
VALUES :city, "Mexico";

EXEC SQL
COM T nytransi;
EXEC SQL
OPEN TRANSACTI ON nytrans2 Cl TYLI ST;
EXEC SQL
FETCH CI TYLI ST INTO :city;
whi | e (! SQLCODE)
{

printf("%\n", city);
EXEC SQL
FETCH CI TYLI ST INTO :city;
}
EXEC SQL
CLCSE CI TYLI ST;

PROGRAMMER'S GUIDE 69

CHAPTER 4 WORKING WITH TRANSACTIONS

EXEC SQL
COW T;
EXEC SQL
DI SCONNECT;

As this example illustrates, a transaction name cannot appear in a DECLARE CURSOR
statement. To use a name with a cursor declaration, include the transaction name in the
cursor’s OPEN statement. The transaction name is not required in subsequent FETCH and
CLOSE statements for that cursor.

Note The DSQL EXECUTE and EXECUTE IMMEDIATE statements also support transaction
names.

For more information about using transaction names with data manipulation statements,
see Chapter 6, “Working with Data.” For more information about transaction names
and the COMMIT statement, see “Using COMMIT” on page 71. For more information
about using transaction names with DSQL statements, see “Working with multiple
transactions in DSQL” on page 79.

Ending a transaction

When a transaction’s tasks are complete, or an error prevents a transaction from
completing, the transaction must be ended to set the database to a consistent state. There
are two statements that end transactions:

® COMMIT makes a transaction’s changes permanent in the database. It signals that a
transaction completed all its actions successfully.

® ROLLBACK undoes a transaction’s changes, returning the database to its previous state,
before the transaction started. ROLLBACK is typically used when one or more errors occur
that prevent a transaction from completing successfully.

Both COMMIT and ROLLBACK close the record streams associated with the transaction,
reinitialize the transaction name to zero, and release system resources allocated for the
transaction. Freed system resources are available for subsequent use by any application
or program.

COMMIT and ROLLBACK have additional benefits. They clearly indicate program logic and
intention, make a program easier to understand, and most importantly, assure that a
transaction’s changes are handled as intended by the programmer.

70 INTERBASE 5

ENDING A TRANSACTION

ROLLBACK is frequently used inside error-handling routines to clean up transactions when
errors occur. It can also be used to roll back a partially completed transaction prior to
retrying it, and it can be used to restore a database to its prior state if a program
encounters an unrecoverable error.

IMPORTANT If the program ends before a transaction ends, a transaction is automatically rolled back,
but databases are not closed. If a program ends without closing the database, data loss
or corruption is possible. Therefore, open databases should always be closed by issuing
explicit DISCONNECT, COMMIT RELEASE, or ROLLBACK RELEASE statements.

For more information about DISCONNECT, COMMIT RELEASE, and ROLLBACK RELEASE, see
Chapter 3, “Working with Databases.”

Using cOMMIT

Use COMMIT to write transaction changes permanently to a database.

COMMIT closes the record streams associated with the transaction, resets the transaction
name to zero, and frees system resources assigned to the transaction for other uses. The
complete syntax for COMMIT is:

EXEC SQL
COWM T [TRANSACTI ON nane] [RETAIN [SNAPSHOT] | RELEASE dbhandl e
[, dbhandie ...1]

For example, the following C code fragment contains a complete transaction. It gives all
employees who have worked since December 31, 1992, a 4.3% cost-of-living salary
increase. If all qualified employee records are successfully updated, the transaction is
committed, and the changes are actually applied to the database.

EXEC SQL
SET TRANSACTI ON SNAPSHOT TABLE STABI LI TY;
EXEC SQL
UPDATE EMPLOYEE
SET SALARY = SALARY * 1.043
WHERE HI RE_DATE < "1- JAN- 1993";
EXEC SQL
COW T;

By default, COMMIT affects only the default transaction, gds__trans. To commit another
transaction, use its transaction name as a parameter to COMMIT.

PROGRAMMER'S GUIDE 71

Tip

IMPORTANT

72

CHAPTER 4 WORKING WITH TRANSACTIONS

Even READ ONLY transactions that do not change a database should be ended with a
COMMIT rather than ROLLBACK. The database is not changed, but the overhead required
to start subsequent transactions is greatly reduced.

» Specifying transaction names

To commit changes for transactions other than the default transaction, specify a
transaction name as a COMMIT parameter. For example, the following C code fragment
starts two transactions using names, and commits them:

EXEC SQL

BEG N DECLARE SECTI ON,

isc_tr_handle TR1, TRZ;

EXEC SQL

END DECLARE SECTI ON,
TR1L = (isc_tr_handl e) NULL;
TR2 = (isc_tr_handl e) NULL;
EXEC SQL

SET TRANSACTI ON NAMVE TR1;
EXEC SQL

SET TRANSACTI ON NAMVE TR2;

/* do actual processsing here */
EXEC SQL
COMM T TRANSACTI ON TR1;

EXEC SQL
COMWM T TRANSACTI ON TR2;

In multi-transaction programs, transaction names must always be specified for COMMIT
except when committing the default transaction.

» Committing without freeing a transaction

To write transaction changes to the database without releasing the current transaction
snapshot, use the RETAIN option with COMMIT. The COMMIT RETAIN statement commits
your work and opens a new transaction, preserving the old transaction’s snapshot. In a
busy multi-user environment, retaining the snapshot speeds up processing and uses
fewer system resources than closing and starting a new transaction for each action. The
disadvantage of using COMMIT RETAIN is that you do not see the pending transactions of
other users.

INTERBASE 5

ENDING A TRANSACTION

Tip

The syntax for the RETAIN option is as follows:

EXEC SQL
COW T [TRANSACTI ON nane] RETAI N [SNAPSHOT] ;

Developers who use Borland tools such as Delphi use this feature by specifying “soft
commits” in the BDE configuration.

For example, the following C code fragment updates the POPULATION column by
user-specified amounts for cities in the CITIES table that are in a country also specified by
the user. Each time a qualified row is updated, a COMMIT with the RETAIN option is issued,
preserving the current cursor status and system resources.

EXEC SQL
BEG N DECLARE SECTI ON;
char country[26], city[26], asciimult[10];
int multiplier;
l'ong pop;
EXEC SQL
END DECLARE SECTI ON;
main ()
{
EXEC SQL
DECLARE CHANGEPOP CURSCR FOR
SELECT CI TY, POPULATI ON
FROM CI Tl ES
WHERE COUNTRY = :country;
printf("Enter country with city popul ati ons needi ng adj ustment: ");
gets(country);
EXEC SQL
SET TRANSACTI ON,
EXEC SQL
OPEN CHANGEPOP;
EXEC SQL
FETCH CHANGEPCP | NTO :city, :pop;
whi | e(! SQLCODE)
{
printf("Cty: % Population: %d\n", city, pop);
printf("\nPercent change (100%%6to -100%%");
gets(asciinult);
multiplier = atoi(asciimult);
EXEC SQL

PROGRAMMER'S GUIDE 73

IMPORTANT

74

CHAPTER 4 WORKING WITH TRANSACTIONS

UPDATE CI TI ES
SET POPULATION = POPULATION * (1 + :nultiplier / 100)
WHERE CURRENT OF CHANGEPOCP;
EXEC SQL
COW T RETAIN, /* conmt changes, save current state */
EXEC SQL
FETCH CHANGEPOP | NTO :city, :pop;
if (SQLCODE && (SQLCODE != 100))
{
i sc_print_sqglerror(SQCODE, isc_$status);
EXEC SQL
ROLLBACK;
EXEC SQL
DI SCONNECT;
exit(1);
}

}
EXEC SQL

COW T;
EXEC SQL
DI SCONNECT;

}

Note If you execute a ROLLBACK after a COMMIT RETAIN, it rolls back only updates and
writes that occurred after the COMMIT RETAIN.

In multi-transaction programs, a transaction name must be specified for COMMIT RETAIN,
except when retaining the state of the default transaction. For more information about
transaction names, see “Naming transactions” on page 54.

Using ROLLBACK

Use ROLLBACK to restore the database to its condition prior to the start of the transaction.
ROLLBACK also closes the record streams associated with the transaction, resets the

transaction name to zero, and frees system resources assigned to the transaction for other
uses. ROLLBACK typically appears in error-handling routines. The syntax for ROLLBACK is:

EXEC SQL
ROLLBACK [TRANSACTI ON nane] [RELEASE [dbhandl e [, dbhandle ...]1];

INTERBASE 5

ENDING A TRANSACTION

For example, the following C code fragment contains a complete transaction that gives
all employees who have worked since December 31, 1992, a 4.3% cost-of-living salary
adjustment. If all qualified employee records are successfully updated, the transaction is
committed, and the changes are actually applied to the database. If an error occurs, all
changes made by the transaction are undone, and the database is restored to its condition
prior to the start of the transaction.

EXEC SQL
SET TRANSACTI ON SNAPSHOT TABLE STABI LI TY;
EXEC SQL
UPDATE EMPLOYEES
SET SALARY = SALARY * 1.043
WHERE HI RE_DATE < "1- JAN- 1993";
if (SQLCODE && (SQLCODE != 100))

{
i sc_print_sqglerror(SQCODE, isc_$status);
EXEC SQL
ROLLBACK;
EXEC SQL
DI SCONNECT;
exit(1);
}
EXEC SQL
COW T;
EXEC SQL
DI SCONNECT;

By default, ROLLBACK affects only the default transaction, gds__trans. To roll back other
transactions, use their transaction names as parameters to
ROLLBACK.

PROGRAMMER'S GUIDE 75

CHAPTER 4 WORKING WITH TRANSACTIONS

Working with multiple transactions

IMPORTANT

76

Because InterBase provides support for transaction names, a program can use as many
transactions at once as necessary to carry out its work. Each simultaneous transaction in
a program requires its own name. A transaction’s name distinguishes it from other active
transactions. The name can also be used in data manipulation and transaction
management statements to specify which transaction controls the statement. For more
information about declaring and using transaction names, see “Starting a named
transaction” on page 53.

There are four steps for using named transactions in a program:
1. Declare a unique host-language variable for each transaction name.
2. Initialize each transaction variable to zero.

3. Use SET TRANSACTION to start each transaction using an available transaction
name.

4. Use the transaction names as parameters in subsequent transaction
management and data manipulation statements that should be controlled by
a specified transaction.

The default transaction

In multi-transaction programs, it is good programming practice to supply a transaction
name for every transaction a program defines. One transaction in a multi-transaction
program can be the default transaction, gds__trans. When the default transaction is used
in multi-transaction programs, it, too, should be started explicitly and referenced by
name in data manipulation statements.

If the transaction name is omitted from a transaction management or data manipulation
statement, InterBase assumes the statement affects the default transaction. If the default
transaction has not been explicitly started with a SET TRANSACTION statement, gpre inserts
a statement during preprocessing to start it.

DSQL programs must be preprocessed with the gpre -m switch. In this mode, gpre does
not generate the default transaction automatically, but instead reports an error. DSQL
programs require that all transactions be explicitly started.

INTERBASE 5

WORKING WITH MULTIPLE TRANSACTIONS

Using cursors

DECLARE CURSOR does not support transaction names. Instead, to associate a named
transaction with a cursor, include the transaction name as an optional parameter in the
cursor’s OPEN statement. A cursor can only be associated with a single transaction. For
example, the following statements declare a cursor, and open it, associating it with the
transaction, T1:

EXEC SQL
DECLARE S CURSOR FOR
SELECT COUNTRY, CUST_NO, SUM QTY_ORDERED)
FROM SALES
GROUP BY CUST_NO
WHERE COUNTRY = "Mexi co";
EXEC SQL
SET TRANSACTI ON T1 READ ONLY READ COMM TTED;
EXEC SQL
OPEN TRANSACTI ON T1 S;

An OPEN statement without the optional transaction name parameter operates under
control of the default transaction, gds__trans.

Once a named transaction is associated with a cursor, subsequent cursor statements
automatically operate under control of that transaction. Therefore, it does not support a
transaction name parameter. For example, the following statements illustrate a FETCH and
CLOSE for the S cursor after it is associated with the named transaction, 72:

EXEC SQL
OPEN TRANSACTION t2 S;
EXEC SQL
FETCH S I NTO : country, :cust_no, :qty;
whi | e (! SQLCODE)
{
printf("% %l %\n", country, cust_no, qty);
EXEC SQL
FETCH S I NTO : country, :cust_no, :qty;
}
EXEC SQL
CLCSE S;

PROGRAMMER'S GUIDE 77

78

CHAPTER 4 WORKING WITH TRANSACTIONS

Multiple cursors can be controlled by a single transaction, or each transaction can control

a single cursor according to a program’s needs.

A multi-transaction example

The following C code illustrates the steps required to create a simple multi-transaction

program. It declares two transaction handles, mytransi, and mytrans2, initializes them
to zero, starts the transactions, and then uses the transaction names to qualify the data
manipulation statements that follow. It also illustrates the use of a cursor with a named

transaction.

EXEC SQL

BEG N DECLARE SECTI ON;

long *nytransl = OL, *nytrans2 = OL;

char city[26];
EXEC SQL

END DECLARE SECTI ON;
EXEC SQL

DECLARE Cl TYLI ST CURSOR FOR

SELECT G TY FROM CI Tl ES
VWHERE COUNTRY = " Mexi co";

EXEC SQL

SET TRANSACTI ON NAME nytransl;
EXEC SQL

SET TRANSACTI ON nmytrans2 READ ONLY READ COW TTED;

printf("Mexican city to add to database: ");
gets(city);
EXEC SQL
I NSERT TRANSACTI ON nytransl | NTO CI Tl ES
VALUES :city, "Mexico", NULL, NULL, NULL, NULL
EXEC SQL
COMWM T nytransi;
EXEC SQL
OPEN TRANSACTI ON nytrans2 CI TYLI ST;
EXEC SQL
FETCH CI TYLI ST INTO :city;
whi l e (! SQLCODE)

INTERBASE 5

WORKING WITH MULTIPLE TRANSACTIONS IN DSQL

{
printf("%\n", city);
EXEC SQL
FETCH CI TYLI ST INTO :city;
}
EXEC SQL
CLCSE CI TYLI ST;
EXEC SQL
COM T nytrans2;
EXEC SQL
DI SCONNECT

Working with multiple transactions in DSQL

In InterBase, DSQL applications can also use multiple transactions, but with the following
limitations:

® Programs must be preprocessed with the gpre-m switch.

® Transaction names must be declared statically. They cannot be defined through
user-modified host variables at run time.

® Transaction names must be initialized to zero before appearing in DSQL statements.

= All transactions must be started with explicit SET TRANSACTION
statements.

® No data definition language (DDL) can be used in the context of a named transaction in
an embedded program; DDL must always occur in the context of the default transaction,
gds__trans.

® As long as a transaction name parameter is not specified with a SET TRANSACTION
statement, it can follow a PREPARE statement to modify the behavior of a subsequently
named transaction in an EXECUTE or EXECUTE IMMEDIATE statement. This enables a user
to modify transaction behaviors at run time.

Transaction names are fixed for all InterBase programs during preprocessing, and cannot
be dynamically assigned. A user can still modify DSQL transaction behavior at run time.
It is up to the programmer to anticipate possible transaction behavior modification and
plan for it. The following section describes how users can modify transaction behavior.

PROGRAMMER'S GUIDE 79

80

CHAPTER 4 WORKING WITH TRANSACTIONS

Modifying transaction behavior with “?”

The number and name of transactions available to a DSQL program is fixed when the
program is preprocessed with gpre, the InterBase preprocessor. The programmer
determines both the named transactions that control each DSQL statement in a program,
and the default behavior of those transactions. A user can change a named transaction’s
behavior at run time.

In DSQL programs, a user enters an SQL statement into a host-language string variable,
and then the host variable is processed in a PREPARE statement or EXECUTE IMMEDIATE
statement.

PREPARE
® Checks the statement in the variable for errors

® Loads the statement into an XSQLDA for a subsequent EXECUTE statement

EXECUTE IMMEDIATE
® Checks the statement for errors
® Loads the statement into the XSQLDA
® Executes the statement

Both EXECUTE and EXECUTE IMMEDIATE operate within the context of a
programmer-specified transaction, which can be a named transaction. If the transaction
name is omitted, these statements are controlled by the default transaction, gds__trans.

You can modify the transaction behavior for an EXECUTE and EXECUTE IMMEDIATE
statement by:

® Enabling a user to enter a SET TRANSACTION statement into a host variable

® Executing the SET TRANSACTION statement before the EXECUTE or EXECUTE IMMEDIATE
whose transaction context should be modified

In this context, a SET TRANSACTION statement changes the behavior of the next named or
default transaction until another SET TRANSACTION occurs.

The following C code fragment provides the user the option of specifying a new
transaction behavior, applies the behavior change, executes the next user statement in
the context of that changed transaction, then restores the transaction’s original behavior.
EXEC SQL

BEG N DECLARE SECTI ON,

INTERBASE 5

WORKING WITH MULTIPLE TRANSACTIONS IN DSQL

char usertrans[512], query[1024];
char deftrans[] = {"SET TRANSACTI ON READ WRI TE WAI T SNAPSHOT" } ;
EXEC SQL
END DECLARE SECTI ON;

printf("\nEnter SQL statenent: ");

gets(query);

printf("\nChange transaction behavior (Y N? ");

gets(usertrans);

if (usertrans[0] == "Y" || usertrans[0] == "y")

{
printf("\nEnter \"SET TRANSACTI ON\\" and desired behavior: ");
gets(usertrans);

EXEC SQL
COMW T usertrans;
EXEC SQL
EXECUTE | MVEDI ATE usertrans;
}
el se
{
EXEC SQL
EXECUTE | MVEDI ATE deftr ans;
}
EXEC SQL
EXECUTE | MVEDI ATE query;
EXEC SQL

EXECUTE | MVEDI ATE deftr ans;

IMPORTANT As this example illustrates, you must commit or roll back any previous transactions
before you can execute SET TRANSACTION.

PROGRAMMER'S GUIDE 81

82

CHAPTER 4 WORKING WITH TRANSACTIONS

INTERBASE 5

CHAPTER

Working with Data
Definition Statements

This chapter discusses how to create, modify, and delete databases, tables, views, and
indexes in SQL applications. A database’s tables, views, and indexes make up most of its
underlying structure, or metadata.

IMPORTANT The discussion in this chapter applies equally to dynamic SQL (DSQL) applications,
except that users enter DSQL data definition statements at run time, and do not preface
those statements with EXEC SQL.

PROGRAMMER'S GUIDE 83

CHAPTER 5 WORKING WITH DATA DEFINITION STATEMENTS

The preferred method for creating, modifying, and deleting metadata is through the
InterBase interactive SQL tool, isql, but in some instances, it may be necessary or desirable
to embed some data definition capabilities in an SQL application. Both SQL and DSQL
applications can use the following subset of data definition statements:

CREATE statement ALTER statement DROP statement
CREATE DATABASE ALTER DATABASE —
CREATE DOMAIN ALTER DOMAIN DROP DOMAIN
CREATE GENERATOR SET GENERATOR —
CREATE INDEX ALTER INDEX DROP INDEX
CREATE SHADOW ALTER SHADOW DROP SHADOW
CREATE TABLE ALTER TABLE DROP TABLE
CREATE VIEW — DROP VIEW
DECLARE EXTERNAL — DROP EXTERNAL
DECLARE FILTER — DROP FILTER
TABLES.1 Data definition statements supported for embedded applications
DSQL also supports creating, altering, and dropping stored procedures, triggers, and
exceptions. DSQL is especially powerful for data definition because it enables users to
enter any supported data definition statement at run time. For example, isql itself is a
DSQL application. For more information about using isql to define stored procedures,
triggers, and exceptions, see the Data Definition Guide. For a complete discussion of
DSQL programming, see Chapter 14, “Using Dynamic SQL.”
°
Creating metadata

84

SQL data definition statements are used in applications the sole purpose of which is to
create or modify databases or tables. Typically the expectation is that these applications
will be used only once by any given user, then discarded, or saved for later modification
by a database designer who can read the program code as a record of a database’s
structure. If data definition changes must be made, editing a copy of existing code is
easier than starting over.

Note Use the InterBase interactive SQL tool, isql, to create and alter data definitions
whenever possible. For more information about isql, see the Operations Guide.

INTERBASE 5

CREATING METADATA

IMPORTANT

IMPORTANT

The SQL CREATE statement is used to make new databases, domains, tables, views, or
indexes. A COMMIT statement must follow every CREATE so that subsequent CREATE
statements can use previously defined metadata upon which they may rely. For example,
domain definitions must be committed before the domain can be referenced in
subsequent table definitions.

Applications that mix data definition and data manipulation must be preprocessed using
the gpre -m switch. Such applications must explicitly start every transaction with SET
TRANSACTION.

Creating a database

CREATE DATABASE establishes a new database and its system tables, tables that describe the
internal structure of the database. InterBase uses the system tables whenever an
application accesses a database. SQL programs can read the data in most of these tables
just like any user-created table.

In its most elementary form, the syntax for CREATE DATABASE is:

EXEC SQL
CREATE DATABASE " <fil espec>";

CREATE DATABASE must appear before any other CREATE statements. It requires one
parameter, the name of a database to create. For example, the following statement creates
a database named employee.gdb:

EXEC SQL
CREATE DATABASE "enpl oyee. gdb";

Note The database name can include a full file specification, including both host or node
names, and a directory path to the location where the database file should be created.
For information about file specifications for a particular operating system, see the
operating system manuals.

Although InterBase enables access to remote databases, when a database is created, it
should only be created directly on the machine where it is to reside.

» Optional parameters

There are optional parameters for CREATE DATABASE. For example, when an application
running on a client attempts to connect to an InterBase server in order to create a
database, it may be expected to provide USER and PASSWORD parameters before the
connection is established. Other parameters specify the database page size, the number
and size of multi-file databases, and the default character set for the database.

PROGRAMMER'S GUIDE 85

IMPORTANT

86

CHAPTER 5 WORKING WITH DATA DEFINITION STATEMENTS

For a complete discussion of all CREATE DATABASE parameters, see the Data Definition
Guide. For the complete syntax of CREATE DATABASE, see the Language Reference.

An application that creates a database must be preprocessed with the gpre-m switch. It
must also create at least one table. If a database is created without a table, it cannot be
successfully opened by another program. Applications that perform both data definition
and data manipulation must declare tables with DECLARE TABLE before creating and
populating them. For more information about table creation, see “Creating a table” on
page 87.

» Specifying a default character set

A database’s default character set designation specifies the character set the server uses
to transliterate and store CHAR, VARCHAR, and text Blob data in the database when no
other character set information is provided. A default character set should always be
specified for a database when it is created with CREATE DATABASE.

To specify a default character set, use the DEFAULT CHARACTER SET clause of CREATE
DATABASE. For example, the following statement creates a database that uses the
ISO8859_1 character set:

EXEC SQL
CREATE DATABASE "eur ope. gdb" DEFAULT CHARACTER SET | SCB859 1;

If you do not specify a character set, the character set defaults to NONE. Using character
set NONE means that there is no character set assumption for columns; data is stored and
retrieved just as you originally entered it. You can load any character set into a column
defined with NONE, but you cannot later move that data into another column that has
been defined with a different character set. In this case, no transliteration is performed
between the source and destination character sets, and errors may occur during
assignment.

For a complete description of the DEFAULT CHARACTER SET clause and a list of the character
sets supported by InterBase, see the Data Definition Guide.

Creating a domain

CREATE DOMAIN creates a column definition that is global to the database, and that can
be used to define columns in subsequent CREATE TABLE statements. CREATE DOMAIN is
especially useful when many tables in a database contain identical column definitions.
For example, in an employee database, several tables might define columns for
employees’ first and last names.

At its simplest, the syntax for CREATE DOMAIN is:

INTERBASE 5

CREATING METADATA

EXEC SQL
CREATE DOVAI N name AS <dat at ype>;

The following statements create two domains, FIRSTNAME, and LASTNAME.

EXEC SQL

CREATE DOMAI N FI RSTNAME AS VARCHAR(15) ;
EXEC SQL

CREATE DOMAI N LASTNAME AS VARCHAR(20) ;
EXEC SQL

COW T;

Once a domain is defined and committed, it can be used in CREATE TABLE statements to
define columns. For example, the following CREATE TABLE fragment illustrates how the
FIRSTNAME and LASTNAME domains can be used in place of column definitions in the
EMPLOYEE table definition.

EXEC SQL
CREATE TABLE EMPLOYEE

(

FI RST_NAME FI RSTNAME NOT NULL,
LAST_NAME LASTNAVE NOT NULL;

)

A domain definition can also specify a default value, a NOT NULL attribute, a CHECK
constraint that limits inserts and updates to a range of values, a character set, and a
collation order.

For more information about creating domains and using them during table creation, see
the Data Definition Guide. For the complete syntax of CREATE DOMAIN, see the Language
Reference.

Creating a table

The CREATE TABLE statement defines a new database table and the columns and integrity
constraints within that table. Each column can include a character set specification and
a collation order specification. CREATE TABLE also automatically imposes a default SQL

security scheme on the table. The person who creates a table becomes its owner. A table’s
owner is assigned all privileges for it, including the right to grant privileges to other users.

A table can be created only for a database that already exists. At its simplest, the syntax
for CREATE TABLE is as follows:

PROGRAMMER'S GUIDE 87

88

CHAPTER 5 WORKING WITH DATA DEFINITION STATEMENTS

EXEC SQL
CREATE TABLE nane (<col _def> | <table_constraint>
[, <col_def> | <table constraint> ...]);

<col_def> defines a column using the following syntax:

col {<datatype>| COVWUTED [BY] (<expr>) | domai n}
<col _constrai nt> COLLATE col | ation

<col> must be a column name unique within the table definition.

<datatype> specifies the SQL datatype to use for column entries. COMPUTED BY can be
used to define a column whose value is computed from an expression when the column
is accessed at run time.

<col_constraint> is an optional integrity constraint to apply to a column. tableconstraint
is an optional integrity constraint to apply to an entire table. Integrity constraints are used
to ensure data entered in a table meets specific requirements, to specify that data entered
in a table or column is unique, or to enforce referential integrity with other tables in the
database.

The following code fragment contains SQL statements that create a database,
employee.gdb, and create a table, EMPLOYEE_PROJECT, with three columns, EMP_NO,
PROJ_ID, and DUTIES:

EXEC SQL
CREATE DATABASE "enpl oyee. gdb";
EXEC SQL
CREATE TABLE EMPLOYEE_PROJECT
(
EMP_NO SMALLI NT NOT NULL,
PRQOJ_I D CHAR(5) NOT NULL,
DUTI ES Bl ob SUBTYPE 1 SEGMENT SI ZE 240
)
EXEC SQL
COW T;

An application can create multiple tables, but duplicating an existing table name is not
permitted.

For more information about SQL datatypes and integrity constraints, see the Data
Definition Guide. For more information about CREATE TABLE syntax, see the Language
Reference. For more information about changing or assigning table privileges, see the
security chapter in the Data Definition Guide.

INTERBASE 5

CREATING METADATA

) Creating a computed column

A computed column is one whose value is calculated when the column is accessed at run
time. The value can be derived from any valid SQL expression that results in a single,
non-array value.

To create a computed column, use the following column declaration syntax in CREATE
TABLE:

col COWPUTED [BY] (<expr>)

The expression can reference previously defined columns in the table. For example, the
following statement creates a computed column, FULL_NAME, by concatenating two other
columns, LAST_NAME, and FIRST_NAME:

EXEC SQL
CREATE TABLE EMPLOYEE

(

FI RST_NAME VARCHAR(10) NOT NULL,
LAST_NAME VARCHAR(15) NOT NULL,

FULL_NAVE COVPUTED BY (LAST_NAME || ", " || FIRST_NAVE)
)

For more information about COMPUTED BY, see the Data Definition Guide.

» Declaring and creating a table

In programs that mix data definition and data manipulation, the DECLARE TABLE statement
must be used to describe a table’s structure to the InterBase preprocessor, gpre, before that
table can be created. During preprocessing, if gpre encounters a DECLARE TABLE statement,
it stores the table’s description for later reference. When gpre encounters a CREATE TABLE
statement for the previously declared table, it verifies that the column descriptions in the
CREATE statement match those in the DECLARE statement. If they do not match, gpre reports
the errors and cancels preprocessing so that the error can be fixed.

When used, DECLARE TABLE must come before the CREATE TABLE statement it describes.
For example, the following code fragment declares a table,
EMPLOYEE_PROJ, then creates it:

EXEC SQL
DECLARE EMPLOYEE_PROJECT TABLE
(
EMP_NO SMALLI NT,
PROJ_| D CHAR(5),
DUTI ES Bl ob(240, 1)

PROGRAMMER'S GUIDE 89

20

CHAPTER 5 WORKING WITH DATA DEFINITION STATEMENTS

)
EXEC SQL
CREATE TABLE EMPLOYEE PROJECT
(
EMP_NO SMALLI NT,
PRQJ_| D CHAR(5),
DUTI ES Bl ob(240, 1)
)
EXEC SQL
COW T;

For more information about DECLARE TABLE, see the Language Reference.

Creating a view

A view is a virtual table that is based on a subset of one or more actual tables in a
database. Views are used to:

® Restrict user access to data by presenting only a subset of available data.

® Rearrange and present data from two or more tables in a manner especially useful to the
program.

Unlike a table, a view is not stored in the database as raw data. Instead, when a view is
created, the definition of the view is stored in the database. When a program uses the
view, InterBase reads the view definition and quickly generates the output as if it were a
table.

To make a view, use the following CREATE VIEW syntax:

EXEC SQL
CREATE VI EW nane [(view col [, viewcol ...)] AS
<sel ect> [WTH CHECK OPTI O\ ;

The name of the view, name, must be unique within the database.

To give each column displayed in the view its own name, independent of its column
name in an underlying table, enclose a list of view_col parameters in parentheses. Each
column of data returned by the view’s SELECT statement is assigned sequentially to a
corresponding view column name. If a list of view column names is omitted, column
names are assigned directly from the underlying table.

Listing independent names for columns in a view ensures that the appearance of a view
does not change if its underlying table structures are modified.

INTERBASE 5

CREATING METADATA

Note A view column name must be provided for each column of data returned by the
view’s SELECT statement, or else no view column names should be specified.

The select clause is a standard SELECT statement that specifies the selection criteria for
rows to include in the view. A SELECT in a view cannot include an ORDER BY clause. In
DSQL, it cannot include a UNION clause.

The optional WITH CHECK OPTION restricts inserts, updates, and deletes in a view that can
be updated.

To create a read-only view, a view’s creator must have SELECT privilege for the table or
tables underlying the view. To create a view for update requires ALL privilege for the table
or tables underlying the view. For more information about SQL privileges, see the security
chapter in the Data Definition Guide.

) Creating a view for SELECT

Many views combine data from multiple tables or other views. A view based on multiple
tables or other views can be read, but not updated. For example, the following statement
creates a read-only view, PHONE_LIST, because it joins two tables, EMPLOYEE, and
DEPARTMENT:

EXEC SQL
CREATE VI EW PHONE LI ST AS
SELECT EMP_NO, FIRST_NAME, LAST NAME, LOCATI ON, PHONE_NO
FROM EMPLOYEE, DEPARTMENT
WHERE EMPLOYEE. DEPT_NO = DEPARTMENT. DEPT_NO,
EXEC SQL
COW T;

IMPORTANT Only a view’s creator initially has access to it. To assign read access to others, use GRANT.
For more information about GRANT, see the security chapter of the Data Definition
Guide.

) Creating a view for update

An updatable view is one that enables privileged users to insert, update, and delete
information in the view’s base table. To be updatable, a view must meet the following
conditions:

= [t derives its columns from a single table or updatable view.
® It does not define a self-join of the base table.
= It does not reference columns derived from arithmetic expressions.

= The view’s SELECT statement does 7ot contain:

PROGRAMMER'S GUIDE 91

92

CHAPTER 5 WORKING WITH DATA DEFINITION STATEMENTS

- A WHERE clause that uses the DISTINCT predicate
- A HAVING clause

- Functions

- Nested queries

- Stored procedures

In the following view, HIGH_CITIES is an updatable view. It selects all cities in the CITIES
table with altitudes greater than or equal to a half mile.

EXEC SQL
CREATE VI EW HI GH_CI TI ES AS
SELECT CI TY, COUNTRY_NAME, ALTI TUDE FROM Cl TI ES
WHERE ALTI TUDE >= 2640;
EXEC SQL
COW T;

Users who have INSERT and UPDATE privileges for this view can change rows in or add
new rows to the view’s underlying table, CITIES. They can even insert or update rows that
cannot be displayed by the HIGH_CITIES view. The following INSERT adds a record for
Santa Cruz, California, altitude 23 feet, to the CITIES table:

EXEC SQL
I NSERT I NTO HHGH CITIES (CI TY, COUNTRY_NAME, ALTI TUDE)
VALUES ("Santa Cruz", "United States", "23");

To restrict inserts and updates through a view to only those rows that can be selected by
the view, use the WITH CHECK OPTION in the view definition. For example, the following
statement defines the view, HIGH_CITIES, to use the WITH CHECK OPTION. Users with INSERT
and UPDATE privileges will be able to enter rows only for cities with altitudes greater than
or equal to a half mile.

EXEC SQL
CREATE VI EW H GH_CI TI ES AS
SELECT CITY, COUNTRY_NAVE, ALTI TUDE FROM Cl TI ES
WHERE ALTI TUDE > 2640 W TH CHECK OPTI ON;

Creating an index

SQL provides CREATE INDEX for establishing user-defined database indexes. An index,
based on one or more columns in a table, is used to speed data retrieval for queries that
access those columns. The syntax for CREATE INDEX is:

INTERBASE 5

CREATING METADATA

EXEC SQL
CREATE [UNI QUE] [ASC] ENDING | DESC] ENDI NG] | NDEX <i ndex> ON
table (col [, col ...]);

For example, the following statement defines an index, NAMEX, for the LAST_NAME and
FIRST_NAME columns in the EMPLOYEE table:

EXEC SQL
CREATE | NDEX NAMEX ON EMPLOYEE (LAST_NAME, FI RST_NAME);

Note InterBase automatically generates system-level indexes when tables are defined
using UNIQUE and PRIMARY KEY constraints. For more information about constraints, see
the Data Definition Guide.

See the Language Reference for more information about CREATE INDEX syntax.

b Preventing duplicate index entries

To define an index that eliminates duplicate entries, include the UNIQUE keyword in
CREATE INDEX. The following statement creates a unique index, PRODTYPEX, on the
PROJECT table:

EXEC SQL
CREATE UNI QUE | NDEX PRODTYPEX ON PRQJECT (PRODUCT, PRQJ_NAME);

IMPORTANT After a unique index is defined, users cannot insert or update values in indexed columns
if those values already exist there. For unique indexes defined on multiple columns, like
PRODTYPEX in the previous example, the same value can be entered within individual
columns, but the combination of values entered in all columns defined for the index
must be unique.

» Specifying index sort order

By default, SQL stores an index in ascending order. To make a descending sort on a
column or group of columns more efficient, use the DESCENDING keyword to define the
index. For example, the following statement creates an index, CHANGEX, based on the
CHANGE_DATE column in the SALARY_HISTORY table:

EXEC SQL
CREATE DESCENDI NG | NDEX CHANGEX ON SALARY_Hl STORY (CHANGE_DATE) ;

Note To retrieve indexed data in descending order, use ORDER BY in the SELECT statement
to specify retrieval order.

PROGRAMMER'S GUIDE 93

CHAPTER 5 WORKING WITH DATA DEFINITION STATEMENTS

Creating generators

A generator is a monotonically increasing or decreasing numeric value that is inserted in
a field either directly by an SQL statement in an application or through a trigger.
Generators are often used to produce unique values to insert into a column used as a
primary key.

To create a generator for use in an application, use the following CREATE GENERATOR
syntax:

EXEC SQL
CREATE GENERATOR nane;

The following statement creates a generator, EMP_NO_GEN, to specify a unique employee
number:

EXEC SQL

CREATE GENERATOR EMP_NO_GEN;
EXEC SQL

COW T;

Once a generator is created, the starting value for a generated number can be specified
with SET GENERATOR. To insert a generated number in a field, use the InterBase library
GEN_ID() function in an assignment statement. For more information about GEN_IDO),
CREATE GENERATOR, and SET GENERATOR, see the Data Definition Guide.

Dropping metadata

94

SQL supports several statements for deleting existing metadata:
® DROP TABLE, to delete a table from a database
® DROP VIEW, to delete a view definition from a database
® DROP INDEX, to delete a database index
B ALTER TABLE, to delete columns from a table

For more information about deleting columns with ALTER TABLE, see “Altering a table”
on page 97.

INTERBASE 5

DROPPING METADATA

Dropping an index

To delete an index, use DROP INDEX. An index can only be dropped by its creator, the
SYSDBA, or a user with root privileges. If an index is in use when the drop is attempted,
the drop is postponed until the index is no longer in use. The syntax of DROP INDEX is:

EXEC SQL
DRCOP | NDEX nane;

name is the name of the index to delete. For example, the following statement drops the
index, NEEDX:

EXEC SQL
DROP | NDEX NEEDX;
EXEC SQL
COW T;
Deletion fails if the index is on a UNIQUE, PRIMARY KEY, or FOREIGN KEY integrity
constraint. To drop an index on a UNIQUE, PRIMARY KEY, or FOREIGN KEY integrity
constraint, first drop the constraints, the constrained columns, or the table.

For more information about DROP INDEX and dropping integrity constraints, see the Data
Definition Guide.

Dropping a view

To delete a view, use DROP VIEW. A view can only be dropped by its owner, the SYSDBA,
or a user with root privileges. If a view is in use when a drop is attempted, the drop is
postponed until the view is no longer in use. The syntax of DROP VIEW is:

EXEC SQL
DROP VI EW nane,

The following statement drops the EMPLOYEE_SALARY view:

EXEC SQL

DROP VI EW EMPLOYEE_SALARY;
EXEC SQL

COW T;

Deleting a view fails if a view is used in another view, a trigger, or a computed column.
To delete a view that meets any of these conditions:

1. Delete the other view, trigger, or computed column.

2. Delete the view.

PROGRAMMER'S GUIDE 95

CHAPTER 5 WORKING WITH DATA DEFINITION STATEMENTS

For more information about DROP VIEW, see the Data Definition Guide.

Dropping a table

Use DROP TABLE to remove a table from a database. A table can only be dropped by its
owner, the SYSDBA, or a user with root privileges. If a table is in use when a drop is
attempted, the drop is postponed until the table is no longer in use. The syntax of DROP
TABLE is:

EXEC SQL
DROP TABLE nane;

name is the name of the table to drop. For example, the following statement drops the
EMPLOYEE table:

EXEC SQL

DROP TABLE EMPLOYEE;
EXEC SQL

COW T;

Deleting a table fails if a table is used in a view, a trigger, or a computed column. A table
cannot be deleted if a UNIQUE or PRIMARY KEY integrity constraint is defined for it, and
the constraint is also referenced by a FOREIGN KEY in another table. To drop the table, first
drop the FOREIGN KEY constraints in the other table, then drop the table.

Note Columns within a table can be dropped without dropping the rest of the table. For
more information, see “Dropping an existing column” on page 98.

For more information about DROP TABLE, see the Data Definition Guide.

Altering metadata

96

Most changes to data definitions are made at the table level, and involve adding new
columns to a table, or dropping obsolete columns from it. SQL provides ALTER TABLE to
add new columns to a table and to drop existing columns. A single ALTER TABLE can carry
out a single operation, or both operations.

Making changes to views and indexes always requires two separate statements:
1. Drop the existing definition.

2. Create a new definition.

INTERBASE 5

ALTERING METADATA

If current metadata cannot be dropped, replacement definitions cannot be added.
Dropping metadata can fail for the following reasons:

® The person attempting to drop metadata is not the metadata’s creator.
® SQL integrity constraints are defined for the metadata and referenced in other metadata.
® The metadata is used in another view, trigger, or computed column.

For more information about dropping metadata, see “Dropping metadata” on page 94.

Altering a table

ALTER TABLE enables the following changes to an existing table:
® Adding new column definitions
= Adding new table constraints
® Dropping existing column definitions
® Dropping existing table constraints
® Changing column definitions by dropping existing definitions, and adding new ones

® Changing existing table constraints by dropping existing definitions, and adding new
ones

The simple syntax of ALTER TABLE is as follows:

EXEC SQL
ALTER TABLE name { ADD col nanme <dat at ype> [NOT NULL]
| DROP col name | ADD CONSTRAI NT constrai nt nane tabl econstrai nt
| DROP CONSTRAI NT constrai nt nane} ;

Note For information about adding, dropping, and modifying constraints at the table
level, see the Data Definition Guide.

For the complete syntax of ALTER TABLE, see the Language Reference.

» Adding a new column to a table

To add another column to an existing table, use ALTER TABLE. A table can only be modified
by its creator. The syntax for adding a column with ALTER TABLE is:

EXEC SQL
ALTER TABLE nane ADD col nane <dat at ype> col constrai nt
[, ADD col nane datatype col constraint ...];

For example, the following statement adds a column, EMP_NO, to the EMPLOYEE table:

PROGRAMMER'S GUIDE 97

98

CHAPTER 5 WORKING WITH DATA DEFINITION STATEMENTS

EXEC SQL
ALTER TABLE EMPLOYEE ADD EMP_NO EMPNO NOT NULL;
EXEC SQL
COW T;

This example makes use of a domain, EMPNO, to define a column. For more information
about domains, see the Data Definition Guide.

Multiple columns can be added to a table at the same time. Separate column definitions
with commas. For example, the following statement adds two columns, EMP_NO, and
FULL_NAME, to the EMPLOYEE table. FULL_NAME is a computed column, a column that
derives it values from calculations based on other columns:

EXEC SQL
ALTER TABLE EMPLOYEE
ADD EMP_NO EMPNO NOT NULL,
ADD FULL_NAME COMPUTED BY (LAST_NAME || ', ' || FIRST_NAME);
EXEC SQL
COW T;

This example creates a column using a value computed from two other columns already
defined for the EMPLOYEE table. For more information about creating computed columns,
see the Data Definition Guide.

New columns added to a table can be defined with integrity constraints. For more
information about adding columns with integrity constraints to a table, see the Data
Definition Guide.

» Dropping an existing column

To delete a column definition and its data from a table, use ALTER TABLE. A column can
only be dropped by the owner of the table, the SYSDBA, or a user with root privileges. If
a table is in use when a column is dropped, the drop is postponed until the table is no

longer in use. The syntax for dropping a column with ALTER TABLE is:

EXEC SQL
ALTER TABLE nanme DROP col nane [, colnane ...];

For example, the following statement drops the EMP_NO column from the EMPLOYEE table:

EXEC SQL
ALTER TABLE EMPLOYEE DROP EMP_NO,
EXEC SQL
COW T;

Multiple columns can be dropped with a single ALTER TABLE. The following statement
drops the EMP_NO and FULL_NAME columns from the EMPLOYEE table:

INTERBASE 5

ALTERING METADATA

EXEC SQL
ALTER TABLE EMPLOYEE
DROP EMP_NO,
DROP FULL_NAME;
EXEC SQL
COW T;

Deleting a column fails if the column is part of a UNIQUE, PRIMARY KEY, or FOREIGN KEY
constraint. To drop the column, first drop the constraint, then the column.

Deleting a column also fails if the column is used by a CHECK constraint for another
column. To drop the column, first drop the CHECK constraint, then drop the column.

For more information about integrity constraints, see the Data Definition Guide.

» Modifying a column

An existing column definition can be modified using ALTER TABLE, but if data already
stored in that column is not preserved before making changes, it will be lost.

Preserving data entered in a column and modifying the definition for a column, is a
Six-step process:

1. Adding a new, temporary column to the table that mirrors the current
metadata of the column to be changed.

2. Copying the data from the column to be changed to the newly created
temporary column.

3. Dropping the column to change.

4. Adding a new column definition, giving it the same name that the previously
dropped column had.

5. Copying data from the temporary column to the redefined column.
6. Dropping the temporary column.

For example, suppose the EMPLOYEE table contains a column, OFFICE_NO, defined to hold
a datatype of CHAR(3), and suppose that the size of the column needs to be increased by
one. The following numbered sequence describes each step and provides sample code:

1. First, create a temporary column to hold the data in OFFICE_NO during the
modification process:
EXEC SQL
ALTER TABLE EMPLOYEE ADD TEMP_NO CHAR(3);
EXEC SQL
COW T;
2. Move existing data from OFFICE_NO to TEMP_NO to preserve it:

PROGRAMMER'S GUIDE 929

CHAPTER 5 WORKING WITH DATA DEFINITION STATEMENTS

EXEC SQL
UPDATE EMPLOYEE
SET TEMP_NO = OFFI CE_NO,
3. After the data is moved, drop the OFFICE_NO column:

EXEC SQL
ALTER TABLE DROP OFFI CE_NG
EXEC SQL
COW T;
4. Add a new column definition for OFFICE_NO, specifying the datatype and
new size:

EXEC SQL
ALTER TABLE ADD OFFI CE_NO CHAR (4):
EXEC SQL
COW T;
5. Move the data from TEMP_NO to OFFICE_NO:

EXEC SQL
UPDATE EMPLOYEE
SET OFFI CE_NO = TEMP_NO
6. Finally, drop the TEMP_NO column:

EXEC SQL
ALTER TABLE DROP TEMP_NG,
EXEC SQL
COW T,
For more information about dropping column definitions, see “Dropping an existing
column” on page 98. For more information about adding column definitions, see
“Adding a new column to a table” on page 97.

Altering a view

To change the information provided by a view, follow these steps:

1. Drop the current view definition.

2. Create a new view definition and give it the same name as the dropped view.

For example, the following view is defined to select employee salary information:

EXEC SQL
CREATE VI EW EMPLOYEE_SALARY AS
SELECT EMP_NO, LAST_NAME, CURRENCY, SALARY

100 INTERBASE 5

ALTERING METADATA

FROM EMPLOYEE, COUNTRY
VWHERE EMPLOYEE. COUNTRY_CODE = COUNTRY. CODE;

Suppose the full name of each employee should be displayed instead of the last name.
First, drop the current view definition:

EXEC SQL

DROP EMPLOYEE_SALARY;
EXEC SQL

COW T;

Then create a new view definition that displays each employee’s full name:

EXEC SQL
CREATE VI EW EMPLOYEE_SALARY AS
SELECT EMP_NO, FULL_NAME, CURRENCY, SALARY
FROM EMPLOYEE, COUNTRY
WHERE EMPLOYEE. COUNTRY_CODE = COUNTRY. CODE;
EXEC SQL
COW T;

Altering an index

To change the definition of an index, follow these steps:

1. Use ALTER INDEX to make the current index inactive.

2. Drop the current index.

3. Create a new index and give it the same name as the dropped index.

An index is usually modified to change the combination of columns that are indexed, to
prevent or allow insertion of duplicate entries, or to specify index sort order. For example,
given the following definition of the NAMEX index:

EXEC SQL
CREATE | NDEX NAVEX ON EMPLOYEE (LAST_NAME, FI RST_NAME);

Suppose there is an additional need to prevent duplicate entries with the UNIQUE
keyword. First, make the current index inactive, then drop it:

EXEC SQL

ALTER | NDEX NAMEX | NACTI VE;
EXEC SQL

DROP | NDEX NANMEX;
EXEC SQL

COW T;

PROGRAMMER'S GUIDE 101

IMPORTANT

102

CHAPTER 5 WORKING WITH DATA DEFINITION STATEMENTS

Then create a new index, NAMEX, based on the previous definition, that also includes the
UNIQUE keyword:

EXEC SQL

CREATE UNI QUE | NDEX NAMEX ON EMPLOYEE (LAST_NAME, FI RST_NAVE);
EXEC SQL

CoOW T

ALTER INDEX can be used directly to change an index’s sort order, or to add the ability to
handle unique or duplicate entries. For example, the following statement changes the
NAMEX index to permit duplicate entries:

EXEC SQL
ALTER | NDEX NAVEX DUPLI CATE;

Be careful when altering an index directly. For example, changing an index from
supporting duplicate entries to one that requires unique entries without disabling the
index and recreating it can reduce index performance.

For more information about dropping an index, see “Dropping an index” on page 95.
For more information about creating an index, see “Creating an index” on page 92.

INTERBASE 5

CHAPTER

Working with Data

The majority of SQL statements in an embedded program are devoted to reading or
modifying existing data, or adding new data to a database. This chapter describes the
types of data recognized by InterBase, and how to retrieve, modify, add, or delete data in
a database using SQL expressions and the following statements.

® SELECT statements query a database, that is, read or retrieve existing data from a database.
Variations of the SELECT statement make it possible to retrieve:

- A single row, or part of a row, from a table. This operation is referred to as a singleton
select.

- Multiple rows, or parts of rows, from a table using a SELECT within a DECLARE CURSOR
statement.

- Related rows, or parts of rows, from two or more tables into a virtual table, or results
table. This operation is referred to as a join.

- All rows, or parts of rows, from two or more tables into a virtual table. This operation
is referred to as a union.

® INSERT statements write new rows of data to a table.
® UPDATE statements modify existing rows of data in a table.

® DELETE statements remove existing rows of data from a table.

PROGRAMMER'S GUIDE 103

CHAPTER 6 WORKING WITH DATA

To learn how to use the SELECT statement to retrieve data, see “Understanding data
retrieval with SELECT” on page 122. For information about retrieving a single row with
SELECT, see “Selecting a single row” on page 139. For information about retrieving
multiple rows, see “Selecting multiple rows” on page 140.

For information about using INSERT to write new data to a table, see “Inserting data” on
page 160. To modify data with UPDATE, see “Updating data” on page 166. To remove
data from a table with DELETE, see “Deleting data” on page 172.

Supported datatypes

To query or write to a table, it is necessary to know the structure of the table, what
columns it contains, and what datatypes are defined for those columns. InterBase
supports ten fundamental datatypes, described in the following table:

Name Size Range/Precision Description
BLOB Variable None. Blob segment size is limited to ~ Dynamically sizable dataype for storing
64K. large data, such as graphics, text, and
digitized voice. Basic structural unit is
the segment. Blob subtype describes
Blob contents.
CHAR(N) n characters 1to 32,767 bytes. Fixed length CHAR or text string type.
Character set character size determines Alternate keyword: CHARACTER.
the maximum number of characters
that can fitin 32K.
DATE 64 bits 1Jan 100 to 11 Dec 5941. Also includes time information.
DECIMAL (precision, Variable precision = 1to 15. Specifies at least Number with a decimal point scale
scale) precision digits of precision to store. digits from the right. For example,
scale =110 15. Specifies numberof ~ DECIMAL(10, 3) holds numbers
decimal places for storage. Must be less accurately in the following format:
than or equal to precision. PPPPPPP-SSS
DOUBLEPRECISION 64 bits? 1.7x1073%8t0 1.7 x 10308, Scientific: 15 digits of precision.
FLOAT 32 bits 3.4x10738t03.4x 1038, Single precision: 7 digits of precision.
INTEGER 32 bits -2,147,483,648 t0 2,147,483,647. Signed long (longword).
TABLE6.1 Datatypes supported by InterBase

104

INTERBASE 5

SUPPORTED DATATYPES

Name Size Range/Precision Description

NUMERIC (precision, Variable precision = 1to 15. Specifies exactly Number with a decimal point scale

scale) precision digits of precision to store. digits from the right. For example,
scale = 1to 15. Specifies numberof ~ NUMERIC(10,3) holds numbers accurately
decimal places for storage. Must be less in the following format:
than or equal to precision. PPPPPPP.SSS

SMALLINT 16 bits -32,76810 32,767. Signed short (word).

VARCHAR (n) n characters 1to 32,765 bytes. Variable length CHAR or text string

Character set character size determines YPe-
the maximum number of characters ~ Alternate keywords: CHAR VARYING,
that can fitin 32K. CHARACTER VARYING.

TABLE6.1 Datatypes supported by InterBase (continued)

a. Actual size of DOUBLE is platform-dependent. Most platforms support the 64-bit size.

The BLOB datatype can store large data objects of indeterminate and variable size, such
as bitmapped graphics images, vector drawings, sound files, chapter or book-length
documents, or any other kind of multimedia information. Because a Blob can hold
different kinds of information, it requires special processing for reading and writing. For
more information about Blob handling, see Chapter 8, “Working with Blob Data.”

The DATE datatype may require conversion to and from InterBase when entered or
manipulated in a host-language program. For more information about retrieving and
writing dates, see Chapter 7, “Working with Dates.”

InterBase also supports arrays of most datatypes. An array is a matrix of individual items,
all of any single InterBase datatype, except Blob, that can be handled either as a single
entity, or manipulated item by item. To learn more about the flexible data access provided
by arrays, see Chapter 9, “Using Arrays.”

For a complete discussion of InterBase datatypes, see the Data Definition Guide.

PROGRAMMER'S GUIDE 105

CHAPTER 6 WORKING WITH DATA

Understanding SQL expressions

All SQL data manipulation statements support SQL expressions, SQL syntax for comparing
and evaluating columns, constants, and host-language variables to produce a single
value.

In the SELECT statement, for example, the WHERE clause is used to specify a search
condition that determines if a row qualifies for retrieval. That search condition is an SQL
expression. DELETE and UPDATE also support search condition expressions. Typically,
when an expression is used as a search condition, the expression evaluates to a Boolean
value that is True, False, or Unknown.

SQL expressions can also appear in the INSERT statement VALUE clause and the UPDATE

statement SET clause to specify or calculate values to insert into a column. When inserting
or updating a numeric value via an expression, the expression is usually arithmetic, such
as multiplying one number by another to produce a new number which is then inserted
or updated in a column. When inserting or updating a string value, the expression may
concatenate, or combine, two strings to produce a single string for insertion or updating.

The following table describes the elements that can be used in expressions:

Element Description

Column names Columns from specified tables, against which to search or compare values,
or from which to calculate values.

Host-language variables Program variables containing changeable values. Host-language
variables must be preceded by a colon (:).

Constants Hard-coded numbers or quoted strings, like 507 or “Tokyo”.
Concatenation operator ||, used to combine character strings.

Arithmetic operators +,—,*,and /, used to calculate and evaluate values.

Logical operators Keywords, NOT, AND, and OR, used within simple search conditions, or to

combine simple search conditions to make complex searches. A logical
operation evaluates to true or false. Usually used only in search conditions.

TABLE6.2 Elements of SQL expressions

106 INTERBASE 5

UNDERSTANDING SQL EXPRESSIONS

Element

Description

Comparison operators

COLLATE clause

Stored procedures

Subqueries

Parentheses

Date literals

The USER pseudocolumn

<, >, <=,>=,=,and <>, used to compare a value on the left side of the
operator to another on the right. A comparative operation evaluates to
true or false.

Other, more specialized comparison operators include ALL, ANY, BETWEEN,
CONTAINING, EXISTS, IN, IS, LIKE, NULL, SINGULAR, SOME, and STARTING WITH. These
operators can evaluate to True, False, or Unknown. They are usually used
only in search conditions.

Comparisons of CHAR and VARCHAR values can sometimes take advantage of
a COLLATE clause to force the way text values are compared.

Reusable SQL statement blocks that can receive and return parameters,
and that are stored as part of a database’s metadata.

SELECT statements, typically nested in WHERE clauses, that return values to
be compared with the result set of the main SELECT statement.

Used to group expressions into hierarchies; operations inside parentheses
are performed before operations outside them. When parentheses are
nested, the contents of the innermost set is evaluated first and evaluation
proceeds outward.

String values that can be entered in quotes and be interpreted as date
values in SELECT, INSERT, and UPDATE operations. Possible strings are ‘TODAY,
‘NOW;, ‘YESTERDAY; and ‘TOMORROW"

References the name of the user who is currently logged in. For example,
USER can be used as a defaultin a column definition or to enter the current
user’s name in an INSERT. When a user name is present in a table, it can be
referenced with USER in SELECT and DELETE statements.

TABLE6.2 Elements of SQL expressions (continued)

Complex expressions can be constructed by combining simple expressions in different
ways. For example the following WHERE clause uses a column name, three constants,
three comparison operators, and a set of grouping parentheses to retrieve only those rows
for employees with salaries between $60,000 and $120,000:

WHERE DEPARTMENT = " Publ i cations" AND
(SALARY > 60000 AND SALARY < 120000)

PROGRAMMER'S GUIDE

107

CHAPTER 6 WORKING WITH DATA

As another example, search conditions in WHERE clauses often contain nested SELECT
statements, or subqueries. In the following query, the WHERE clause contains a subquery
that uses the aggregate function, AVGO, to retrieve a list of all departments with bigger
than average salaries:

EXEC SQL
DECLARE VELL_PAI D CURSOR FOR
SELECT DEPT_NO
I NTO : wel | pai d
FROM DEPARTMENT
WHERE SALARY > (SELECT AVG SALARY) FROM DEPARTMENT) ;

For more information about using subqueries to specify search conditions, see “Using
subqueries” on page 157. For more information about aggregate functions, see
“Retrieving aggregate column information” on page 125.

Using the string operator in expressions

The string operator, ||, also referred to as a concatenation operator, enables a single
character string to be built from two or more character strings. Character strings can be
constants or values retrieved from a column. For example,

char strbuf[80];
EXEC SQL
SELECT LAST_NAME || " is the manager of publications."
I NTO : str buf

FROM DEPARTNMENT, EMPLOYEE
WHERE DEPT_NO = 5900 AND MNGR NO = EMP_NO,

The string operator can also be used in INSERT or UPDATE statements:

EXEC SQL
| NSERT | NTO DEPARTMVENT (MANAGER NANE)
VALUES(: fnanme || :Inane);

108 INTERBASE 5

UNDERSTANDING SQL EXPRESSIONS

Using arithmetic operators in expressions

To calculate numeric values in expressions, InterBase recognizes four arithmetic
operators listed in the following table:

Operator Purpose Precedence Operator Purpose Precedence
* Multiplication 1 + Addition 3
/ Division 2 - Subtraction 4

TABLE6.3 Arithmetic operators

Arithmetic operators are evaluated from left to right, except when ambiguities arise. In
these cases, InterBase evaluates operations according to the precedence specified in the
table (for example, multiplications are performed before divisions, and divisions are
performed before subtractions).

Arithmetic operations are always calculated before comparison and logical operations. To
change or force the order of evaluation, group operations in parentheses. InterBase
calculates operations within parentheses first. If parentheses are nested, the equation in
the innermost set is the first evaluated, and the outermost set is evaluated last. For more
information about precedence and using parentheses for grouping, see “Determining
precedence of operators” on page 118.

The following example illustrates a WHERE clause search condition that uses an arithmetic
operator to combine the values from two columns, then uses a comparison operator to
determine if that value is greater than 10:

DECLARE RAI NCI TI ES CURSOR FOR
SELECT Cl TYNAME, COUNTRYNAME
I NTO : citynane, :countrynane
FROM CI Tl ES
WHERE JANUARY_RAI N + FEBRUARY_RAI N > 10;

Using logical operators in expressions

Logical operators calculate a Boolean value, True, False, or Unknown, based on
comparing previously calculated simple search conditions immediately to the left and
right of the operator. InterBase recognizes three logical operators, NOT, AND, and OR.

PROGRAMMER'S GUIDE 109

110

CHAPTER 6 WORKING WITH DATA

NOT reverses the search condition in which it appears, while AND and OR are used to
combine simple search conditions. For example, the following query returns any
employee whose last name is not “Smith”:

DECLARE NOSM TH CURSOR FCR
SELECT LAST_NAME
| NTO : | nane
FROM EMPLOYEE
WHERE NOT LNAME = "Snith";

When AND appears between search conditions, both search conditions must be true if a
row is to be retrieved. The following query returns any employee whose last name is
neither “Smith” nor “Jones”:

DECLARE NO SM TH_OR_JONES CURSOR FOR
SELECT LAST_NAME
I NTO : | nane
FROM EMPLOYEE
WHERE NOT LNAME = "Smith" AND NOT LNAME = "Jones";

OR stipulates that one search condition or the other must be true. For example, the
following query returns any employee named “Smith” or “Jones”:

DECLARE ALL_SM TH_JONES CURSOR FOR
SELECT LAST_NAME, FI RST_NAME
I NTO : | name, :fnane
FROM EMPLOYEE
WHERE LNAME = "Smith" OR LNAME = "Jones";

The order in which combined search conditions are evaluated is dictated by the
precedence of the operators that connect them. A NOT condition is evaluated before AND,
and AND is evaluated before OR. Parentheses can be used to change the order of
evaluation. For more information about precedence and using parentheses for grouping,
see “Determining precedence of operators” on page 118.

Using comparison operators in expressions

Comparison operators evaluate to a Boolean value: True, False, or Unknown, based on a
test for a specific relationship between a value to the left of the operator, and a value or
range of values to the right of the operator. Values compared must evaluate to the same
datatype, unless the CAST(function is used to translate one datatype to a different one
for comparison. Values can be columns, constants, or calculated values.

INTERBASE 5

UNDERSTANDING SQL EXPRESSIONS

The following table lists operators that can be used in statements, describes how they are
used, and provides samples of their use:

Note Comparisons evaluate to Unknown if a NULL value is encountered.

For more information about CAST(, see “Using CAST() for datatype conversions” on
page 121.

InterBase also supports comparison operators that compare a value on the left of the
operator to the results of a subquery to the right of the operator. The following table lists
these operators, and describes how they are used:

Operator Purpose

ALL Determines if a value is equal to all values returned by a subquery

ANY and SOME Determines if a value is equal to any values returned by a subquery
EXISTS Determines if a value exists in at least one value returned by a subquery
SINGULAR Determines if a value exists in exactly one value returned by a subquery

TABLE6.4 InterBase comparison operators requiring subqueries
For more information about using subqueries, see “Using subqueries” on page 157.

» Using BETWEEN

BETWEEN tests whether a value falls within a range of values. The complete syntax for the
BETWEEN operator is:

<val ue> [NOT] BETVEEN <val ue> AND <val ue>

For example, the following cursor declaration retrieves LAST_NAME and FIRST_NAME
columns for employees with salaries between $100,000 and $250,000, inclusive:

EXEC SQL
DECLARE LARGE_SALARI ES CURSOR FOR
SELECT LAST_NAME, FI RST_NAVE
FROM EMPLOYEE
WHERE SALARY BETWEEN 100000 AND 250000;

Use NOT BETWEEN to test whether a value falls outside a range of values. For example, the
following cursor declaration retrieves the names of employees with salaries less than
$30,000 and greater than $150,000:

EXEC SQL
DECLARE EXTREME_SALARI ES CURSOR FOR

PROGRAMMER'S GUIDE 111

112

Tip

CHAPTER 6 WORKING WITH DATA

SELECT LAST_NAME, FI RST_NAME
FROM EMPLOYEE
VWHERE SALARY NOT BETWEEN 30000 AND 150000;

» Using CONTAINING

CONTAINING tests to see if an ASCII string value contains a quoted ASCII string supplied
by the program. String comparisons are case-insensitive; “String”, “STRING”, and “string”
are equivalent values for CONTAINING. The complete syntax for CONTAINING is:

<val ue> [NOT] CONTAI NI NG "<stri ng>"

For example, the following cursor declaration retrieves the names of all employees whose
last names contain the three-letter combination, “las” (and “LAS” or “Las”):

EXEC SQL
DECLARE LAS_EMP CURSOR FOR
SELECT LAST_NAME, FI RST_NAVE
FROM EMPLOYEE
WHERE LAST NAME CONTAINI NG "l as";

Use NOT CONTAINING to test for strings that exclude a specified value. For example, the
following cursor declaration retrieves the names of all employees whose last names do
not contain “las” (also “LAS” or “Las”):

EXEC SQL
DECLARE NOT_LAS EMP CURSOR FOR
SELECT LAST_NAVE, FI RST_NAME
FROM EMPLOYEE
WHERE LAST_NAME NOT CONTAI NING "l as";

CONTAINING can be used to search a Blob segment by segment for an occurrence of a
quoted string.

» Using IN

IN tests that a known value equals at least one value in a list of values. A list is a set of
values separated by commas and enclosed by parentheses. The values in the list must be
parenthesized and separated by commas. If the value being compared to a list of values
is NULL, IN returns Unknown.

The syntax for IN is:

<val ue> [NOT] IN (<value> [, <value> ...])

For example, the following cursor declaration retrieves the names of all employees in the
accounting, payroll, and human resources departments:

INTERBASE 5

UNDERSTANDING SQL EXPRESSIONS

EXEC SQL
DECLARE ACCT_PAY_HR CURSCOR FOR
SELECT DEPARTMENT, LAST_NAME, FI RST_NAME, EMP_NO
FROM EMPLOYEE EMP, DEPTARTMENT DEP
WHERE EMP. DEPT_NO = DEP. DEPT_NO AND
DEPARTMENT I N (" Accounting", "Payroll", "Hunman

Resour ces")

GROUP BY DEPARTMENT;

Use NOT IN to test that a value does not occur in a set of specified values. For example,
the following cursor declaration retrieves the names of all employees not in the
accounting, payroll, and human resources departments:

EXEC SQL
DECLARE NOT_ACCT_PAY_HR CURSCOR FOR

SELECT DEPARTMENT, LAST_NAME, FIRST_NAME, EMP_NO
FROM EMPLOYEE EMP, DEPTARTMENT DEP
WHERE EMP. DEPT_NO = DEP. DEPT_NO AND

DEPARTMENT NOT I N ("Accounting", "Payroll",
"Hurman Resources")

GROUP BY DEPARTMENT;

IN can also be used to compare a value against the results of a subquery. For example,
the following cursor declaration retrieves all cities in Europe:

EXEC SQL
DECLARE NON_JFG Cl TI ES CURSOR FOR
SELECT C. COUNTRY, C.CITY, C.POPULATI ON
FROM CI TIES C
WHERE C. COUNTRY NOT | N (SELECT O. COUNTRY FROM COUNTRI ES O
WHERE O CONTI NENT <> "Eur ope")
GROUP BY C. COUNTRY;

For more information about subqueries, see “Using subqueries” on page 157.

» Using LIKE

LIKE is a case-sensitive operator that tests a string value against a string containing
wildcards, symbols that substitute for a single, variable character, or a string of variable
characters. LIKE recognizes two wildcard symbols:

= % (percent) substitutes for a string of zero or more characters.

® _ (underscore) substitutes for a single character.

PROGRAMMER'S GUIDE 113

114

CHAPTER 6 WORKING WITH DATA

The syntax for LIKE is:
<val ue> [NOT] LIKE <val ue> [ESCAPE " symbol "]

For example, this cursor retrieves information about any employee whose last names
contain the three letter combination “ton” (but not “Ton”):

EXEC SQL
DECLARE TON_EMP CURSOR FOR
SELECT LAST_NAME, FIRST_NAME, EMP_NO
FROM EMPLOYEE
WHERE LAST NAME LI KE "% on% ;

To test for a string that contains a percent or underscore character:

1. Precede the % or _ with another symbol (for example, @), in the quoted
comparison string.

2. Use the ESCAPE clause to identify the symbol (@, in this case) preceding % or
_ as a literal symbol. A literal symbol tells InterBase that the next character
should be included as is in the search string.

For example, this cursor retrieves all table names in RDB$RELATIONS that have underscores
in their names:

EXEC SQL
DECLARE UNDER_TABLE CURSOR FOR
SELECT RDB$RELATI ON_NANE
FROM RDB$RELATI ONS
WHERE RDB$RELATI ON_NAME LI KE "%@ % ESCAPE "@;

Use NOT LIKE to retrieve rows that do not contain strings matching those described. For
example, the following cursor retrieves all table names in RDB$RELATIONS that do not have
underscores in their names:

EXEC SQL
DECLARE NOT_UNDER TABLE CURSOR FOR
SELECT RDB$RELATI ON_NANME
FROM RDB$RELATI ONS
WHERE RDB$RELATI ON_NAME NOT LIKE "%@ % ESCAPE "@ ;

» Using 1S NULL

IS NULL tests for the absence of a value in a column. The complete syntax of the IS NULL
clause is:

<val ue> |'S [NOT] NULL

INTERBASE 5

UNDERSTANDING SQL EXPRESSIONS

For example, the following cursor retrieves the names of employees who do not have
phone extensions:

EXEC SQL
DECLARE M SSI NG_PHONE CURSOR FOR
SELECT LAST_NAME, FI RST_NAME
FROM EMPLOYEE
VWHERE PHONE_EXT | S NULL;
Use IS NOT NULL to test that a column contains a value. For example, the following cursor
retrieves the phone numbers of all employees that have phone extensions:

EXEC SQL
DECLARE PHONE_LI ST CURSOR FOR
SELECT LAST_NAME, FIRST_NAVE, PHONE_EXT
FROM EMPLOYEE
WHERE PHONE_EXT |'S NOT NULL
ORDER BY LAST_NAMVE, FI RST_NAME;

» Using STARTING WITH

STARTING WITH is a case-sensitive operator that tests a string value to see if it begins with
a stipulated string of characters. To support international character set conversions,
STARTING WITH follows byte-matching rules for the specified collation order. The
complete syntax for STARTING WITH is:

<val ue> [NOT] STARTI NG W TH <val ue>

For example, the following cursor retrieves employee last names that start with “To”:

EXEC SQL
DECLARE TO EMP CURSOR FOR
SELECT LAST_NAME, FI RST_NAVE
FROM EMPLOYEE
WHERE LAST NAME STARTING W TH "To";

Use NOT STARTING WITH to retrieve information for columns that do not begin with the
stipulated string. For example, the following cursor retrieves all employees except those
whose last names start with “To”:

EXEC SQL
DECLARE NOT_TO EMP CURSCR FOR
SELECT LAST_NAME, FI RST_NAVE
FROM EMPLOYEE
WHERE LAST NAME NOT STARTI NG W TH " To";

For more information about collation order and byte-matching rules, see the Data
Definition Guide.

PROGRAMMER'S GUIDE 115

116

CHAPTER 6 WORKING WITH DATA

» Using ALL

ALL tests that a value is true when compared to every value in a list returned by a
subquery. The complete syntax for ALL is:

<val ue> <conpari son_operator> ALL (<subquery>)

For example, the following cursor retrieves information about employees whose salaries
are larger than that of the vice president of channel marketing:

EXEC SQL
DECLARE MORE_THAN VP CURSOR FOR
SELECT LAST_NAME, FIRST_NAME, SALARY
FROM EMPLOYEE
WHERE SALARY > ALL (SELECT SALARY FROM EMPLOYEE
WHERE DEPT_NO = 7734);

ALL returns Unknown if the subquery returns a NULL value. It can also return Unknown
if the value to be compared is NULL and the subquery returns any non-NULL data. If the
value is NULL and the subquery returns an empty set, ALL evaluates to True.

For more information about subqueries, see “Using subqueries” on page 157.

» Using ANY and SOME

ANY and SOME test that a value is true if it matches any value in a list returned by a
subquery. The complete syntax for ANY is:

<val ue> <conpari son_operator> ANY | SOVE (<subquery>)

For example, the following cursor retrieves information about salaries that are larger than
at least one salary in the channel marketing department:

EXEC SQL
DECLARE MORE_CHANNEL CURSOR FOR
SELECT LAST_NAME, FIRST_NAME, SALARY
FROM EMPLOYEE
WHERE SALARY > ANY (SELECT SALARY FROM EMPLOYEE
WHERE DEPT_NO = 7734);

ANY and SOME return Unknown if the subquery returns a NULL value. They can also return
Unknown if the value to be compared is NULL and the subquery returns any non-NULL
data. If the value is NULL and the subquery returns an empty set, ANY and SOME evaluate
to False.

For more information about subqueries, see “Using subqueries” on page 157.

INTERBASE 5

UNDERSTANDING SQL EXPRESSIONS

» Using EXISTS

EXISTS tests that for a given value there is at least one qualifying row meeting the search
condition specified in a subquery. The SELECT clause in the subquery must use the *
(asterisk) to select all columns. The complete syntax for EXISTS is:

[NOT] EXI STS (SELECT * FROM <t abl el i st> WHERE <search_condi ti on>)

The following cursor retrieves all countries with rivers:

EXEC SQL
DECLARE Rl VER_COUNTRI ES CURSOR FOR
SELECT COUNTRY
FROM COUNTRI ES C
WHERE EXI STS (SELECT * FROM RI VERS R
WHERE R COUNTRY = C. COUNTRY) ;

Use NOT EXISTS to retrieve rows that do not meet the qualifying condition specified in the
subquery. The following cursor retrieves all countries without rivers:

EXEC SQL
DECLARE NON_RI VER_COUNTRI ES COUNTRI ES FOR
SELECT COUNTRY
FROM COUNTRI ES C
WHERE NOT EXI STS (SELECT * FROM RI VERS R
WHERE R. COUNTRY = C. COUNTRY) ;

EXISTS always returns either True or False, even when handling NULL values.

For more information about subqueries, see “Using subqueries” on page 157.

» Using SINGULAR

SINGULAR tests that for a given value there is exactly one qualifying row meeting the
search condition specified in a subquery. The SELECT clause in the subquery must use the
* (asterisk) to select all columns. The complete syntax for SINGULAR is:

[NOT] SI NGULAR (SELECT * FROM <tabl el i st> WHERE <search_condi ti on>)

The following cursor retrieves all countries with a single capital:

EXEC SQL
DECLARE S| NGLE_CAPI TAL CURSOR FOR
SELECT COUNTRY
FROM COUNTRI ES COU
WHERE S| NGULAR (SELECT * FROM CITIES O T
WHERE CI T. CI TY = COU. CAPI TAL);

PROGRAMMER'S GUIDE 117

CHAPTER 6 WORKING WITH DATA

Use NOT SINGULAR to retrieve rows that do not meet the qualifying condition specified in
the subquery. For example, the following cursor retrieves all countries with more than

one capital:
EXEC SQL

DECLARE MULTI _CAPI TAL CURSOR FOR

SELECT COUNTRY

FROM COUNTRI ES CQU
VWHERE NOT SI NGULAR (SELECT * FROMCITIES T
VWHERE CI T. CI TY = COU. CAPI TAL) ;

For more information about subqueries, see “Using subqueries” on page 157.

Determining precedence of operators

The order in which operators and the values they affect are evaluated in a statement is
called precedence. There are two levels of precedence for SQL operators:

® Precedence among operators of different types.

® Precedence among operators of the same type.

) Precedence among operators

AMONG OPERATORS OF DIFFERENT TYPES

The following table lists the evaluation order of different InterBase operator types, from
first evaluated (highest precedence) to last evaluated (lowest precedence):

Operator type Precedence Explanation

String Highest Strings are always concatenated before all other operations
take place.

Mathematical ? Math is performed after string concatenation, but before
comparison and logical operations.

Comparison ? Comparison operations are evaluated after string
concatenation and math, but before logical operations.

Logical Lowest Logical operations are evaluated after all other operations.

TABLE6.5 Operator precedence by operator type

118

INTERBASE 5

UNDERSTANDING SQL EXPRESSIONS

TABLE6.6

TABLE6.7

AMONG OPERATORS OF THE SAME TYPE

When an expression contains several operators of the same type, those operators are
evaluated from left to right unless there is a conflict where two operators of the same type
affect the same values.

For example, in the mathematical equation, 3 + 2 * 6, both the addition and
multiplication operators work with the same value, 2. Evaluated from left to right, the
equation evaluates to 30: 3+ 2 = 5; 5 * 6 = 30. InterBase follows standard mathematical
rules for evaluating mathematical expressions, that stipulate multiplication is performed
before addition: 2 *6 = 12; 3 + 12 = 15.

The following table lists the evaluation order for all mathematical operators, from highest
to lowest:

Operator Precedence Explanation

* Highest Multiplication is performed before all other mathematical operations.
/ ? Division is performed before addition and subtraction.

+ ? Addition is performed before subtraction.

- Lowest Subtraction is performed after all other mathematical operations.

Mathematical operator precedence

InterBase also follows rules for determining the order in which comparison operators are
evaluated when conflicts arise during normal left to right evaluation. The next table
describes the evaluation order for comparison operators, from highest to lowest:

Operator Precedence Explanation

=== Highest Equality operations are evaluated before all other
comparison operations.

<>, =, ~=, A= ?

> ?

Comparison operator precedence

PROGRAMMER'S GUIDE 119

120

TABLE6.7

TABLE6.8

Tip

CHAPTER 6 WORKING WITH DATA

Operator Precedence Explanation

< ?

>= ?

<= ?

1>, ~> A> ?

I<, ~<, A< Lowest Not less than operations are evaluated after all other

comparison operations.

Comparison operator precedence (continued)

ALL, ANY, BETWEEN, CONTAINING, EXISTS, IN, LIKE, NULL, SINGULAR, SOME, and STARTING
WITH are evaluated after all listed comparison operators when they conflict with other
comparison operators during normal left to right evaluation. When they conflict with one
another they are evaluated strictly from left to right.

When logical operators conflict during normal left to right processing, they, too, are
evaluated according to a hierarchy, detailed in the following table:

Operator Precedence Explanation

NOT Highest NOT operations are evaluated before all other logical operations.

AND ? AND operations are evaluated after NOT operations, and before OR
operations.

OR Lowest OR operations are evaluated after all other logical operations.

Logical operator precedence

» Changing evaluation order of operators

To change the evaluation order of operations in an expression, use parentheses to group
operations that should be evaluated as a unit, or that should derive a single value for use
in other operations. For example, without parenthetical grouping, 3 + 2 * 6 evaluates to
15. To cause the addition to be performed before the multiplication, use parentheses:

(3+2) *6 =30

Always use parentheses to group operations in complex expressions, even when default
order of evaluation is desired. Explicitly grouped expressions are easier to understand
and debug.

INTERBASE 5

UNDERSTANDING SQL EXPRESSIONS

TABLE6.9

Using CAsT() for datatype conversions

Normally, only similar datatypes can be compared or evaluated in expressions. The CASTO
function can be used in expressions to translate one datatype into another for comparison
purposes. The syntax for CASTQ is:

CAST (<val ue> | NULL AS dat at ype)

For example, in the following WHERE clause, CAST() is used to translate a CHAR datatype,
INTERVIEW_DATE, to a DATE datatype to compare against a DATE datatype, HIRE_DATE:
WHERE HI RE_DATE = CAST(| NTERVI EW DATE AS DATE) ;

CAST(can be used to compare columns with different datatypes in the same table, or
across tables. You can convert one datatype to another as shown in the following table:

From datatype To datatype
NUMERIC CHARACTER, DATE
CHARACTER NUMERIC, DATE

DATE CHARACTER, NUMERIC

Compatible datatypes for CAST()

An error results if a given datatype cannot be converted into the datatype specified in
CASTO.

Using UPPER() on text data

The UPPERQ function can be used in SELECT, INSERT, UPDATE, or DELETE operations to force
character and Blob text data to uppercase. For example, an application that prompts a

user for a department name might want to ensure that all department names are stored
in uppercase to simplify data retrieval later. The following code illustrates how UPPER(
would be used in the INSERT statement to guarantee a user’s entry is uppercase:

EXEC SQL
BEG N DECLARE SECTI ON,
char response[26];
EXEC SQL
END DECLARE SECTI ON,

printf("Enter new department name: ");
response[0] = '\0";

PROGRAMMER'S GUIDE 121

CHAPTER 6 WORKING WITH DATA

get s(response);
if (response)
EXEC SQL
| NSERT | NTO DEPARTMENT(DEPT_NO, DEPARTMENT)
VALUES(GEN_I D(GDEPT_NO, 1), UPPER(:response));

The next statement illustrates how UPPER(can be used in a SELECT statement to affect
both the appearance of values retrieved, and to affect its search condition:

EXEC SQL
SELECT DEPT_NO, UPPER(DEPARTMENT)
FROM DEPARTNENT
WHERE UPPER(DEPARTMENT) STARTING WTH * A’ ;

Understanding data retrieval with SELECT

The SELECT statement handles all queries in SQL. SELECT can retrieve one or more rows
from a table, and can return entire rows, or a subset of columns from each row, often
referred to as a projection. Optional SELECT syntax can be used to specify search criteria
that restrict the number of rows returned, to select rows with unknown values, to select
rows through a view, and to combine rows from two or more tables.

At 2 minimum, every SELECT statement must:

= List which columns to retrieve from a table. The column list immediately follows the
SELECT keyword.

= Name the table to search in a FROM clause.

Singleton selects must also include both an INTO clause to specify the host variables into
which retrieved values should be stored, and a WHERE clause to specify the search
conditions that cause only a single row to be returned.

The following SELECT retrieves three columns from a table and stores the values in three
host-language variables:

EXEC SQL
SELECT EMP_NO, FI RSTNAME, LASTNAME
I NTO : enp_no, :fnane, :Ilnane

FROM EMPLOYEE WHERE EMP_NO = 1888;

Tip Host variables must be declared in a program before they can be used in SQL
statements. For more information about declaring host variables, see Chapter 2,
“Application Requirements.”

122 INTERBASE 5

UNDERSTANDING DATA RETRIEVAL WITH SELECT

The following table lists all SELECT statement clauses, in the order that they are used, and
prescribes their use in singleton and multi-row selects:

Singleton Multi-row
Clause Purpose SELECT SELECT
SELECT Lists columns to retrieve. Required Required
INTO Lists host variables for storing retrieved columns. Required Not allowed
FROM Identifies the tables to search for values. Required Required
WHERE Specifies the search conditions used to restrict retrieved ~ Optional Optional
rows to a subset of all available rows. A WHERE clause can
contain its own SELECT statement, referred to as a subquery.
GROUP BY Groups related rows based on common column values. Optional Optional
Used in conjunction with HAVING.
HAVING Restricts rows generated by GROUP BY to a subset of those Optional Optional
rows.
UNION Combines the results of two or more SELECT statementsto ~ Optional Optional
produce a single, dynamic table without duplicate rows.
PLAN Specifies the query plan that should be used by the query ~ Optional Optional
optimizer instead of one it would normally choose.
ORDER BY Specifies the sort order of rows returned by a SELECT, either Optional Optional

ascending (Asc), the default, or descending (DESC).

FOR UPDATE Specifies columns listed after the SELECT clause of a DECLARE Notallowed ~ Optional
CURSOR statement that can be updated using a WHERE
CURRENT OF clause.

TABLE6.10 SELECT statement clauses

Using each of these clauses with SELECT is described in the following sections, after which
using SELECT directly to return a single row, and using SELECT within a DECLARE CURSOR
statement to return multiple rows are described in detail. For a complete overview of
SELECT syntax, see the Language Reference.

PROGRAMMER'S GUIDE 123

IMPORTANT

124

CHAPTER 6 WORKING WITH DATA

Listing columns to retrieve with SELECT

A list of columns to retrieve must always follow the SELECT keyword in a SELECT statement.
The SELECT keyword and its column list is called a SELECT clause.

) Retrieving a list of columns

To retrieve a subset of columns for a row of data, list each column by name, in the order
of desired retrieval, and separate each column name from the next by a comma.
Operations that retrieve a subset of columns are often called projections.

For example, the following SELECT retrieves three columns:

EXEC SQL
SELECT EMP_NO, FI RSTNAME, LASTNAME
I NTO : enp_no, :fname, :I|nane

FROM EMPLOYEE WHERE EMP_NO = 2220;

) Retrieving all columns

To retrieve all columns of data, use an asterisk (*) instead of listing any columns by name.
For example, the following SELECT retrieves every column of data for a single row in the
EMPLOYEE table:

EXEC SQL
SELECT *
I NTO : enp_no, :fnane, :lnane, :phone_ext, :hire, :dept_no,
:job_code, :job_grade, :job_country, :salary, :full_nane
FROM EMPLOEE WHERE EMP_NO = 1888;

You must provide one host variable for each column returned by a query.

ELIMINATING DUPLICATE COLUMNS WITH DISTINCT

In a query returning multiple rows, it may be desirable to eliminate duplicate columns.
For example, the following query, meant to determine if the EMPLOYEE table contains
employees with the last name, SMITH, might locate many such rows:

EXEC SQL
DECLARE SM TH CURSOR FOR
SELECT LAST_NAMVE
FROM EMPLOYEE
WHERE LAST _NAME = "Snith";

To eliminate duplicate columns in such a query, use the DISTINCT keyword with SELECT.
For example, the following SELECT yields only a single instance of “Smith”:

INTERBASE 5

UNDERSTANDING DATA RETRIEVAL WITH SELECT

TABLE6.11

EXEC SQL
DECLARE SM TH CURSOR FOR
SELECT DI STI NCT LAST_NAME
FROM EMPLOYEE
WHERE LAST NAME = "Smith";

DISTINCT affects all columns listed in a SELECT statement.

) Retrieving aggregate column information

SELECT can include aggregate functions, functions that calculate or retrieve a single,
collective numeric value for a column or expression based on each qualifying row in a
query rather than retrieving each value separately. The following table lists the aggregate
functions supported by InterBase:

Function Purpose

AVG() Calculates the average numeric value for a set of values.

MIN() Retrieves the minimum value in a set of values.

MAX() Retrieves the maximum value in a set of values.

Sum(Calculates the total of numeric values in a set of values.

COUNT() Calculates the number of rows that satisfy the query’s search condition

(specified in the WHERE clause).

Aggregate functions in SQL

For example, the following query returns the average salary for all employees in the
EMPLOYEE table:

EXEC SQL
SELECT AVG SALARY)
I NTO : avg_sal
FROM EMPLOYEE;

The following SELECT returns the number of qualifying rows it encounters in the
EMPLOYEE table, both the maximum and minimum employee number of employees in the
table, and the total salary of all employees in the table:

EXEC SQL
SELECT COUNT(*), MAX(EMP_NO), M N(EMP_NO), SUM SALARY)
I NTO : counter, :maxno, :mnno, :total_salary
FROM EMPLOYEE;

PROGRAMMER'S GUIDE 125

126

CHAPTER 6 WORKING WITH DATA

If a field value involved in an aggregate calculation is NULL or unknown, the entire row
is automatically excluded from the calculation. Automatic exclusion prevents averages
from being skewed by meaningless data.

Note Aggregate functions can also be used to calculate values for groups of rows. The
resulting value is called a group aggregate. For more information about using group
aggregates, see “Grouping rows with GROUP BY” on page 135.

b Multi-table SELECT statements

When data is retrieved from multiple tables, views, and select procedures, the same
column name may appear in more than one table. In these cases, the SELECT statement
must contain enough information to distinguish like-named columns from one another.

To distinguish column names in multiple tables, precede those columns with one of the
following qualifiers in the SELECT clause:

The name of the table, followed by a period. For example,
EMPLOYEE.EMP_NO identifies a column named EMP_NO in the EMPLOYEE table.

A table correlation name (alias) followed by a period. For example, if the correlation
name for the EMPLOYEE table is EMP, then EMPEMP_NO identifies a column named EMP_NO
in the EMPLOYEES table.

Correlation names can be declared for tables, views, and select procedures in the FROM
clause of the SELECT statement. For more information about declaring correlation names,
and for examples of their use, see “Declaring and using correlation names” on
page 130.

» Specifying transaction names
InterBase enables an SQL application to run many simultaneous transactions if:
Each transaction is first named with a SET TRANSACTION statement.

Each data manipulation statement (SELECT, INSERT, UPDATE, DELETE) specifies a
TRANSACTION clause that identifies the name of the transaction under which it operates.

SQL statements are not dynamic.

In SELECT, the TRANSACTION clause intervenes between the SELECT keyword and the
column list, as in the following syntax fragment:

SELECT TRANSACTI ON nane <col> [, <col> ...]

The TRANSACTION clause is optional in single-transaction programs or in programs where

only one transaction is open at a time. It must be used in a multi-transaction program.
For example, the following SELECT is controlled by the transaction, T1:

EXEC SQL

INTERBASE 5

UNDERSTANDING DATA RETRIEVAL WITH SELECT

SELECT TRANSACTI ON T1:
COUNT(*), MAX(EMP_NO), M N(EMP_NO, SUM SALARY)
I NTO : counter, :maxno, :mnno, :total_salary
FROM EMPLOYEE;

For a complete discussion of transaction handling and naming, see Chapter 4, “Working
with Transactions.”

Specifying host variables with INTO

A singleton select returns data to a list of host-language variables specified by an INTO
clause in the SELECT statement. The INTO clause immediately follows the list of table
columns from which data is to be extracted. Each host variable in the list must be
preceded by a colon (:) and separated from the next by a comma.

The host-language variables in the INTO clause must already have been declared before
they can be used. The number, order, and datatype of host-language variables must
correspond to the number, order, and datatype of the columns retrieved. Otherwise,
overflow or data conversion errors may occur.

For example, the following C program fragment declares three host variables, /name,
fname, and salary. Two, Iname, and fname, are declared as character arrays; salary is
declared as a long integer. The SELECT statement specifies that three columns of data are
to be retrieved, while the INTO clause specifies the host variables into which the data
should be read.

EXEC SQL

BEG N DECLARE SECTI ON,;
| ong sal ary;
char | nane[20], fnang[15];
EXEC SQL

END DECLARE SECTI ON,

EXEC SQL
SELECT LAST_NAME, FI RST_NAME, SALARY
I NTO :lanem :fnane, :salary
FROM EMPLOYEE
WHERE LNAME = "Snith";

PROGRAMMER'S GUIDE 127

128

CHAPTER 6 WORKING WITH DATA

Note Ina multi-row select, the INTO clause is part of the FETCH statement, 720t the SELECT
statement. For more information about the INTO clause in FETCH, see “Fetching rows
with a cursor” on page 143.

Listing tables to search with FROM

The FROM clause is required in a SELECT statement. It identifies the tables, views, or select
procedures from which data is to be retrieved. The complete syntax of the FROM clause is:

FROM table | view| procedure [alias] [, table | view| procedure
[alias] ...]

There must be at least one table, view, or select procedure name following the FROM
keyword. When retrieving data from multiple sources, each source must be listed,
assigned an alias, and separated from the next with a comma. For more information
about select procedures, see Chapter 11, “Working with Stored Procedures.”

» Listing a single table or view

The FROM clause in the following SELECT specifies a single table, EMPLOYEE, from which
to retrieve data:

EXEC SQL
SELECT LAST_NAME, FI RST_NAME, SALARY
I NTO :lanem :fnane, :salary
FROM EMPLOYEE
WHERE LNAME = "Snith";

Use the same INTO clause syntax to specify a view or select procedure as the source for
data retrieval instead of a table. For example, the following SELECT specifies a select
procedure, MVIEW, from which to retrieve data. MVIEW returns information for all
managers whose last names begin with the letter “M,” and the WHERE clause narrows the
rows returned to a single row where the DEPT_NO column is 430:

EXEC SQL
SELECT DEPT_NO, LAST_NAME, FI RST_NAME, SALARY
I NTO : | name, :fname, :salary
FROM WI EW
WHERE DEPT_NO = 430;

For more information about select procedures, see Chapter 11, “Working with
Stored Procedures.”

INTERBASE 5

UNDERSTANDING DATA RETRIEVAL WITH SELECT

» Listing multiple tables

To retrieve data from multiple tables, views, or select procedures, include all sources in
the FROM clause, separating sources from one another by commas.

There are two different possibilities to consider when working with multiple data sources:
1. The name of each referenced column is unique across all tables.
2. The names of one or more referenced columns exist in two or more tables.

In the first case, just use the column names themselves to reference the columns. For
example, the following query returns data from two tables, DEPARTMENT, and EMPLOYEE:

EXEC SQL
SELECT DEPARTMENT, DEPT_NO LAST _NAME, FI RST_NAME, EMP_NO
I NTO : dept _nane, :dept_no, :I|name, :fname, :enpno

FROM DEPARTMENT, EMPLOYEE
VHERE DEPT_NO = "Publications” AND MNGR_NO = EMP_NG,

In the second case, column names that occur in two or more tables must be distinguished
from one another by preceding each column name with its table name and a period in
the SELECT clause. For example, if an EMP_NO column exists in both the DEPARTMENT and
EMPLOYEE then the previous query must be recast as follows:

EXEC SQL
SELECT DEPARTMENT, DEPT_NO, LAST_NAME, FI RST_NAME,
EMLOYEE. EMP_NO
I NTO : dept _nane, :dept_no, :lname, :fname, :enpno
FROM DEPARTMENT, EMPLOYEE
WHERE DEPT_NO = "Publications" AND
DEPARTMENT. EMP_NO = EMPLOYEE. EMP_NO

For more information about the SELECT clause, see “Listing columns to retrieve with
SELECT” on page 124.

IMPORTANT For queries involving joins, column names can be qualified by correlation names, brief
alternate names, or aliases, that are assigned to each table in a FROM clause and
substituted for them in other SELECT statement clauses when qualifying column names.
Even when joins are not involved, assigning and using correlation names can reduce the
length of complex queries.

PROGRAMMER'S GUIDE 129

130

CHAPTER 6 WORKING WITH DATA

» Declaring and using correlation names

A correlation name, or alias, is a temporary variable that represents a table name. It can
contain up to 31 alphanumeric characters, dollar signs ($), and underscores (_), but must
always start with an alphabetic character. Using brief correlation names reduces typing
of long queries. Correlation names must be substituted for actual table names in joins,
and can be substituted for them in complex queries.

A correlation name is associated with a table in the FROM clause; it replaces table names
to qualify column names everywhere else in the statement. For example, to associate the
correlation name, DEPT with the DEPARTMENT table, and EMP, with the EMPLOYEES table, a
FROM clause might appear as:

FROM DEPARTMENT DEPT, EMPLOYEE EMP

Like an actual table name, a correlation name is used to qualify column names wherever
they appear in a SELECT statement. For example, the following query employs the
correlation names, DEPT, and EMP, previously described:

EXEC SQL
SELECT DEPARTMENT, DEPT_NO, LAST_NAME, FI RST_NAME,
EMLOYEE. EMP_NO
I NTO : dept _nane, :dept_no, :lnane, :fnanme, :enpno
FROM DEPARTMENT DEPT, EMPLOYEE EMP
WHERE DEPT_NO = "Publications" AND DEPT. EMP_NO = EMP. EMP_NQ

For more information about the SELECT clause, see “Listing columns to retrieve with
SELECT” on page 124.

Restricting row retrieval with WHERE

In a query, the WHERE clause specifies the data a row must (or must not) contain to be
retrieved.

In singleton selects, where a query must only return one row, WHERE is mandatory unless
a select procedure specified in the FROM clause returns only one row itself.

In SELECT statements within DECLARE CURSOR statements, the WHERE clause is optional. If
the WHERE clause is omitted, a query returns all rows in the table. To retrieve a subset of
rows in a table, a cursor declaration must include a WHERE clause.

The simple syntax for WHERE is:

WHERE <search_condition>

For example, the following simple WHERE clause tests a row to see if the
DEPARTMENT column is “Publications”:

INTERBASE 5

UNDERSTANDING DATA RETRIEVAL WITH SELECT

VWHERE DEPARTNMENT = "Publications"

» What is a search condition?

Because the WHERE clause specifies the type of data a query is searching for it is often
called a search condition. A query examines each row in a table to see if it meets the
criteria specified in the search condition. If it does, the row qualifies for retrieval.

When a row is compared to a search condition, one of three values is returned:
® True: A row meets the conditions specified in the WHERE clause.
® False: A row fails to meet the conditions specified in the WHERE clause.

= Unknown: A column tested in the WHERE clause contains an unknown value that could
not be evaluated because of a NULL comparison.

Most search conditions, no matter how complex, evaluate to True or False. An expression
that evaluates to True or False—Ilike the search condition in the WHERE clause—is called
a Boolean expression.

b Structure of a search condition
A typical simple search condition compares a value in one column against a constant or

a value in another column. For example, the following WHERE clause tests a row to see if
a field equals a hard-coded constant:

WHERE DEPARTMENT = "Publications"
This search condition has three elements: a column name, a comparison operator (the
equal sign), and a constant. Most search conditions are more complex than this. They

involve additional elements and combinations of simple search conditions. The following
table describes expression elements that can be used in search conditions:

PROGRAMMER'S GUIDE 131

132

TABLE6.12

Element

CHAPTER 6 WORKING WITH DATA

Description

Column names

Host-language variables

Constants
Concatenation operators
Arithmetic operators

Logical operators

Comparison operators

COLLATE clause

Stored procedures

Subqueries

Parentheses

Columns from tables listed in the FROM clause, against which to search or
compare values.

Program variables containing changeable values. When used in a SELECT,
host-language variables must be preceded by a colon (:).

Hard-coded numbers or quoted strings, like 507 or “Tokyo”
||, used to combine character strings.
+,—,* and /, used to calculate and evaluate search condition values.

Keywords, NOT, AND, and OR, used within simple search conditions, or to
combine simple search conditions to make complex searches. A logical
operation evaluates to true or false.

<, >, <=,>=,=,and <>, used to compare a value on the left side of the
operator to another on the right. A comparative operation evaluates to
True or False.

Other, more specialized comparison operators include ALL, ANY, BETWEEN,
CONTAINING, EXISTS, IN, IS, LIKE, NULL, SINGULAR, SOME, and STARTING WITH. These
operators can evaluate to True, False, or Unknown.

Comparisons of CHAR and VARCHAR values can sometimes take advantage
of a COLLATE clause to force the way text values are compared.

Reusable SQL statement blocks that can receive and return parameters,
and thatare stored as part of a database’s metadata. For more information
about stored procedures in queries, see Chapter 11, “Working with
Stored Procedures.”

A SELECT statement nested within the WHERE clause to return or calculate
values against which rows searched by the main SELECT statement are
compared. For more information about subqueries, see “Using
subqueries” on page 157.

Group related parts of search conditions which should be processed
separately to produce a single value which is then used to evaluate the
search condition. Parenthetical expressions can be nested.

Elements of WHERE clause SEARCH conditions

INTERBASE 5

UNDERSTANDING DATA RETRIEVAL WITH SELECT

Complex search conditions can be constructed by combining simple search conditions in
different ways. For example, the following WHERE clause uses a column name, three
constants, three comparison operators, and a set of grouping parentheses to retrieve only
those rows for employees with salaries between $60,000 and $120,000:

VHERE DEPARTMENT = "Publications” AND
(SALARY > 60000 AND SALARY < 120000)

Search conditions in WHERE clauses often contain nested SELECT statements, or
subqueries. For example, in the following query, the WHERE clause contains a subquery
that uses the aggregate function, AVG(), to retrieve a list of all departments with
bigger-than-average salaries:

EXEC SQL
DECLARE WELL_PAI D CURSOR FOR
SELECT DEPT_NO
I NTO : wel | pai d
FROM DEPARTNMENT
WHERE SALARY > (SELECT AVG SALARY) FROM DEPARTMENT) ;

For a general discussion of building search conditions from SQL expressions, see
“Understanding SQL expressions” on page 106. For more information about using
subqueries to specify search conditions, see “Using subqueries” on page 157. For more
information about aggregate functions, see “Retrieving aggregate column
information” on page 125.

b Collation order in comparisons

When CHAR or VARCHAR values are compared in a WHERE clause, it can be necessary to
specify a collation order for the comparisons if the values being compared use different
collation orders.

To specify the collation order to use for a value during a comparison, include a COLLATE
clause after the value. For example, in the following WHERE clause fragment from an
embedded application, the value to the left of the comparison operator is forced to be
compared using a specific collation:

WHERE LNAME COLLATE FR CA = : | nanme_search;

For more information about collation order and a list of collations available to InterBase,
see the Data Definition Guide.

PROGRAMMER'S GUIDE 133

IMPORTANT

134

CHAPTER 6 WORKING WITH DATA

Sorting rows with ORDER BY

By default, a query retrieves rows in the exact order it finds them in a table, and because
internal table storage is unordered, retrieval, too, is likely to be unordered. To specify the
order in which rows are returned by a query, use the optional ORDER BY clause at the end
of a SELECT statement.

ORDER BY retrieves rows based on a column list. Every column in the ORDER BY clause
must also appear somewhere in the SELECT clause at the start of the statement. Each
column can optionally be ordered in ascending order (ASC, the default), or descending
order (DESC). The complete syntax of ORDER BY is:

ORDER BY col [COLLATE collation] [ASC | DESC]
[, col [COLLATE collation] [ASC | DESC ...];

For example, the following cursor declaration orders output based on the LAST_NAME
column. Because DESC is specified in the ORDER BY clause, employees are retrieved from
Z to A:

EXEC SQL
DECLARE PHONE_LI ST CURSCR FOR
SELECT LAST_NAME, FIRST_NAMVE, PHONE_EXT
FROM EMPLOYEE
WHERE PHONE_EXT |'S NOT NULL
ORDER BY LAST_NAME DESC, FI RST_NAME;

) ORDER BY with multiple columns

If more than one column is specified in an ORDER BY clause, rows are first arranged by
the values in the first column. Then rows that contain the same first-column value are
arranged according to the values in the second column, and so on. Each ORDER BY
column can include its own sort order specification.

In multi-column sorts, after a sort order is specified, it applies to all subsequent columns
until another sort order is specified, as in the previous example. This attribute is
sometimes called sticky sort order. For example, the following cursor declaration orders
retrieval by LAST_NAME in descending order, then refines it alphabetically within
LAST_NAME groups by FIRST_NAME in ascending order:

EXEC SQL
DECLARE PHONE_LI ST CURSOR FOR
SELECT LAST_NAME, FIRST_NAMVE, PHONE_EXT
FROM EMPLOYEE
WHERE PHONE_EXT |'S NOT NULL
ORDER BY LAST_NAME DESC, FI RST_NAME ASC;

INTERBASE 5

UNDERSTANDING DATA RETRIEVAL WITH SELECT

» Collation order in an ORDER BY clause

When CHAR or VARCHAR columns are ordered in a SELECT statement, it can be necessary
to specify a collation order for the ordering, especially if columns used for ordering use
different collation orders.

To specify the collation order to use for ordering a column in the ORDER BY clause,
include a COLLATE clause after the column name. For example, in the following ORDER BY
clause, a different collation order for each of two columns is specified:

ORDER BY LNAME COLLATE FR_CA, FNAME COLLATE FR_FR;

For more information about collation order and a list of available collations in InterBase,
see the Data Definition Guide.

Grouping rows with GROUP BY

The optional GROUP BY clause enables a query to return summary information about
groups of rows that share column values instead of returning each qualifying row. The
complete syntax of GROUP BY is:

GROUP BY col [COLLATE collation] [, col [COLLATE collation] ...]

For example, consider two cursor declarations. The first declaration returns the names of
all employees each department, and arranges retrieval in ascending alphabetic order by
department and employee name.

EXEC SQL
DECLARE DEPT_EMP CURSOR FOR
SELECT DEPARTMENT, LAST_NAVE, FI RST_NAVE
FROM DEPARTMENT D, EMPLOYEE E
WHERE D. DEPT_NO = E. DEPT_NO'
ORDER BY DEPARTMENT, LAST NAME, FI RST_NAME;

In contrast, the next cursor illustrates the use of aggregate functions with GROUP BY to
return results known as group aggregates. It returns the average salary of all employees
in each department. The GROUP BY clause assures that average salaries are calculated and
retrieved based on department names, while the ORDER BY clause arranges retrieved rows
alphabetically by department name.

EXEC SQL
DECLARE AVG DEPT_SAL CURSCR FOR
SELECT DEPARTMENT, AVG SALARY)
FROM DEPARTMENT D, EMPLOYEE E
WHERE D. DEPT_NO = E. DEPT_NO

PROGRAMMER'S GUIDE 135

CHAPTER 6 WORKING WITH DATA

GROUP BY DEPARTMENT
CRDER BY DEPARTMENT;

» Collation order in a GROUP BY clause

When CHAR or VARCHAR columns are grouped in a SELECT statement, it can be necessary
to specify a collation order for the grouping, especially if columns used for grouping use
different collation orders.

To specify the collation order to use for grouping columns in the GROUP BY clause,
include a COLLATE clause after the column name. For example, in the following GROUP
BY clause, the collation order for two columns is specified:

GROUP BY LNAME COLLATE FR_CA, FNAME COLLATE FR_CA;

For more information about collation order and a list of collation orders available in
InterBase, see the Data Definition Guide.

» Limitations of GROUP BY
When using GROUP BY, be aware of the following limitations:

® Each column name that appears in a GROUP BY clause must also be specified in the SELECT
clause.

® GROUP BY cannot specify a column whose values are derived from a mathematical,
aggregate, or user-defined function.

® GROUP BY cannot be used in SELECT statements that:
- Contain an INTO clause (singleton selects).

- Use a subquery with a FROM clause which references a view whose definition contains
a GROUP BY or HAVING clause.

® For each SELECT clause in a query, including subqueries, there can only be one GROUP BY
clause.

Restricting grouped rows with HAVING

Just as a WHERE clause reduces the number of rows returned by a SELECT clause, the
HAVING clause can be used to reduce the number of rows returned by a GROUP BY clause.
The syntax of HAVING is:

HAVI NG <search_condi tion>

136 INTERBASE 5

UNDERSTANDING DATA RETRIEVAL WITH SELECT

HAVING uses search conditions that are like the search conditions that can appear in the
WHERE clause, but with the following restrictions:

Each search condition usually corresponds to an aggregate function used in the SELECT
clause.

® The FROM clause of a subquery appearing in a HAVING clause cannot name any table or
view specified in the main query’s FROM clause.

A correlated subquery cannot be used in a HAVING clause.

For example, the following cursor declaration returns the average salary for all employees
in each department. The GROUP BY clause assures that average salaries are calculated and
retrieved based on department names. The HAVING clause restricts retrieval to those
groups where the average salary is greater than 60,000, while the ORDER BY clause
arranges retrieved rows alphabetically by department name.

EXEC SQL
DECLARE SI XTY_THOU CURSOR FOR

SELECT DEPARTMENT, AVG SALARY)
FROM DEPARTMENT D, EMPLOYEE E
WHERE D. DEPT_NO = E. DEPT_NO
GROUP BY DEPARTMENT
HAVI NG AVG(SALARY) > 60000
ORDER BY DEPARTMENT;

Note HAVING can also be used without GROUP BY. In this case, all rows retrieved by a
SELECT are treated as a single group, and each column named in the SELECT clause is
normally operated on by an aggregate function.

For more information about search conditions, see “Restricting row retrieval with
WHERE” on page 130. For more information about subqueries, see “Using subqueries”
on page 157.

Appending tables with UNION

Sometimes two or more tables in a database are identically structured, or have columns
that contain similar data. Where table structures overlap, information from those tables
can be combined to produce a single results table that returns a projection for every
qualifying row in both tables. The UNION clause retrieves all rows from each table,
appends one table to the end of another, and eliminates duplicate rows.

Unions are commonly used to perform aggregate operations on tables.

PROGRAMMER'S GUIDE 137

138

Tip

CHAPTER 6 WORKING WITH DATA

The syntax for UNION is:
UNI ON SELECT col [, col ...] | * FROM <tableref> [, <tableref> ...]

For example, three tables, CITIES, COUNTRIES, and NATIONAL_PARKS, each contain the
names of cities. Assuming triggers have not been created that ensure that a city entered
in one table is also entered in the others to which it also applies, UNION can be used to
retrieve the names of all cities that appear in any of these tables.

EXEC SQL
DECLARE ALLCI TI ES CURSOR FOR
SELECT CIT.CITY FROMC TIES C T
UNI ON SELECT COU. CAPI TAL FROM COUNTRI ES COU
UNI ON SELECT N. PARKCI TY FROM NATI ONAL_PARKS N;

If two or more tables share entirely identical structures—similarly named columns,
identical datatypes, and similar data values in each column—UNION can return all rows
for each table by substituting an asterisk (*) for specific column names in the SELECT
clauses of the UNION.

Specifying a query plan with PLAN

To process a SELECT statement, InterBase uses an internal algorithm, called the query
optimizer, to determine the most efficient plan for retrieving data. The most efficient
retrieval plan also results in the fastest retrieval time. Occasionally the optimizer may
choose a plan that is less efficient. For example, when the number of rows in a table
grows sufficiently large, or when many duplicate rows are inserted or deleted from
indexed columns in a table, but the index’s selectivity is not recomputed, the optimizer
might choose a less efficient plan.

For these occasions, SELECT provided an optional PLAN clause that enables a
knowledgeable programmer to specify a retrieval plan. A query plan is built around the
availability of indexes, the way indexes are joined or merged, and a chosen access
method.

To specify a query plan, use the following PLAN syntax:

PLAN <pl an_expr>

<pl an_expr> =

[JON | [SORT] MERGE] (<pl/an_itenr | <plan_expr>

[, <plan_itenr | <plan_expr> ...])

<plan_item> = {table | alias}

NATURAL | INDEX (<index> [, <index> ...]) | ORDER <index>

INTERBASE 5

SELECTING A SINGLE ROW

The PLAN syntax enables specifying a single table, or a join of two or more tables in a
single pass. Plan expressions can be nested in parentheses to specify any combination of
joins.

During retrieval, information from different tables is joined to speed retrieval. If indexes
are defined for the information to be joined, then these indexes are used to perform a
join. The optional JOIN keyword can be used to document this type of operation. When
no indexes exist for the information to join, retrieval speed can be improved by specifying
SORT MERGE instead of JOIN.

A plan_item is the name of a table to search for data. If a table is used more than once
in a query, aliases must be used to distinguish them in the PLAN clause. Part of the
plan_item specification indicates the way that rows should be accessed. The following
choices are possible:

® NATURAL, the default order, specifies that rows are accessed sequentially in no defined
order. For unindexed items, this is the only option.

® INDEX specifies that one or more indexes should be used to access items. All indexes to
be used must be specified. If any Boolean or join terms remain after all indexes are used,
they will be evaluated without benefit of an index. If any indexes are specified that cannot
be used, an error is returned.

® ORDER specifies that items are to be sorted based on a specified index.

Selecting a single row

An operation that retrieves a single row of data is called a singleton select. To retrieve a
single row from a table, to retrieve a column defined with a unique index, or to select an
aggregate value like COUNTO or AVG() from a table, use the following SELECT statement
syntax:

SELECT <col> [, <col> ...]
I NTO : variable [, :variable ...]
FROM t abl e
WHERE <search_condi ti on>;

The mandatory INTO clause specifies the host variables where retrieved data is copied for
use in the program. Each host variable’s name must be preceded by a colon (:). For each
column retrieved, there must be one host variable of a corresponding datatype. Columns
are retrieved in the order they are listed in the SELECT clause, and are copied into host
variables in the order the variables are listed in the INTO clause.

PROGRAMMER'S GUIDE 139

IMPORTANT

CHAPTER 6 WORKING WITH DATA

The WHERE clause must specify a search condition that guarantees that only one row is
retrieved. If the WHERE clause does not reduce the number of rows returned to a single
row, the SELECT fails.

To select data from a table, a user must have SELECT privilege for a table, or a stored
procedure invoked by the user’s application must have SELECT privileges for the table.

For example, the following SELECT retrieves information from the
DEPARTMENT table for the department, Publications:

EXEC SQL
SELECT DEPARTMENT, DEPT_NO HEAD DEPT, BUDGET, LOCATI QON, PHONE NO
I NTO : dept nane, :dept_no, :manager, :budget, :location, :phone

FROM DEPARTNENT
VWHERE DEPARTMENT = "Publications";

When SQL retrieves the specified row, it copies the value in DEPARTMENT to the host
variable, deptname, copies the value in DEPT_NO to :dept_no, copies the value in
HEAD_DEPT to :manager, and so on.

Selecting multiple rows

IMPORTANT

140

Most queries specify search conditions that retrieve more than one row. For example, a
query that asks to see all employees in a company that make more than $60,000 can
retrieve many employees.

Because host variables can only hold a single column value at a time, a query that returns
multiple rows must build a temporary table in memory, called a results table, from which
rows can then be extracted and processed, one at a time, in sequential order. SQL keeps
track of the next row to process in the results table by establishing a pointer to it, called
a cursor.

In dynamic SQL (DSQL), the process for creating a query and retrieving data is
somewhat different. For more information about multi-row selection in DSQL, see
“Selecting multiple rows in DSQL” on page 148.

To retrieve multiple rows into a results table, establish a cursor into the table, and process
individual rows in the table, SQL provides the following sequence of statements:

1. DECLARE CURSOR establishes a name for the cursor and specifies the query to
perform.

2. OPEN executes the query, builds the results table, and positions the cursor at
the start of the table.

INTERBASE 5

SELECTING MULTIPLE ROWS

3. FETCH retrieves a single row at a time from the results table into host variables
for program processing.

4. CLOSE releases system resources when all rows are retrieved.

IMPORTANT To select data from a table, a user must have SELECT privilege for a table, or a stored
procedure invoked by the user’s application must have SELECT privilege for it.

Declaring a cursor

To declare a cursor and specify rows of data to retrieve, use the DECLARE

CURSOR statement. DECLARE CURSOR is a descriptive, non-executable statement. InterBase
uses the information in the statement to prepare system resources for the cursor when it
is opened, but does not actually perform the query. Because DECLARE CURSOR is
non-executable, SQLCODE is not assigned when this statement is used.

The syntax for DECLARE CURSOR is:

DECLARE cursorname CURSOR FOR
SELECT <col> [, <col> ...]
FROM table [, <table> ...]
WHERE <search_condi tion>
[GROUP BY col [, col ...]]
[HAVI NG <search_condi ti on>]
[ORDER BY col [ASC | DESC] [, col ...] [ASC | DESC
| FOR UPDATE OF col [, col ...]];

The cursorname is used in subsequent OPEN, FETCH, and CLOSE statements to identify the
active cursor.

With the following exceptions, the SELECT statement inside a DECLARE
CURSOR is similar to a stand-alone SELECT:

® A SELECT in a DECLARE CURSOR cannot include an INTO clause.

= A SELECT in a DECLARE CURSOR can optionally include either an ORDER BY clause or a FOR
UPDATE clause.

For example, the following statement declares a cursor:

EXEC SQL
DECLARE TO BE_H RED CURSOR FOR
SELECT D. DEPARTMENT, D. LOCATI ON, P. DEPARTMVENT
FROM DEPARTMENT D, DEPARTMENT P
WHERE D. MNGR_NO |'S NULL
AND D. HEAD DEPT = P. DEPT_NO

PROGRAMMER'S GUIDE 141

CHAPTER 6 WORKING WITH DATA

» Updating through cursors

In many applications, data retrieval and update may be interdependent. DECLARE CURSOR
supports an optional FOR UPDATE clause that optionally lists columns in retrieved rows
that can be modified. For example, the following statement declares such a cursor:

EXEC SQL
DECLARE H CURSOR FOR
SELECT CUST_NO
FROM CUSTOMER

WHERE ON_HOLD = "*"
FOR UPDATE OF ON_HOLD,

If a column list after FOR UPDATE is omitted, all columns retrieved for each row may be
updated. For example, the following query enables updating for two columns:

EXEC SQL
DECLARE H CURSOR FOR
SELECT CUST_NAME CUST_NO
FROM CUSTOVER
WHERE ON_HOLD = "*";

For more information about updating columns through a cursor, see “Updating multiple
rows” on page 167.

Opening a cursor

Before data selected by a cursor can be accessed, the cursor must be opened with the
OPEN statement. OPEN activates the cursor and builds a results table. It builds the results
table based on the selection criteria specified in the DECLARE CURSOR statement. The rows
in the results table comprise the active set of the cursor.

For example, the following statement opens a previously declared cursor called
DEPT_EMP:

EXEC SQL
OPEN DEPT_EMP;

When InterBase executes the OPEN statement, the cursor is positioned at the start of the
first row in the results table.

142 INTERBASE 5

SELECTING MULTIPLE ROWS

IMPORTANT

Fetching rows with a cursor

Once a cursor is opened, rows can be retrieved, one at a time, from the results table by
using the FETCH statement. FETCH:

1. Retrieves the next available row from the results table.

2. Copies those rows into the host variables specified in the INTO clause of the
FETCH statement.

3. Advances the cursor to the start of the next available row or sets
SQLCODE to 100, indicating the cursor is at the end of the results table and
there are no more rows to retrieve.

The complete syntax of the FETCH statement in SQL is:

FETCH <cursornane> | NTO : vari abl e [[| NDI CATOR] : vari abl e]
[, :variable [[I NDI CATOR] :variable>] ...];

In dynamic SQL (DSQL) multi-row select processing, a different FETCH syntax is used.
For more information about retrieving multiple rows in DSQL, see “Fetching rows with
a DSQL cursor” on page 150.

For example, the following statement retrieves a row from the results table for the
DEPT_EMP cursor, and copies its column values into the host-language variables,
deptname, Iname, and fname:

EXEC SQL
FETCH DEPT_EMP
I NTO : dept nane, :I|name, :fnamne;

To process each row in a results table in the same manner, enclose the FETCH statement
in a host-language looping construct. For example, the following C code fetches and
prints each row defined for the DEPT_EMP cursor:

EXEC SQL
FETCH DEPT_EMP
I NTO : dept nane, :Ilname, :fnane;
whi | e (! SQLCODE)
{
printf("% % works in the % departnent.\n", fnane,
| nane, dept nane);
EXEC SQL
FETCH DEPT_EMP
I NTO : dept nane, :Iname, :fnaneg;

PROGRAMMER'S GUIDE 143

144

CHAPTER 6 WORKING WITH DATA

EXEC SQL
CLOSE DEPT_EMP;

Every FETCH statement should be tested to see if the end of the active set is reached. The
previous example operates in the context of a while loop that continues processing as
long as SQLCODE is zero. If SQLCODE is 100, it indicates that there are no more rows to
retrieve. If SQLCODE is less than zero, it indicates that an error occurred.

b Retrieving indicator status

Any column can have a NULL value, except those defined with the NOT NULL or UNIQUE
integrity constraints. Rather than store a value for the column, InterBase sets a flag
indicating the column has no assigned value.

To determine if a value returned for a column is NULL, follow each variable named in the
INTO clause with the INDICATOR keyword and the name of a short integer variable, called
an indicator variable, where InterBase should store the status of the NULL value flag for
the column. If the value retrieved is:

NULL, the indicator variable is set to —1.
Not NULL, the indicator parameter is set to 0.

For example, the following C code declares three host-language variables, department,
manager, and missing_manager, then retrieves column values into

department, manager, and a status flag for the column retrieved into manager,
missing_manager, with a FETCH from a previously declared cursor, GETCITY:

char depart ment[26];
char manager|[36] ;
short m ssi ng_manager;

FETCH GETCI TY I NTO : departnent, :manager | NDI CATOR :m ssing_manager;
The optional INDICATOR keyword can be omitted:

FETCH GETCI TY I NTO : depart ment, :manager :m Ssing_nanager;

Often, the space between the variable that receives the actual contents of a

column and the variable that holds the status of the NULL value flag is also omitted:
FETCH GETCI TY I NTO : departnent, :nanager:n ssi ng_nanager;

Note While InterBase enforces the SQL requirement that the number of host variables in

a FETCH must equal the number of columns specified in DECLARE CURSOR, indicator
variables in a FETCH statement are not counted toward the column count.

INTERBASE 5

SELECTING MULTIPLE ROWS

) Refetching rows with a cursor

The only supported cursor movement is forward in sequential order through the active
set.

To revisit previously fetched rows, close the cursor and then reopen it with another OPEN
statement. For example, the following statements close the DEPT_EMP cursor, then
recreate it, effectively repositioning the cursor at the start of the DEPT_EMP results table:

EXEC SQL

CLOSE DEPT_EMP;
EXEC SQL

OPEN DEPT_EMP;

Closing the cursor

When the end of a cursor’s active set is reached, a cursor should be closed to free up
system resources. To close a cursor, use the CLOSE statement. For example, the following
statement closes the DEPT_EMP cursor:

EXEC SQL
CLOSE DEPT_EMP;

Programs can check for the end of the active set by examining SQLCODE, which is set to
100 to indicate there are no more rows to retrieve.

A complete cursor example

The following program declares a cursor, opens the cursor, and then loops through the
cursor’s active set, fetching and printing values. The program closes the cursor when all
processing is finished or an error occurs.

#i ncl ude <stdio. h>
EXEC SQL
BEG N DECLARE SECTI ON;
char dept nanme[26] ;
char | name[16] ;
char fname[11];
EXEC SQL
END DECLARE SECTI ON;

main ()

{

PROGRAMMER'S GUIDE 145

CHAPTER 6 WORKING WITH DATA

EXEC SQL
WHENEVER SQLERROR GO TO abend;
EXEC SQL
DECLARE DEPT_EMP CURSOR FOR
SELECT DEPARTMENT, LAST NAME, FI RST_NAME
FROM DEPARTMENT D, EMPLOYEE E
WHERE D. DEPT_NO = E. DEPT_NO'
ORDER BY DEPARTMENT, LAST_NAME, FI RST_NAME;
EXEC SQL
OPEN DEPT_EMP;
EXEC SQL
FETCH DEPT_EMP
I NTO : dept nane, :I|name, :fname;
whi |l e (! SQLCODE)
{
printf("% % works in the % departnent.\n",fnane,
| nane, dept nane);
EXEC SQL
FETCH DEPT_EMP
I NTO : dept nane, :I|name, :fnamne;
}
EXEC SQL
CLCSE DEPT_EMP;
exit();

abend:

i f (SQLCCDE)

{
isc_print_sqglerror();
EXEC SQL

ROLLBACK;
EXEC SQL

CLCSE_DEPT_EMP;
EXEC SQL

DI SCONNECT ALL;
exit(1)

}

el se

{

EXEC SQL
COW T;
EXEC SQL

146 INTERBASE 5

SELECTING MULTIPLE ROWS

DI SCONNECT ALL;
exit()

Selecting rows with NULL values

Any column can have NULL values, except those defined with the NOT NULL or UNIQUE
integrity constraints. Rather than store a value for the column, InterBase sets a flag
indicating the column has no assigned value.

Use IS NULL in a WHERE clause search condition to query for NULL values. For example,
some rows in the DEPARTMENT table do not have a value for the

BUDGET column. Departments with no stored budget have the NULL value flag set for that
column. The following cursor declaration retrieves rows for departments without budgets
for possible update:

EXEC SQL
DECLARE NO BUDGET CURSCR FOR
SELECT DEPARTMENT, BUDGET
FROM DEPARTNMENT
WHERE BUDGET |'S NULL
FOR UPDATE OF BUDGET;

Note To determine if a column has a NULL value, use an indicator variable. For more
information about indicator variables, see “Retrieving indicator status” on page 144.

A direct query on a column containing a NULL value returns zero for numbers, blanks for
characters, and 17 November 1858 for dates. For example, the following cursor
declaration retrieves all department budgets, even those with NULL values, which are
reported as zero:

EXEC SQL
DECLARE ALL_BUDGETS CURSOR FOR
SELECT DEPARTMENT, BUDGET
FROM DEPARTNMENT
ORDER BY BUDGET DESCENDI NG;

» Limitations on NULL values

Because InterBase treats NULL values as non-values, the following limitations on NULL
values in queries should be noted:

® Rows with NULL values are sorted after all other rows.

PROGRAMMER'S GUIDE 147

CHAPTER 6 WORKING WITH DATA

® NULL values are skipped by all aggregate operations, except for COUNT(®).
® NULL values cannot be elicited by a negated test in a search condition.
® NULL values cannot satisfy a join condition.

NULL values can be tested in comparisons. If a value on either side of a comparison
operator is NULL, the result of the comparison is Unknown.

For the Boolean operators (NOT, AND, and OR), the following considerations are made:
® NULL values with NOT always returns Unknown.

® NULL values with AND return Unknown unless one operand for AND is false. In this latter
case, False is returned.

® NULL values with OR return Unknown unless one operand for OR is true. In this latter case,
True is returned.

For information about defining alternate NULL values, see the Data Definition Guide.

Selecting rows through a view

To select a subset of rows available through a view, substitute the name of the view for a
table name in the FROM clause of a SELECT. For example, the following cursor produces a
list of employee phone numbers based on the PHONE_VIEW view:

EXEC SQL
DECLARE PHONE_LI ST CURSOR FOR
SELECT FI RST_NAVE, LAST _NAVE, PHONE_EXT
FROM PHONE_VI EW
WHERE EMPLOYEE. DEPT_NO = DEPARTMENT. DEPT_NO,

A view can be a join. Views can also be used in joins, themselves, in place of tables. For
more information about views in joins, see “Joining tables” on page 151.

Selecting multiple rows in DSQL

148

In DSQL users are usually permitted to specify queries at run time. To accommodate any
type of query the user supplies, DSQL requires the use of extended SQL descriptor areas
(XSQLDAs) where a query’s input and output can be prepared and described. For queries
returning multiple rows, DSQL supports variations of the DECLARE CURSOR, OPEN, and
FETCH statements that make use of the XSQLDA.

INTERBASE 5

SELECTING MULTIPLE ROWS IN DSQL

To retrieve multiple rows into a results table, establish a cursor into the table, and process
individual rows in the table. DSQL provides the following sequence of statements:

1. PREPARE establishes the user-defined query specification in the XSQLDA
structure used for output.

2. DECLARE CURSOR establishes a name for the cursor and specifies the query to
perform.

3. OPEN executes the query, builds the results table, and positions the cursor at
the start of the table.

4. FETCH retrieves a single row at a time from the results table for program
processing.

5. CLOSE releases system resources when all rows are retrieved.

The following three sections describe how to declare a DSQL cursor, how to open it, and
how to fetch rows using the cursor. For more information about creating and filling
XSQLDA structures, and preparing DSQL queries with PREPARE, see Chapter 14, “Using
Dynamic SQL.”For more information about closing a cursor, see “Closing the cursor”
on page 145.

Declaring a DSQL cursor

DSQL must declare a cursor based on a user-defined SELECT statement. Usually, DSQL
programs:

= Prompt the user for a query (SELECT).
= Store the query in a host-language variable.

= [ssue a PREPARE statement that uses the host-language variable to describe the query
results in an XSQLDA.

® Declare a cursor using the query alias.
The complete syntax for DECLARE CURSOR in DSQL is:

DECLARE cursornanme CURSOR FOR querynane;
For example, the following C code fragment declares a string variable,
querystring, to hold the user-defined query, gets a query from the user and stores it in

querystring, uses querystring to PREPARE a query called QUERY, then declares a cursor, C,
that uses QUERY:

EXEC SQL
BEG N DECLARE SECTI ON;

PROGRAMMER'S GUIDE 149

150

CHAPTER 6 WORKING WITH DATA

char querystring [512];
XSQ.DA *I nput Sgl da, *CQut put Sgl da;
EXEC SQL
END DECLARE SECTI ON;

printf("Enter query: "); /* pronmpt for query fromuser */
gets(querystring); /* get the string, store in querystring */

EXEC SQL

PREPARE QUERY | NTO Qut put Sql da FROM : querystri ng;
EXEC SQL

DECLARE C CURSOR FOR QUERY;

For more information about creating and filling XSQLDA structures, and preparing DSQL
queries with PREPARE, see Chapter 14, “Using Dynamic SQL.”

Opening a DSQL cursor

The OPEN statement in DSQL establishes a results table from the input parameters
specified in a previously declared and populated XSQLDA. A cursor must be opened before
data can be retrieved. The syntax for a DSQL OPEN is:

OPEN cursornane USI NG DESCRI PTOR sql danane;

For example, the following statement opens the cursor, C, using the XSQLDA, InputSqlda:

EXEC SQL
OPEN C USI NG DESCRI PTOR | nput Sqgl da;

Fetching rows with a DSQL cursor

DSQL uses the FETCH statement to retrieve rows from a results table. The rows are
retrieved according to specifications provided in a previously established and populated
extended SQL descriptor area (XSQLDA) that describes the user’s request. The syntax for
the DSQL FETCH statement is:

FETCH cur sorname USI NG DESCRI PTOR descri pt or nane;

For example, the following C code fragment declares XSQLDA structures for input and
output, and illustrates how the output structure is used in a FETCH statement:

INTERBASE 5

JOINING TABLES

XSQ.DA *I nput Sgl da, *CQut put Sgl da;
EXEC SQL
FETCH C USI NG DESCRI PTOR Cut put Sql da;

For more information about creating and filling XSQLDA structures, and preparing DSQL
queries with PREPARE, see Chapter 14, “Using Dynamic SQL.”

Joining tables

Joins enable retrieval of data from two or more tables in a database with a single SELECT.
The tables from which data is to be extracted are listed in the FROM clause. Optional
syntax in the FROM clause can reduce the number of rows returned, and additional WHERE
clause syntax can further reduce the number of rows returned.

From the information in a SELECT that describes a join, InterBase builds a table that
contains the results of the join operation, the results table, sometimes also called a
dynamic or virtual table.

InterBase supports two types of joins:

® Inner joins link rows in tables based on specified join conditions, and return only those
rows that match the join conditions. There are three types of inner joins:

- Equi-joins link rows based on common values or equality relationships in the join
columns.

- Joins that link rows based on comparisons other than equality in the join columns.
There is not an officially recognized name for these types of joins, but for simplicity’s
sake they may be categorized as comparative joins, or non-equi-joins.

- Reflexive or self-joins, compare values within a column of a single table.

® Quter joins link rows in tables based on specified join conditions and return both rows
that match the join conditions, and all other rows from one or more tables even if they
do not match the join condition.

The most commonly used joins are inner joins, because they both restrict the data
returned, and show a clear relationship between two or more tables. Outer joins,
however, are useful for viewing joined rows against a background of rows that do not
meet the join conditions.

PROGRAMMER'S GUIDE 151

CHAPTER 6 WORKING WITH DATA

Choosing join columns

How do you choose which columns to join? At a minimum, they must be of compatible
datatypes and of similar content. You cannot, for example, join a CHAR column to an
INTEGER column. A common and reliable criterion is to join the foreign key of one table
to its referenced primary key. Often, joins are made between identical columns in two
tables. For example, you might join the Job and Employee tables on their respective
Jjob_code columns.

INTEGER, DECIMAL, NUMERIC, and FLOAT datatypes can be compared to one another
because they are all numbers. String values, like CHAR and VARCHAR, can only be
compared to other string values unless they contain ASCII values that are all numbers. The
CAST(function can be used to force translation of one InterBase datatype to another for
comparisons. For more information about CAST(, see “Using CAST() for datatype
conversions” on page 121.

IMPORTANT If a joined column contains a NULL value for a given row, InterBase does %ot include that
row in the results table unless performing an outer join.

Using inner joins

InterBase supports two methods for creating inner joins. For portability and compatibility
with existing SQL applications, InterBase continues to support the old SQL method for
specifying joins. In older versions of SQL, there is no explicit join language. An inner join
is specified by listing tables to join in the FROM clause of a SELECT, and the columns to
compare in the WHERE clause.

For example, the following join returns the department name, manager number, and
salary for any manager whose salary accounts for one third or more of the total salaries
of employees in that department.

EXEC SQL
DECLARE BI G SAL CURSOR FOR
SELECT D. DEPARTMENT, D. MNGR NO, E. SALARY
FROM DEPARTMENT D, EMPLOYEE E
WHERE D. MNGR NO = E. EMP_NO
AND E. SALARY*2 >= (SELECT SUM S. SALARY) FROM EMPLOYEE S
WHERE D. DEPT_NO = S. DEPT_NO)
ORDER BY D. DEPARTVENT;

InterBase also implements new, explicit join syntax based on SQL-92:
SELECT col [, col ...] | *

152 INTERBASE 5

JOINING TABLES

FROM <t abl erefl eft> [INNER] JO N <tabl erefri ght>
[ON <searchcondi ti on>]
[WHERE <searchcondi tion>];

The join is explicitly declared in the FROM clause using the JOIN keyword. The table
reference appearing to the left of the JOIN keyword is called the left table, while the table
to the right of the JOIN is called the 7ight table. The conditions of the join—the columns
from each table—are stated in the ON clause. The WHERE clause contains search
conditions that limit the number of rows returned. For example, using the new join
syntax, the previously described query can be rewritten as:

EXEC SQL
DECLARE BI G SAL CURSOR FOR

SELECT D. DEPARTMENT, D. MNGR NO, E. SALARY

FROM DEPARTMENT D | NNER JO N EMPLOYEE E
ON D. MNGR_NO = E. EMP_NO
WHERE E. SALARY*2 > (SELECT SUM S. SALARY) FROM EMPLOYEE S

WHERE D. DEPT_NO = S. DEPT_NO
ORDER BY D. DEPARTNMENT;

The new join syntax offers several advantages. An explicit join declaration makes the
intention of the program clear when reading its source code.

The ON clause contains join conditions. The WHERE clause can contains conditions that
restrict which rows are returned.

The FROM clause also permits the use of table references, which can be used to construct
joins between three or more tables. For more information about nested joins, see “Using
nested joins” on page 157.

b Creating equi-joins

An inner join that matches values in join columns is called an equi-join. Equi-joins are
among the most common join operations. The ON clause in an equi-join always takes the
form:

ON t1.colum = t2. col um

For example, the following join returns a list of cities around the world if the capital cities
also appear in the CITIES table, and also returns the populations of those cities:

EXEC SQL
DECLARE CAPPOP CURSOR FOR
SELECT COU. NAME, COU. CAPI TAL, Cl T. POPULATI ON
FROM COUNTRI ES COU JOIN CI TIES C T ON Cl T. NAVE = COU. CAPI TAL
WHERE COU. CAPI TAL NOT NULL
ORDER BY COU. NAME;

PROGRAMMER'S GUIDE 153

CHAPTER 6 WORKING WITH DATA

In this example, the ON clause specifies that the CITIES table must contain a city name
that matches a capital name in the COUNTRIES table if a row is to be returned. Note that
the WHERE clause restricts rows retrieved from the COUNTRIES table to those where the
CAPITAL column contains a value.

» Joins based on comparison operators

Inner joins can compare values in join columns using other comparison operators besides
the equality operator. For example, a join might be based on a column in one table
having a value less than the value in a column in another table. The ON clause in a
comparison join always takes the form:

ON t 1. col utmm <operator> t2.col um

where <operator> is a valid comparison operator. For a list of valid comparison
operators, see “Using comparison operators in expressions” on page 110.

For example, the following join returns information about provinces in Canada that are
larger than the state of Alaska in the United States:

EXEC SQL
DECLARE Bl GPROVI NCE CURSOR FCR
SELECT S. STATE_NAME, S. AREA, P. PROVI NCE_NAME, P. AREA
FROM STATES S JO N PROVI NCE P ON P. AREA > S. AREA AND
P. COUNTRY = " Canada"
WHERE S. STATE_NAME = "Al aska";

In this example, the first comparison operator in the ON clause tests to see if the area of
a province is greater than the area of any state (the WHERE clause restricts final output to
display only information for provinces that are larger in area than the state of Alaska).

) Creating self-joins

A self-join is an inner join where a table is joined to itself to correlate columns of data.
For example, the RIVERS table lists rivers by name, and, for each river, lists the river into
which it flows. Not all rivers, of course, flow into other rivers. To discover which rivers
flow into other rivers, and what their names are, the

RIVERS table must be joined to itself:

EXEC SQL
DECLARE RI VERSTORI VERS CURSOR FOR
SELECT R1.RIVER, R2.RIVER
FROM RI VERS RL JO N RIVERS R2 ON R2. OUTFLOW = R1. R VER
ORDER BY R1.RI VER, R2. SOURCE;

154 INTERBASE 5

JOINING TABLES

As this example illustrates, when a table is joined to itself, each invocation of the table
must be assigned a unique correlation name (R1 and R2 are correlation names in the
example). For more information about assigning and using correlation names, see
“Declaring and using correlation names” on page 130.

Using outer joins

Outer joins produce a results table that contains columns from every row in one table,
and a subset of rows from another table. Actually, one type of outer join returns all rows
from each table, but this type of join is used less frequently than other types. Outer join
syntax is very similar to that of inner joins:

SELECT col [, col ...] | *
FROM <t abl erefleft> {LEFT | RIGHT | FULL} [OUTER] JO N
<tabl erefright> [ON <searchcondi ti on>]
[WHERE <sear chcondi ti on>];

Outer join syntax requires that you specify the type of join to perform. There are three
possibilities:

= A left outer join retrieves all rows from the left table in a join, and retrieves any rows from
the right table that match the search condition specified in the ON clause.

= A right outer join retrieves all rows from the right table in a join, and retrieves any rows
from the left table that match the search condition specified in the ON clause.

® A full outer join retrieves all rows from both the left and right tables in a join regardless
of the search condition specified in the ON clause.

Outer joins are useful for comparing a subset of data to the background of all data from
which it is retrieved. For example, when listing those countries which contain the sources
of rivers, it may be interesting to see those countries which are not the sources of rivers
as well.

» Using a left outer join
The left outer join is more commonly used than other types of outer joins. The following

left outer join retrieves those countries that contain the sources of rivers, and identifies
those countries that do not have NULL values in the R.RIVERS column:

EXEC SQL
DECLARE Rl VSOURCE CURSCR FOR
SELECT C. COUNTRY, R RIVER
FROM COUNTRI ES C LEFT JO N R VERS R ON R. SOURCE = C. COUNTRY
ORDER BY C. COUNTRY:

PROGRAMMER'S GUIDE 155

156

Tip

CHAPTER 6 WORKING WITH DATA

The ON clause enables join search conditions to be expressed in the FROM clause. The
search condition that follows the ON clause is the only place where retrieval of rows can
be restricted based on columns appearing in the right table. The WHERE clause can be
used to further restrict rows based solely on columns in the left (outer) table.

» Using a right outer join

A right outer join retrieves all rows from the right table in a join, and only those rows
from the left table that match the search condition specified in the ON clause. The
following right outer join retrieves a list of rivers and their countries of origin, but also
reports those countries that are not the source of any river:

EXEC SQL
DECLARE Rl VSOURCE CURSCR FOR
SELECT R. RIVER, C. COUNTRY
FROM RI VERS. R Rl GHT JO N COUNTRI ES C ON C. COUNTRY = R. SOURCE
ORDER BY C. COUNTRY:

Most right outer joins can be rewritten as left outer joins by reversing the order in which
tables are listed.

» Using a full outer join

A full outer join returns all selected columns that do not contain NULL values from each
table in the FROM clause without regard to search conditions. It is useful to consolidate
similar data from disparate tables.

For example, several tables in a database may contain city names. Assuming triggers have
not been created that ensure that a city entered in one table is also entered in the others
to which it also applies, one of the only ways to see a list of all cities in the database is
to use full outer joins. The following example uses two full outer joins to retrieve the
name of every city listed in three tables, COUNTRIES, CITIES, and NATIONAL_PARKS:

EXEC SQL
DECLARE ALLCI TI ES CURSOR FOR
SELECT DI STINCT CIT.CITY, COU. CAPI TAL, N. PARKCITY
FROM (CI TIES G T FULL JO N COUNTRI ES CQU) FULL
JO N NATI ONAL_PARKS N;

This example uses a nested full outer join to process all rows from the CITIES and
COUNTRIES tables. The result table produced by that operation is then used as the left
table of the full outer join with the NATIONAL_PARKS table. For more information about
using nested joins, see “Using nested joins” on page 157.

INTERBASE 5

USING SUBQUERIES

Note In most databases where tables share similar or related information, triggers are
usually created to ensure that all tables are updated with shared information. For more
information about triggers, see the Data Definition Guide.

Using nested joins

The SELECT statement FROM clause can be used to specify any combination of available
tables or fable references, parenthetical, nested joins whose results tables are created and
then processed as if they were actual tables stored in the database. Table references are
flexible and powerful, enabling the succinct creation of complex joins in a single location
in a SELECT.

For example, the following statement contains a parenthetical outer join that creates a
results table with the names of every city in the CITIES table even if the city is not
associated with a country in the COUNTRIES table. The results table is then processed as
the left table of an inner join that returns only those cities that have professional sports
teams of any kind, the name of the team, and the sport the team plays.

DECLARE SPORTSCI TI ES CURSOR FOR
SELECT COU. COUNTRY, C.CITY, T.TEAM T.SPORT
FROM (CI TIES C T LEFT JO N COUNTRI ES COU ON CQOU. COUNTRY =
ClI T. COUNTRY) INNER JON TEAMS T ONT.CTY = C.CTY
ORDER BY CQU. COUNTRY;

For more information about left joins, see “Using outer joins” on page 155.

Using subqueries

A subquery is a parenthetical SELECT statement nested inside the WHERE clause of another
SELECT statement, where it functions as a search condition to restrict the number of rows
returned by the outer, or parent, query. A subquery can refer to the same table or tables
as its parent query, or to other tables.

The elementary syntax for a subquery is:

SELECT [DI STINCT] col [, col ...]
FROM <t abl eref> [, <tableref> ...]
WHERE { expression {[NOT] IN | conparison_operator}
| [NOT] EXISTS} (SELECT [DI STINCT] col [, col ...]
FROM <t abl eref> [, <tableref> ...]
WHERE <search_condi tion>);

PROGRAMMER'S GUIDE 157

CHAPTER 6 WORKING WITH DATA

Because a subquery is a search condition, it is usually evaluated before its parent query,
which then uses the result to determine whether or not a row qualifies for retrieval. The
only exception is the correlated subquery, where the parent query provides values for the
subquery to evaluate. For more information about correlated subqueries, see
“Correlated subqueries” on page 159.

A subquery determines the search condition for a parent’s WHERE clause in one of the
following ways:

Produces a list of values for evaluation by an IN operator in the parent query’s WHERE
clause, or where a comparison operator is modified by the ALL, ANY, or SOME operators.

Returns a single value for use with a comparison operator.

Tests whether or not data meets conditions specified by an EXISTS operator in the parent
query’s WHERE clause.

Subqueries can be nested within other subqueries as search conditions, establishing a
chain of parent/child queries.

Simple subqueries

A subquery is especially useful for extracting data from a single table when a self-join is
inadequate. For example, it is impossible to retrieve a list of those countries with a larger
than average area by joining the COUNTRIES table to itself. A subquery, however, can easily
return that information.

EXEC SQL
DECLARE LARGECOUNTRI ES CURSOR FOR
SELECT COUNTRY, AREA
FROM COUNTRI ES
WHERE AREA > (SELECT AVG(AREA) FROM COUNTRI ES)
ORDER BY AREA;

In this example, both the query and subquery refer to the same table. Queries and
subqueries can refer to different tables, too. For example, the following query refers to
the CITIES table, and includes a subquery that refers to the COUNTRIES table:

EXEC SQL
DECLARE EUROCAPPOP CURSOR FOR
SELECT CIT.CITY, Cl T. POPULATI ON
FROMCITIES O T
WHERE CI T. CI TY I N (SELECT COU. CAPI TAL FROM COUNTRI ES COU
WHERE COU. CONTI NENT = " Eur ope")
ORDER BY CI T.CI TY;

158 INTERBASE 5

USING SUBQUERIES

This example uses correlation names to distinguish between tables even though the
query and subquery reference separate tables. Correlation names are only necessary
when both a query and subquery refer to the same tables and those tables share column
names, but it is good programming practice to use them. For more information about
using correlation names, see “Declaring and using correlation names” on page 130.

Correlated subqueries

A correlated subquery is a subquery that depends on its parent query for the values it
evaluates. Because each row evaluated by the parent query is potentially different, the
subquery is executed once for each row presented to it by the parent query.

For example, the following query lists each country for which there are three or more
cities stored in the CITIES table. For each row in the COUNTRIES table, a country name is
retrieved in the parent query, then used in the comparison operation in the subquery’s
WHERE clause to verify if a city in the CITIES table should be counted by the COUNTO
function. If COUNT() exceeds 2 for a row, the row is retrieved.

EXEC SQL
DECLARE TRI Cl TI ES CURSCR FOR
SELECT COUNTRY
FROM COUNTRI ES COU
WHERE 3 <= (SELECT COUNT (*)
FROMCTIES CI'T
WHERE CI T. CI TY = COU. CAPI TAL) ;

Simple and correlated subqueries can be nested and mixed to build complex queries. For
example, the following query retrieves the country name, capital city, and largest city of
countries whose areas are larger than the average area of countries that have at least one
city within 30 meters of sea level:

EXEC SQL
DECLARE SEACOUNTRI ES CURSOR FOR
SELECT COL. COUNTRY, C01.CAPITAL, Cl1.CTY
FROM COUNTRI ES €01, CITIES Cl 1
WHERE COL. COUNTRY = Cl 1. COUNTRY AND Cl 1. POPULATI ON =
(SELECT MAX(Cl 2. POPULATI ON)
FROM CI TIES Cl 2 WHERE Cl 2. COUNTRY = Cl 1. COUNTRY)
AND COL. AREA >
(SELECT AVG (COR. AREA)
FROM COUNTRI ES €02 WHERE EXI STS

PROGRAMMER'S GUIDE 159

CHAPTER 6 WORKING WITH DATA

(SELECT *
FROM C TI ES Cl 3 WHERE Cl 3. COUNTRY = CCR. COUNTRY
AND Cl 3. ALTI TUDE <= 30));

When a table is separately searched by queries and subqueries, as in this example, each
invocation of the table must establish a separate correlation name for the table. Using
correlation names is the only method to assure that column references are associated
with appropriate instances of their tables. For more information about correlation names,
see “Declaring and using correlation names” on page 130.

Inserting data

New rows of data are added to one table at a time with the INSERT statement. To insert
data, a user or stored procedure must have INSERT privilege for a table.

The INSERT statement enables data insertion from two different sources:

® A VALUES clause that contains a list of values to add, either through hard-coded values, or
host-language variables.

® A SELECT statement that retrieves values from one table to add to another.
The syntax of INSERT is as follows:
I NSERT [TRANSACTI ON nane] |INTO table [(col [, col ...])]

{VALUES (<val>[:ind] [, <val>[:ind] ...])
| SELECT <cl ause>};

The list of columns into which to insert values is optional in DSQL applications. If it is
omitted, then values are inserted into a table’s columns according to the order in which
the columns were created. If there are more columns than values, the remaining columns
are filled with zeros.

Using VALUES to insert columns

Use the VALUES clause to add a row of specific values to a table, or to add values entered
by a user at run time. The list of values that follows the keyword can come from either
from host-language variables, or from hard-coded assignments.

For example, the following statement adds a new row to the DEPARTMENT table using
hard-coded value assignments:

EXEC SQL

160 INTERBASE 5

INSERTING DATA

| NSERT | NTO DEPARTMENT (DEPT_NO, DEPARTMENT)
VALUES (7734, "Marketing");

Because the DEPARTMENT table contains additional columns not specified in the INSERT,
NULL values are assigned to the missing fields.

The following C code example prompts a user for information to add to the DEPARTMENT
table, and inserts those values from host variables:

EXEC SQL
BEG N DECLARE SECTI ON,
char departnent[26], dept_no[16];
i nt dept_num
EXEC SQL
END DECLARE SECTI ON,

printf("Enter nane of departnment: ");
get s(depart nment);
printf("\nEnter departnent nunber: ");
dept _num = at oi (get s(dept _no));
EXEC SQL
| NSERT | NTO COUNTRI ES (DEPT_NO, DEPARTMENT)
VALUES (:dept_num :department);

When host variables are used in the values list, they must be preceded by colons (:) so
that SQL can distinguish them from table column names.

Using SELECT to insert columns

To insert values from one table into another row in the same table or into a row in
another table, use a SELECT statement to specify a list of insertion values. For example,
the following INSERT statement copies DEPARTMENT and BUDGET information about the
publications department from the OLDDEPT table to the DEPARTMENT table. It also
illustrates how values can be hard-coded into a SELECT statement to substitute actual
column data.

EXEC SQL
| NSERT | NTO DEPARTMVENTS (DEPT_NO, DEPARTMENT, BUDGET)
SELECT DEPT_NO, "Publications", BUDGET
FROM OLDDEPT
WHERE DEPARTMENT = "Docunentation";

PROGRAMMER'S GUIDE 161

CHAPTER 6 WORKING WITH DATA

The assignments in the SELECT can include arithmetic operations. For example, suppose
an application keeps track of employees by using an employee number. When a new
employee is hired, the following statement inserts a new employee row into the EMPLOYEE
table, and assigns a new employee number to the row by using a SELECT statement to find
the current maximum employee number and adding one to it. It also reads values for
LAST_NAME and FIRST_NAME from the host variables, lastname, and firstname.

EXEC SQL
| NSERT | NTO EMPLOYEE (EMP_NO, LAST_NAME, Fl RST_NAME)
SELECT (MAX(EMP_NO) + 1, :lastnane, :firstnamne)
FROM EMPLOYEE;

Inserting rows with NULL column values

Sometimes when a new row is added to a table, values are not necessary or available for
all its columns. In these cases, a NULL value should be assigned to those columns when
the row is inserted. There are three ways to assign a NULL value to a column on insertion:

®= [gnore the column.
® Assign a NULL value to the column. This is standard SQL practice.

® Use indicator variables.

» Ignoring a column

A NULL value is assigned to any column that is not explicitly specified in an INTO clause.
When InterBase encounters an unreferenced column during insertion, it sets a flag for
the column indicating that its value is unknown. For example, the DEPARTMENT table
contains several columns, among them HEAD_DEPT, MNGR_NO, and BUDGET. The
following INSERT does not provide values for these columns:

EXEC SQL
| NSERT | NTO DEPARTMENT (DEPT_NO, DEPARTMENT)
VALUES (: newdept _no, :newdept_nane);

Because HEAD_DEPT, MNGR_NO, and BUDGET are not specified, InterBase sets the NULL
value flag for each of these columns.

Note If a column is added to an existing table, InterBase sets a NULL value flag for all
existing rows in the table.

162 INTERBASE 5

INSERTING DATA

b Assigning a NULL value to a column

When a specific value is not provided for a column on insertion, it is standard SQL
practice to assign a NULL value to that column. In InterBase a column is set to NULL by
specifying NULL for the column in the INSERT statement.

For example, the following statement stores a row into the DEPARTMENT table, assigns the
values of host variables to some columns, and assigns a NULL value to other columns:

EXEC SQL
| NSERT | NTO DEPARTNVENT
(DEPT_NO, DEPARTMENT, HEAD DEPT, MNGR NO, BUDGET,
LOCATI ON, PHONE_NO)
VALUES (:dept_no, :dept_name, NULL, NULL, 1500000, NULL, NULL);

» Using indicator variables

Another method for trapping and assigning NULL values—through indicator variables—
is necessary in applications that prompt users for data, where users can choose not to
enter values. By default, when InterBase stores new data, it stores zeroes for NULL
numeric data, and spaces for NULL character data. Because zeroes and spaces may be
valid data, it becomes impossible to distinguish missing data in the new row from actual
zeroes and spaces.

To trap missing data with indicator variables, and store NULL value flags, follow these
steps:

1. Declare a host-language variable to use as an indicator variable.

2. Test a value entered by the user and set the indicator variable to one of the
following values:

0 The host-language variable contains data.

-1 The host-language variable does not contain data.

3. Associate the indicator variable with the host variable in the INSERT statement
using the following syntax:

I NSERT I NTO table (<col> [, <col> ...])
VALUES (: variabl e [I NDI CATOR] :indicator
[, :variable [INDICATOR] :indicator ...]);

Note The INDICATOR keyword is optional.

PROGRAMMER'S GUIDE 163

164

CHAPTER 6 WORKING WITH DATA

For example, the following C code fragment prompts the user for the name of a
department, the department number, and a budget for the department. It tests that the
user has entered a budget. If not, it sets the indicator variable, i, to —1. Otherwise, it sets
bi to 0. Finally, the program INSERTS the information into the DEPARTMENT table. If the
indicator variable is —1, then no actual data is stored in the BUDGET column, but a flag is
set for the column indicating that the value is NULL

EXEC SQL
BEG N DECLARE SECTI ON;
short bi; /* indicator variable declaration */
char department[26], dept_no_ascii[26], budget_asciil[26];
Il ong numval; /* host variable for inserting budget */
short dept_no;
EXEC SQL
END DECLARE SECTI ON;

printf("Enter new department name: ");
get s(ci departnent);

printf("\nEnter departnent nunber: ");
get s(dept _no_ascii);

printf("\nEnter department’s budget: ");
gets(budget_ascii);

if (budget_ascii = ")

{
bi =-1; num_val = 0;
}
else
{
bi =0;
num_val = atoi(budget_ascii);
}
dept_no = atoi(dept_no_ascii);
EXEC SQL

INSERT INTO DEPARTMENT (DEPARTMENT, DEPT_NO, BUDGET)
VALUES (:department, :dept_no, :num_val INDICATOR :bi);

Indicator status can also be determined for data retrieved from a table. For information
about trapping NULL values retrieved from a table, see “Retrieving indicator status” on
page 144.

INTERBASE 5

INSERTING DATA

Inserting data through a view

New rows can be inserted through a view if the following conditions are met:

= The view is updatable. For a complete discussion of updatable views, see the Data
Definition Guide.

= The view is created using the WITH CHECK OPTION.
® A user or stored procedure has INSERT privilege for the view.

Values can only be inserted through a view for those columns named in the view.
InterBase stores NULL values for unreferenced columns. For example, suppose the view,
PART_DEPT, is defined as follows:

EXEC SQL
CREATE VI EW PART_DEPT
(DEPARTMENT, DEPT_NO, BUDGET)
AS SELECT DEPARTMENT, DEPT_NO, BUDGET
FROM DEPARTNENT
WHERE DEPT_NO NOT NULL AND BUDGET > 50000
W TH CHECK OPTI ON;

Because PART_DEPT references a single table, DEPARTMENT, new data can be inserted for
the DEPARTMENT, DEPT_NO, and BUDGET columns. The WITH CHECK OPTION assures that
all values entered through the view fall within ranges of values that can be selected by
this view. For example, the following statement inserts a new row for the Publications
department through the PART_DEPT view:

EXEC SQL
| NSERT | NTO PART_DEPT (DEPARTMENT, DEPT_NO, BUDGET)
VALUES ("Publ ications", "7735", 1500000);

InterBase inserts NULL values for all other columns in the DEPARTMENT table that are not
available directly through the view.

For information about creating a view, see Chapter 5, “Working with Data Definition
Statements.” For the complete syntax of CREATE VIEW, see the Language Reference.

Note See the chapter on triggers in the Data Definition Guide for tips on using triggers
to update non-updatable views.

PROGRAMMER'S GUIDE 165

CHAPTER 6 WORKING WITH DATA

Specifying transaction names in an INSERT

InterBase enables an SQL application to run simultaneous transactions if:

® Each transaction is first named with a SET TRANSACTION statement. For a complete
discussion of transaction handling and naming, see Chapter 4, “Working with
Transactions.”

® Each data manipulation statement (SELECT, INSERT, UPDATE, DELETE, DECLARE, OPEN,
FETCH, and CLOSE) specifies a TRANSACTION clause that identifies the name of the
transaction under which it operates.

= SQL statements are not dynamic (DSQL). DSQL does not support user-specified
transaction names.

With INSERT, the TRANSACTION clause intervenes between the INSERT keyword and the list
of columns to insert, as in the following syntax fragment:

| NSERT TRANSACTI ON nane | NTO table (col [, col ...])

The TRANSACTION clause is optional in single-transaction programs. It must be used in a
multi-transaction program unless a statement operates under control of the default
transaction, gds__trans. For example, the following INSERT is controlled by the
transaction, T1:

EXEC SQL
| NSERT TRANSACTI ON T1 | NTO DEPARTMENT (DEPARTMENT, DEPT_NO, BUDGET)
VALUES (: deptnane, :deptno, :budget |NDI CATOR : bi);

Updating data

To change values for existing rows of data in a table, use the UPDATE statement. To update
a table, a user or procedure must have UPDATE privilege for it. The syntax of UPDATE is:

UPDATE [TRANSACTI ON nane] table
SET col = <assignnent> [, col = <assignment> ...]
WHERE <search_condition> | WHERE CURRENT OF cur sornane,

UPDATE changes values for columns specified in the SET clause; columns not listed in the
SET clause are not changed. A single UPDATE statement can be used to modify any
number of rows in a table. For example, the following statement modifies a single row:

EXEC SQL
UPDATE DEPARTMENT

166 INTERBASE 5

UPDATING DATA

SET DEPARTMENT = "Publications"
VWHERE DEPARTMENT = " Docunent ati on";

The WHERE clause in this example targets a single row for update. If the same change
should be propagated to a number of rows in a table, the WHERE clause can be more
general. For example, to change all occurrences of “Documentation” to “Publications” for
all departments in the DEPARTMENT table where DEPARTMENT equals “Documentation,”
the UPDATE statement would be as follows:

EXEC SQL
UPDATE DEPARTNMENT
SET DEPARTMENT = "Publications"
VWHERE DEPARTMENT = " Docunent ati on";

Using UPDATE to make the same modification to a number of rows is sometimes called a
mass update, or a searched update.

The WHERE clause in an UPDATE statement can contain a subquery that references one or
more other tables. For a complete discussion of subqueries, see “Using subqueries” on
page 157.

Updating multiple rows

There are two basic methods for modifying rows:

® The searched update method, where the same changes are applied to a number of rows,
is most useful for automated updating of rows without a cursor.

® The positioned update method, where rows are retrieved through a cursor and updated
row by row, is most useful for enabling users to enter different changes for each row
retrieved.

A searched update is easier to program than a positioned update, but also more limited
in what it can accomplish.

» Using a searched update

Use a searched update to make the same changes to a number of rows. The UPDATE SET
clause specifies the actual changes that are to be made to columns for each row that
matches the search condition specified in the WHERE clause. Values to set can be specified
as constants or variables.

For example, the following C code fragment prompts for a country name and a
percentage change in population, then updates all cities in that country with the new
population:

PROGRAMMER'S GUIDE 167

IMPORTANT

168

CHAPTER 6 WORKING WITH DATA

EXEC SQL

BEG N DECLARE SECTI ON;
char country[26], asciimult[10];
int multiplier;

EXEC SQL

END DECLARE SECTI ON,

min ()

{

}

printf("Enter country with city popul ati ons needi ng adj ustment: ");
gets(country);
printf("\nPercent change (100%%6to -100%n%");
gets(asciinult);
multiplier = atoi(asciimult);
EXEC SQL
UPDATE CI TI ES
SET POPULATION = POPULATION * (1 + :nultiplier / 100)
WHERE COUNTRY = :country;

if (SQLCODE && (SQLCODE != 100))

{
isc_print_sqlerr(SQCODE, isc_status);
EXEC SQL
ROLLBACK RELEASE;
}
el se
{
EXEC SQL
COW T RELEASE;
}

Searched updates cannot be performed on arrays of datatypes.

» Using a positioned update

Use cursors to select rows for update when prompting users for changes on a row-by-row
basis, and displaying pre- or post-modification values between row updates. Updating
through a cursor is a seven-step process:

INTERBASE 5

UPDATING DATA

1. Declare host-language variables needed for the update operation.

2. Declare a cursor describing the rows to retrieve for update, and include the
FOR UPDATE clause in DSQL. For more information about declaring and using
cursors, see “Selecting multiple rows” on page 140.

Open the cursor.
Fetch a row.
Display current values and prompt for new values.

Update the currently selected row using the WHERE CURRENT OF clause.

N W W

Repeat steps 3 to 7 until all selected rows are updated.

For example, the following C code fragment updates the POPULATION column by
user-specified amounts for cities in the CITIES table that are in a country also specified by
the user:

EXEC SQL
BEG N DECLARE SECTI ON;
char country[26], asciinmult[10];
int multiplier;
EXEC SQL
END DECLARE SECTI ON;
main ()
{
EXEC SQL
DECLARE CHANGEPOP CURSOR FOR
SELECT CI TY, POPULATI ON
FROM Cl Tl ES
WHERE COUNTRY = :country;

printf("Enter country with city popul ati ons needi ng adjustnent: ");
gets(country);
EXEC SQL
OPEN CHANGEPOP;
EXEC SQL
FETCH CHANGEPOP | NTO : country;
whi | e(! SQLCODE)
{
printf("\nPercent change (100%%6to -100%%");
gets(asciinmult);

PROGRAMMER'S GUIDE 169

CHAPTER 6 WORKING WITH DATA

multiplier = atoi(asciimult);
EXEC SQL
UPDATE CI Tl ES
SET POPULATI ON = POPULATION * (1 + :multiplier / 100)
VWHERE CURRENT OF CHANGEPCP;
EXEC SQL
FETCH CHANGEPOP | NTO : country;
if (SQLCODE && (SQLCODE != 100))

{
isc_print_sqlerr(SQCODE, isc_status);
EXEC SQL
ROLLBACK RELEASE;
exit(1);
}
}
EXEC SQL

COW T RELEASE;
}

IMPORTANT Using FOR UPDATE with a cursor causes rows to be fetched from the database one at a
time. If FOR UPDATE is omitted, rows are fetched in batches.

NULLing columns with UPDATE

To set a column’s value to NULL during update, specify a NULL value for the column in the
SET clause. For example, the following UPDATE sets the budget of all departments without
managers to NULL:

EXEC SQL
UPDATE DEPARTMENT
SET BUDGET = NULL
WHERE MNGR NO = NULL;

Updating through a view

Existing rows can be updated through a view if the following conditions are met:

® The view is updatable. For a complete discussion of updatable views, see the Data
Definition Guide.

® The view is created using the WITH CHECK OPTION.

170 INTERBASE 5

UPDATING DATA

® A user or stored procedure has UPDATE privilege for the view.

Values can only be updated through a view for those columns named in the view. For
example, suppose the view, PART_DEPT, is defined as follows:

EXEC SQL
CREATE VI EW PART_DEPT
(DEPARTMENT, NUVBER BUDGET)
AS SELECT DEPARTMENT, DEPT_NO, BUDGET
FROM DEPARTNMENT
W TH CHECK OPTI ON;

Because PART_DEPT references a single table, data can be updated for the columns named
in the view. The WITH CHECK OPTION assures that all values entered through the view fall
within ranges prescribed for each column when the DEPARTMENT table was created. For
example, the following statement updates the budget of the Publications department
through the PART_DEPT view:

EXEC SQL
UPDATE PART_DEPT
SET BUDGET = 2505700
WHERE DEPARTMENT = "Publications";

For information about creating a view, see Chapter 5, “Working with Data Definition
Statements.” For the complete syntax of CREATE VIEW, see the Language Reference.

Note See the chapter on triggers in the Data Definition Guide for tips on using triggers
to update non-updatable views.

Specifying transaction names in UPDATE

InterBase enables an SQL application to run simultaneous transactions if:

® Each transaction is first named with a SET TRANSACTION statement. For a complete
discussion of transaction handling and naming, see Chapter 4, “Working with
Transactions.”

® Each data manipulation statement (SELECT, INSERT, UPDATE, DELETE, DECLARE, OPEN,
FETCH, and CLOSE) specifies a TRANSACTION clause that identifies the name of the
transaction under which it operates.

= SQL statements are not dynamic (DSQL). DSQL does not support multiple simultaneous
transactions.

In UPDATE, the TRANSACTION clause intervenes between the UPDATE keyword and the
name of the table to update, as in the following syntax:

PROGRAMMER'S GUIDE 171

CHAPTER 6 WORKING WITH DATA

UPDATE [TRANSACTI ON nane] table
SET col = <assignnent> [, col = <assignment> ...]
WHERE <search_condition> | WHERE CURRENT OF cur sornane,;

The TRANSACTION clause must be used in multi-transaction programs, but is optional in
single-transaction programs or in programs where only one transaction is open at a time.
For example, the following UPDATE is controlled by the transaction, T1:

EXEC SQL
UPDATE TRANSACTI ON T1 DEPARTMENT
SET BUDGET = 2505700
VWHERE DEPARTMENT = "Publications";

Deleting data

172

To remove rows of data from a table, use the DELETE statement. To delete rows a user or
procedure must have DELETE privilege for the table.

The syntax of DELETE is:

DELETE [TRANSACTI ON nane] FROM tabl e
WHERE <search_condition> | WHERE CURRENT OF cur sornane,;

DELETE irretrievably removes entire rows from the table specified in the FROM clause,
regardless of each column’s datatype.

A single DELETE can be used to remove any number of rows in a table. For example, the
following statement removes the single row containing “Channel Marketing” from the
DEPARTMENT table:

EXEC SQL
DELETE FROM DEPARTNENT
WHERE DEPARTMENT = "Channel Marketing:;

The WHERE clause in this example targets a single row for update. If the same deletion
criteria apply to a number of rows in a table, the WHERE clause can be more general. For
example, to remove all rows from the DEPARTMENT table with BUDGET values

< $1,000,000, the DELETE statement would be as follows:

EXEC SQL
DELETE FROM DEPARTNMENT
WHERE BUDGET < 1000000;

Using DELETE to remove a number of rows is sometimes called a mass delete.

INTERBASE 5

DELETING DATA

The WHERE clause in a DELETE statement can contain a subquery that references one or
more other tables. For a discussion of subqueries, see “Using subqueries” on page 157.

Deleting multiple rows

There are two methods for modifying rows:

® The searched delete method, where the same deletion condition applies to a number of
rows, is most useful for automated removal of rows.

® The positioned delete method, where rows are retrieved through a cursor and deleted row
by row, is most useful for enabling users to choose which rows that meet certain
conditions should be removed.

A searched delete is easier to program than a positioned delete, but less flexible.

» Using a searched delete

Use a searched delete to remove a number of rows that match a condition specified in
the WHERE clause. For example, the following C code fragment prompts for a country
name, then deletes all rows that have cities in that country:

EXEC SQL
BEG N DECLARE SECTI ON;
char country[26];
EXEC SQL
END DECLARE SECTI ON;

main ()

{
printf("Enter country with cities to delete: ");
gets(country);
EXEC SQL

DELETE FROM CI Tl ES
WHERE COUNTRY = :country;

i f (SQLCODE && (SQLCODE != 100))

{
isc_print_sqlerr(SQCODE, isc_status);
EXEC SQL
ROLLBACK RELEASE;
}

PROGRAMMER'S GUIDE 173

174

}

CHAPTER 6 WORKING WITH DATA

el se
{
EXEC SQL
COM T RELEASE;
}

» Using a positioned delete

Use cursors to select rows for deletion when users should decide deletion on a
row-by-row basis, and displaying pre- or post-modification values between row updates.
Updating through a cursor is a seven-step process:

1.
2.

AN AN

7.

Declare host-language variables needed for the delete operation.

Declare a cursor describing the rows to retrieve for possible deletion, and
include the FOR UPDATE clause. For more information about declaring and
using cursors, see “Selecting multiple rows” on page 140.

Open the cursor.
Fetch a row.
Display current values and prompt for permission to delete.

Delete the currently selected row using the WHERE CURRENT OF clause to
specify the name of the cursor.

Repeat steps 3 to 7 until all selected rows are deleted.

For example, the following C code deletes rows in the CITIES table that are in North
America only if a user types Y when prompted:

EXEC SQL

BEGA N DECLARE SECTI ON;
char citynane[26];

EXEC SQL

END DECLARE SECTI ON;

char response[5];

main ()

{
EXEC SQL
DECLARE DELETECI TY CURSOR FOR
SELECT I TY,
FROM C TI ES

WHERE CONTI NENT = "North Anerica";

INTERBASE 5

DELETING DATA

EXEC SQL
OPEN DELETECI TY;
whi |l e (! SQLCODE)
{
EXEC SQL
FETCH DELETECI TY I NTO : ci t ynane;
i f (SQLCODE)
{
if (SQLCODE == 100)
{
printf("Deletions complete.");
EXEC SQL
COW T;
EXEC SQL
CLOSE DELETECI TY;
EXEC SQL
DI SCONNECT ALL:
}
isc_print_sqlerr(SQCODE, isc_status);
EXEC SQL
ROLLBACK;
EXEC SQL
DI SCONNECT ALL;
exit(1);
}
printf("\nDelete % (Y/N)?", citynane);
get s(response);
if(response[0] ==Y || response =="y’)
{
EXEC SQL
DELETE FROM CI Tl ES
VWHERE CURRENT OF DELETECI TY;
i f(SQLCODE && (SQLCCDE != 100))
{
isc_print_sqglerr(SQ.CODE, isc_status);
EXEC SQL
ROLLBACK;
EXEC SQL
DI SCONNECT;
exit(1);

PROGRAMMER'S GUIDE 175

CHAPTER 6 WORKING WITH DATA

Deleting through a view

Entire rows can be deleted through a view if the following conditions are met:

= The view is updatable. For a complete discussion of updatable views, see the Data
Definition Guide.

= A user or stored procedure has DELETE privilege for the view.

For example, the following statement deletes all departments with budgets under
$1,000,000, from the DEPARTMENT table through the PART_DEPT view:

EXEC SQL
DELETE FROM PART DEPT
WHERE BUDGET < 1000000;

For information about creating a view, see Chapter 5, “Working with Data Definition
Statements.” For CREATE VIEW syntax, see the Language Reference.

Note See the chapter on triggers in the Data Definition Guide for tips on using triggers
to delete through non-updatable views.

Specifying transaction names in a DELETE

InterBase enables an SQL application to run simultaneous transactions if:

® Each transaction is first named with a SET TRANSACTION statement. For a complete
discussion of transaction handling and naming, see Chapter 4, “Working with
Transactions.”

® Each data manipulation statement (SELECT, INSERT, UPDATE, DELETE, DECLARE, OPEN,
FETCH, and CLOSE) specifies a TRANSACTION clause that identifies the name of the
transaction under which it operates.

® SQL statements are not dynamic (DSQL). DSQL does not support multiple simultaneous
transactions.

For DELETE, the TRANSACTION clause intervenes between the DELETE keyword and the
FROM clause specifying the table from which to delete:

DELETE TRANSACTI ON nane FROM table ...

176 INTERBASE 5

DELETING DATA

The TRANSACTION clause is optional in single-transaction programs or in programs where
only one transaction is open at a time. It must be used in a multi-transaction program.
For example, the following DELETE is controlled by the transaction, T1:
EXEC SQL
DELETE TRANSACTI ON T1 FROM PART_DEPT
WHERE BUDGET < 1000000";

PROGRAMMER'S GUIDE 177

CHAPTER 6 WORKING WITH DATA

178 INTERBASE 5

CHAPTER

Working with Dates

Most host languages do not support the DATE datatype. Instead, they treat dates as strings
or structures. InterBase supports a DATE datatype that is stored in tables as two long
integers. An InterBase DATE datatype includes information about year, month, day of the
month, and time.

This chapter discusses how to SELECT, INSERT, and UPDATE dates from tables in SQL
applications using the following isc call interface routines:

= jsc_decode_date() to convert the InterBase internal date format to the C time structure
= jsc_encode_date() to convert the C time structure to the internal InterBase date format

The chapter also discusses how to use the CAST(Q function to translate a DATE datatype
into a CHARACTER datatype and back again, and how to use the DATE literals, NOW and
TODAY when selecting and inserting dates.

Note InterBase does not directly support SQL-92 DATE, TIME, and TIMESTAMP datatypes.

PROGRAMMER'S GUIDE 179

CHAPTER 7 WORKING WITH DATES

Selecting dates

To select a date from a table, and convert it to a form usable in a C language program,
follow these steps:

1. Create a host variable for a C time structure. Most C and C++ compilers
provide a typedef declaration, ¢m, for the C time structure in the time.h
header file. The following C code includes that header file, and declares a
variable of type tm:

#i ncl ude <tine. h>;

struct tmhire_tine;

To create host-language time structures in languages other than C and C++, see the
host-language reference manual.

2. Create a host variable of type 1SC_QUAD. For example, the host-variable
declaration might look like this:

| SC_QUAD hire_date;

The ISC_QUAD structure is automatically declared for programs when they are
preprocessed with gpre, but the programmer must declare actual host-language
variables of type ISC_QUAD.

3. Retrieve a date from a table into the ISC_QUAD variable. For example,

EXEC SQL
SELECT LAST_NAME, FI RST_NAME, DATE_OF H RE
I NTO : I name, :fnane, :hire_date
FROM EMPLOYEE
WHERE LAST_NAME = 'Smith’ AND FI RST_NAME = ' Margaret’;

Convert the ISC_QUAD variable into a numeric Unix format with the InterBase
function, isc_decode_date(). This function is automatically declared for programs when
they are preprocessed with gpre. isc_decode_date() requires two parameters, the address
of the ISC_QUAD host-language variable, and the address of the #m host-language
variable. For example, the following code fragment coverts hire_date to hire_time:

i sc_decode_date(&hire_date, &hire_tine);

180 INTERBASE 5

INSERTING DATES

Inserting dates

To insert a date in a table, it must be converted from the host-language format into
InterBase format, and then stored. To perform the conversion and insertion in a C
program, follow these steps:

1. Create a host variable for a C time structure. Most C and C++ compilers
provide a typedef declaration, ¢m, for the C time structure in the time.h
header file. The following C code includes that header file, and declares a tm
variable, hire_time:

#i ncl ude <tine. h>;

struct tmhire_tine;

To create host-language time structures in languages other than C and C++, see the
host-language reference manual.

2. Create a host variable of type 1SC_QUAD, for use by InterBase. For example,
the host-variable declaration might look like this:
| SC_QUAD nydat e;

The ISC_QUAD structure is automatically declared for programs when they are
preprocessed with gpre, but the programmer must declare actual host-language
variables of type ISC_QUAD.

3. Put date and time information into hire_time.

4. Use the InterBase isc_encode_date() function to convert the information in
hire_time into InterBase internal format and store that formatted information
in the ISC_QUAD host variable (hire_date in the example). This function is
automatically declared for programs when they are preprocessed with gpre.
isc_encode_date() requires two parameters, the address of the Unix time
structure, and the address of the ISC_QUAD host-language variable.

For example, the following code converts hire_time to hire_date:
i sc_encode_date(&hire_tinme, &hire_date);
5. Insert the date into a table. For example,

EXEC SQL
| NSERT | NTO EMPLOYEE (EMP_NO, DEPARTMENT, DATE _OF HI RE)
VALUES (:enmp_no, :deptnane, :hire_date);

PROGRAMMER'S GUIDE 181

CHAPTER 7 WORKING WITH DATES

Updating dates

To update a date in a table, it must be converted from the host-language format into
InterBase format, and then stored. To convert a host variable into InterBase format, see
“Inserting dates” on page 181. The actual update is performed using an UPDATE
statement. For example,

EXEC SQL
UPDATE EMPLOYEE
SET DATE_OF H RE = :hire_date
WHERE DATE_OF H RE < "1 JAN 1994’

Using CAST() to convert dates

The built-in CASTO function can be used in SELECT statements to translate a DATE datatype
into a CHARACTER or NUMERIC datatype, or to translate CHARACTER and NUMERIC datatypes
into DATE datatypes. Typically, CASTO is used in the WHERE clause to compare different
datatypes. The syntax for CAST(is:

CAST (<val ue> AS <dat at ype>)

In the following WHERE clause, CASTO is translates a CHAR datatype, INTERVIEW_DATE, to
a DATE datatype to compare against a DATE datatype, HIRE_DATE:

... WHERE HIRE_DATE = CAST(INTERVIEW_DATE AS DATE);

In the next example, CAST(translates a DATE datatype into a CHAR datatype:
... WHERE CAST(HIRE_DATE AS CHAR) = INTERVIEW_DATE;

CAST() also can be used to compare columns with different datatypes in the same table,
or across tables.

Tip To truncate the time portion of a date field, cast the date to a CHAR that is long enough
to contain the date but not the time. For example:

CAST(INTERVIEW_DATE AS CHAR(7));

For more information about CAST(, see Chapter 6, “Working with Data.”

182 INTERBASE 5

USING DATE LITERALS

Using date literals

InterBase supports four date literals, 'NOW’, "TODAY’, 'YESTERDAY’, and "TOMORROW’. Date
literals are string values entered between quotation marks that can be interpreted as date
values for SELECT, INSERT, and UPDATE operations. 'NOW” is a date literal that combines
today’s date and time in InterBase format. "TODAY’ is today’s date with time information
set to zero. Similarly, 'YESTERDAY’ and 'TOMORROW’ are the expected dates with the time
information set to zero.

In SELECT, 'NOW’ and "'TODAY’ can be used in the search condition of a WHERE clause to
restrict the data retrieved:

EXEC SQL
SELECT * FROM CROSS_RATE WHERE UPDATE_DATE = ' TODAY ;

In INSERT and UPDATE, 'NOW’ and "TODAY’ can be used to enter date and time values
instead of relying on isc calls to convert C dates to InterBase dates:

EXEC SQL
I NSERT | NTO CROSS_RATE VALUES(:from :to, :rate, 'NOW);
EXEC SQL
UPDATE CROSS RATE
SET CONV_RATE = 1.75,
SET UPDATE_DATE = ' NOW
WHERE FROM CURRENCY = ' POUND AND TO CURRENCT = ' DOLLAR
AND UPDATE_DATE < ' TODAY' ;

PROGRAMMER'S GUIDE 183

CHAPTER 7 WORKING WITH DATES

184 INTERBASE 5

CHAPTER

Working with Blob Data

This chapter describes the BLOB datatype and its subtypes, how to store Blobs, how to
access them with SQL, DSQL, and API calls, and how to filter Blobs. It also includes
information on writing Blob filters.

What is a Bloh?

A Blob is a dynamically sizable datatype that has no specified size and encoding. You can
use a Blob to store large amounts of data of various types, including:

® Bitmapped images

® Vector drawings

® Sounds, video segments, and other multimedia information
® Text and data, including book-length documents

Data stored in the Blob datatype can be manipulated in most of the same ways as data
stored in any other datatype. InterBase stores Blob data inside the database, in contrast
to similar other systems that store pointers to non-database files. For each Blob, there is
a unique identification handle in the appropriate table to point to the database location
of the Blob. By maintaining the Blob data within the database, InterBase improves data
management and access.

PROGRAMMER'S GUIDE 185

CHAPTER 8 WORKING WITH BLOB DATA

The combination of true database management of Blob data and support for a variety of
datatypes makes InterBase Blob support ideal for transaction-intensive multimedia
applications. For example, InterBase is an excellent platform for interactive kiosk
applications that might provide hundreds or thousands of product descriptions,
photographs, and video clips, in addition to point-of-sale and order processing
capabilities.

How are Blob data stored?

Blob is the InterBase datatype that represents various objects, such as bitmapped images,
sound, video, and text. Before you store these items in the database, you create or
manage them as platform- or product-specific files or data structures, such as:

® TIFF, PICT, BMP, WMF, GEM, TARGA or other bitmapped or vector-graphic files.
® MIDI or WAV sound files.

® Audio Video Interleaved format (.AVI) or QuickTime video files.

B ASCII, MIF, DOC, RTF, WPx or other text files.

® CAD files.

You must load these files from memory into the database programmatically, as you do
any other host-language data items or records you intend to store in InterBase.

186 INTERBASE 5

HOW ARE BLOB DATA STORED?

Blob subtypes

Although you manage Blob data in the same way as other datatypes, InterBase provides
more flexible datatyping rules for Blob data. Because there are many native datatypes that
you can define as Blob data, InterBase treats them somewhat generically and allows you
to define your own datatype, known as a subtype. Also, InterBase provides seven standard
subtypes with which you can characterize Blob data:

BLOB

subtype Description

0 Unstructured, generally applied to binary data or data of an indeterminate type
1 Text

2 Binary language representation (BLR)

3 Access control list

4 (Reserved for future use)

5 Encoded description of a table’s current metadata

6 Description of multi-database transaction that finished irregularly

TABLES.1 BLOB subtypes defined by InterBase

You can specify user-defined subtypes as negative numbers between —1 and
-32,678. Positive integers are reserved for InterBase subtypes.

For example, the following statement defines three Blob columns: Blob1 with subtype 0
(the default), Blob2 with subtype 1 (TEXT), and Blob3 with user-defined subtype —1:

EXEC SQL CREATE TABLE TABLE2

(
BLOB1 BLOB,

BLOB2 BLOB SUB_TYPE 1,
BLOB3 BLOB SUB_TYPE -1

)
To specify both a default segment length and a subtype when creating a Blob column,
use the SEGMENT SIZE option after the SUB_TYPE option. For example:

EXEC SQL CREATE TABLE TABLE2
(

PROGRAMMER'S GUIDE 187

188

CHAPTER 8 WORKING WITH BLOB DATA

BLOB1 BLOB SUB TYPE 1 SEGVENT S| ZE 100;
)

The only rule InterBase enforces over these user-defined subtypes is that, when
converting a Blob from one subtype to another, those subtypes must be compatible.
InterBase does not otherwise enforce subtype integrity.

Blob database storage

Because Blob data are typically large, variably-sized objects of binary or text data,
InterBase stores them most efficiently using a method of segmentation. It would be an
inefficient use of disk space to store each Blob as one contiguous mass. Instead, InterBase
stores each Blob in segments that are indexed by a handle that InterBase generates when
you create the Blob. This handle is known as the Blob ID and is a quadword (64-bit)
containing a unique combination of table identifier and Blob identifier.

The Blob ID for each Blob is stored in its appropriate field in the table record. The Blob
ID points to the first segment of the Blob, or to a page of pointers, each of which points
to a segment of one or more Blob fields. You can retrieve the Blob ID by executing a
SELECT statement that specifies the Blob as the target, as in the following example:

EXEC SQL
DECLARE BLOBDESC CURSCR FOR
SELECT GUI DEBOOK
FROM TOURI SM
WHERE STATE = ' CA ;

You define Blob columns the same way you define non-Blob columns.

The following SQL code creates a table with a Blob column called PROJ_DESC. It sets the
subtype parameter to 1, which denotes a TEXT Blob, and sets the segment size to 80 bytes:

CREATE TABLE PRQIECT

(
PROJ_I D PROINO NOT NULL,
PRQJ_NAME VARCHAR(20) NOT NULL UN QUE,
PROJ_DESC BLOB SUBTYPE 1 SEGMVENT Sl ZE 80,
TEAM _LEADER EMPNOG,
PRODUCT PRODTYPE,

)

The following diagram shows the relationship between a Blob column containing a Blob
ID and the Blob data referenced by the Blob ID:

INTERBASE 5

HOW ARE BLOB DATA STORED?

FIGURES.1 Relationship of a Blob ID to Blob segments in a database

Blob
column

Table row e | Blob ID |

\

Blob data segment segment segment 8 e

Rather than store Blob data directly in the table, InterBase stores a Blob ID in each row
of the table. The Blob ID, a unique number, points to the first segment of the Blob data
that is stored elsewhere in the database, in a series of segments. When an application
creates a Blob, it must write data to that Blob a segment at a time. Similarly, when an
application reads of Blob, it reads a segment at a time. Because most Blob data are large
objects, most Blob management is performed with loops in the application code.

Blob segment length

When you define a Blob in a table, you specify the expected size of Blob segments that
are to be written to the column in the Blob definition statement. The segment length you
define for a Blob column specifies the maximum number of bytes that an application is
expected to write to or read from any Blob in the column. The default segment length is
80. For example, the following column declaration creates a Blob with a segment length
of 120:

EXEC SQL CREATE TABLE TABLE2

(
Bl obl Bl ob SEGMENT Sl ZE 120;

)

InterBase uses the segment length setting to determine the size of an internal buffer to
which it writes Blob segment data. Normally, you should not attempt to write segments
larger than the segment length you defined in the table; doing so may result in a buffer
overflow and possible memory corruption.

Specifying a segment size of # guarantees that no more than z number of bytes are read
or written in a single Blob operation. With some types of operations, for instance, with
SELECT, INSERT, and UPDATE operations, you can read or write Blob segments of varying
length.

In the following example of an INSERT CURSOR statement, specify the segment length in
a host language variable, segment_length, as follows:

PROGRAMMER'S GUIDE 189

CHAPTER 8 WORKING WITH BLOB DATA

EXEC SQL
I NSERT CURSOR BCI NS VALUES (:wite_segnent _buffer
| NDI CATOR : segment _I| engt h) ;

For more information about the syntax of the INSERT CURSOR statement, see the Language
Reference.

Overriding segment length

You can override the segment length setting by including the MAXIMUM_SEGMENT option
in a DECLARE CURSOR statement. For example, the following Blob INSERT cursor
declaration overrides the segment length that was defined for the field, Blob2, increasing
it to 1024:

EXEC SQL
DECLARE BCI NS CURSOR FOR | NSERT Bl ob Bl ob2 | NTO TABLE 2
MAXI MUM_SEGVENT 1024;

Note By overriding the segment length setting, you affect only the segment size for the
cursor, not for the column, or for other cursors. Other cursors using the same Blob
column maintain the original segment size that was defined in the column definition, or
can specify their own overrides.

The segment length setting does not affect InterBase system performance. Choose the
segment length most convenient for the specific application. The largest possible segment

length is 65,535 bytes (64K).

Accessing Blob data with SQL

190

InterBase supports SELECT, INSERT, UPDATE, and DELETE operations on Blob data. The
following sections contain brief discussions of example programs. These programs
illustrate how to perform standard SQL operations on Blob data.

Selecting Blob data

The following example program selects Blob data from the GUIDEBOOK column of the
TOURISM table:

INTERBASE 5

ACCESSING BLOB DATA WITH SQL

1. Declare host-language variables to store the Blob ID, the Blob segment data,
and the length of segment data:

EXEC SQL
BEG N DECLARE SECTI ON;
BASED ON TOURI SM GUI DEBOXK bl ob_i d;
BASED ON TOURI SM GUI DEBOOK. SEGVENT bl ob_segnent _buf ;
BASED ON TOURI SM STATE st at €;
unsi gned short bl ob_seg_ | en;
EXEC SQL
END DECLARE SECTI ON;

The BASED ON ... SEGMENT syntax declares a host-language variable,
blob_segment_buf, that is large enough to hold a Blob segment during a FETCH
operation. For more information about the BASED ON statement, see the Language
Reference.

2. Declare a table cursor to select the desired Blob column, in this case the
GUIDEBOOK column:

EXEC SQL
DECLARE TC CURSCR FOR
SELECT STATE, GUI DEBOOK
FROM TOURI SM
WHERE STATE = ' CA ;

3. Declare a Blob read cursor. A Blob read cursor is a special cursor used for
reading Blob segments:

EXEC SQL
DECLARE BC CURSCR FOR
READ Bl ob GUI DEBOOK
FROM TOURI SM

The segment length of the GUIDEBOOK Blob column is defined as 60, so Blob cursor,
BC, reads a maximum of 60 bytes at a time.

To override the segment length specified in the database schema for GUIDEBOOK,
use the MAXIMUM_SEGMENT option. For example, the following code restricts each
Blob read operation to a maximum of 40 bytes, and SQLCODE is set to 101 to indicate
when only a portion of a segment has been read:

EXEC SQL
DECLARE BC CURSOR FOR
READ Bl ob GUI DEBOOK
FROM TOURI SM
MAXI MUM_SEGVENT 40;

PROGRAMMER'S GUIDE 191

192

1.

CHAPTER 8 WORKING WITH BLOB DATA

No matter what the segment length setting is, only one segment is read at a time.
Open the table cursor and fetch a row of data containing a Blob:

EXEC SQL
OPEN TC,
EXEC SQL
FETCH TC I NTO :state, :blob_id;

The FETCH statement fetches the STATE and GUIDEBOOK columns into host variables
state and blob_id, respectively.

Open the Blob read cursor using the Blob ID stored in the blob_id variable,
and fetch the first segment of Blob data:

EXEC SQL
OPEN BC USI NG : bl ob_i d;
EXEC SQL
FETCH BC | NTO : bl ob_segnent _buf: bl ob_seg_|I en;

When the FETCH operation completes, blob_segment_buf contains the first segment
of the Blob, and blob_seg_len contains the segment’s length, which is the number of
bytes copied into blob_segment_buf.

Fetch the remaining segments in a loop. SQLCODE should be checked each
time a fetch is performed. An error code of 100 indicates that all of the Blob
data has been fetched. An error code of 101 indicates that the segment
contains additional data:

while (SQLCODE != 100 || SQLCODE == 101)

{
printf("%.*s", blob_seg_len, blob_seg_ |en, blob_segnment_buf);
EXEC SQL
FETCH BC | NTO : bl ob_segmnent _buf: bl ob_seg_|I en;
}

InterBase produces an error code of 101 when the length of the segment buffer is less
than the length of a particular segment.

For example, if the length of the segment buffer is 40 and the length of a particular
segment is 60, the first FETCH produces an error code of 101 indicating that data
remains in the segment. The second FETCH reads the remaining 20 bytes of data, and
produces an SQLCODE of 0, indicating that the next segment is ready to be read, or 100
if this was the last segment in the Blob.

Close the Blob read cursor:

EXEC SQL
CLOSE BC;

INTERBASE 5

ACCESSING BLOB DATA WITH SQL

2. Close the table cursor:

EXEC SQL
CLOSE TC;

Inserting Blob data

The following program inserts Blob data into the GUIDEBOOK column of the TOURISM
table:

1. Declare host-language variables to store the Blob ID, Blob segment data, and
the length of segment data:

EXEC SQL
BEG N DECLARE SECTI ON
BASED ON TOURI SM GUI DEBOCK bl ob_i d;
BASED ON TOURI SM GUI DEBOCOK. SEGVENT bl ob_segnent _buf;
BASED ON TOURI SM STATE st at e;
unsi gned short bl ob_seg | en;
EXEC SQL
END DECLARE SECTI ON

- The BASED ON ... SEGMENT syntax declares a host-language variable, blob_segment_buyf,
that is large enough to hold a Blob segment during a FETCH operation. For more
information about the BASED ON directive, see the Language Reference.

2. Declare a Blob insert cursor:

EXEC SQL
DECLARE BC CURSOR FOR | NSERT Bl ob GUI DEBOOK | NTO TOURI SM

3. Open the Blob insert cursor and specify the host variable in which to store
the Blob ID:

EXEC SQL
OPEN BC | NTO : bl ob_i d;

4. Store the segment data in the segment buffer, blob_segment_buf, calculate
the length of the segment data, and use an INSERT CURSOR statement to write
the segment:

sprintf (bl ob_segnent _buf, "W hold these truths to be self
evident');
bl ob_segnment _| en = strlen(bl ob_segnent _buf);

PROGRAMMER'S GUIDE 193

194

CHAPTER 8 WORKING WITH BLOB DATA

EXEC SQL
I NSERT CURSOR BC VALUES (: bl ob_segnent _buf: bl ob_segnent _I en);
Repeat these steps in a loop until you have written all Blob segments.
5. Close the Blob insert cursor:
EXEC SQL
CLCSE BC
6. Use an INSERT statement to insert a new row containing the Blob into the
TOURISM table:
EXEC SQL
| NSERT | NTO TOURI SM (STATE, GUI DEBOOK) VALUES (’ CA ,: bl ob_id);
7. Commit the changes to the database:

EXEC SQL
COWM T;

Updating Blob data

You cannot update a Blob directly. You must create a new Blob, read the old Blob data
into a buffer where you can edit or modify it, then write the modified data to the new
Blob.

Create a new Blob by following these steps:
1. Declare a Blob insert cursor:
EXEC SQL
DECLARE BC CURSOR FOR | NSERT BLOB GUI DEBOOK | NTO TOURI SM
2. Open the Blob insert cursor and specify the host variable in which to store
the Blob ID:
EXEC SQL
OPEN BC | NTO : bl ob_i d;

3. Store the old Blob segment data in the segment buffer blob_segment_buyf,
calculate the length of the segment data, perform any modifications to the
data, and use an INSERT CURSOR statement to write the segment:

/* Programmatically read the first/next segnment of the old Blob
* segnent data into blob_segnent _buf; */
EXEC SQL

I NSERT CURSOR BC VALUES (: bl ob_segnent _buf: bl ob_segnent _I en);

INTERBASE 5

ACCESSING BLOB DATA WITH SQL

Repeat these steps in a loop until you have written all Blob segments.
4. Close the Blob insert cursor:

EXEC SQL
CLOSE BC;

5. When you have completed creating the new Blob, issue an UPDATE statement
to replace the old Blob in the table with the new one, as in the following
example:

EXEC SQL UPDATE TOURI SM
SET
GUI DEBOOK = : bl ob_i d;
WHERE CURRENT OF TGC;

Note The TC table cursor points to a target row established by declaring the cursor and
then fetching the row to update.

To modify a text Blob using this technique, you might read an existing Blob field into a
host-language buffer, modify the data, then write the modified buffer over the existing
field data with an UPDATE statement.

Deleting Blob data

There are two methods for deleting a Blob. The first is to delete the row containing the
Blob. The second is to update the row and set the Blob column to NULL or to the Blob ID
of a different Blob (for example, the new Blob created to update the data of an existing
Blob).

The following statement deletes current Blob data in the GUIDEBOOK column of the
TOURISM table by setting it to NULL:

EXEC SQL UPDATE TOURI SM
SET

GUI DEBOOK = NULL;

WHERE CURRENT OF TG

Blob data is not immediately deleted when DELETE is specified. The actual delete
operation occurs when InterBase performs version cleanup. The following code fragment
illustrates how to recover space after deleting a Blob:

EXEC SQL
UPDATE TABLE SET Bl ob_COLUMN = NULL WHERE ROW = : myrow,

EXEC SQL
COWM T;

PROGRAMMER'S GUIDE 195

CHAPTER 8 WORKING WITH BLOB DATA

/* wait for all active transactions to finish */
/* force a sweep of the database */

When InterBase performs garbage collection on old versions of a record, it verifies
whether or not recent versions of the record reference the Blob ID. If the record does not
reference the Blob ID, InterBase cleans up the Blob.

Accessing Blob data with API calls

In addition to accessing Blob data using SQL as described in this chapter, the InterBase
API provides routines for accessing Blob data. The following API calls are provided for
accessing and managing Blob data:

Function Description

isc_blob_default_desc() Loads a Blob descriptor data structure with default information
about a Blob.

isc_blob_gen_bpb() Generates a Blob parameter buffer (BPB) from source and target

Blob descriptors to allow dynamic access to Blob subtype and
character set information.

isc_blob_info() Returns information about an open Blob.

isc_blob_lookup_desc() Looks up and stores into a Blob descriptor the subtype, character
set, and segment size of a Blob.

isc_blob_set_desc() Sets the fields of a Blob descriptor to values specified in parameters
toisc_blob_set_desc().

isc_cancel_blob() Discards a Blob and frees internal storage.

isc_close_blob() Closes an open Blob.

isc_create_blob2() Creates a context for storing a Blob, opens the Blob for write access,

and optionally specifies afilter to be used to translate the Blob data
from one subtype to another.

isc_get_segment() Reads a segment from an open Blob.
isc_open_blob2() Opens an existing Blob for retrieval and optional filtering.
isc_put_segment() Writes a Blob segment.

TABLES.2 APIBlob calls

196 INTERBASE 5

FILTERING BLOB DATA

For details on using the API calls to access Blob data, see the API Guide.

Filtering Blob data

IMPORTANT

Tip

An understanding of Blob subtypes is particularly important when working with Blob
filters. A Blob filter is a routine that translates Blob data from one subtype to another.
InterBase includes a set of special internal Blob filters that convert from subtype 0 to
subtype 1 (TEXT), and from subtype 1 (TEXT) to subtype 0. In addition to using these
standard filters, you can write your own external filters to provide special data translation.
For example, you might develop a filter to translate bitmapped images from one format
to another.

Blob filters are available for databases residing on all InterBase server platforms except
NetWare, where Blob filters cannot be created or used.

Using the standard InterBase text filters

The standard InterBase filters convert Blob data of subtype 0, or any InterBase system
type, to subtype 1 (TEXT).

When a text filter is being used to read data from a Blob column, it modifies the standard
InterBase behavior for supplying segments. Regardless of the actual nature of the
segments in the Blob column, the text filter enforces the rule that segments must end with
a newline character (\n).

The text filter returns all the characters up to and including the first newline as the first
segment, the next characters up to and including the second newline as the second
segment, and so on.

To convert any non-text subtype to TEXT, declare its FROM subtype as subtype 0 and its
TO subtype as subtype 1.

Using an external Blob filter

Unlike the standard InterBase filters that convert between subtype 0 and subtype 1, an
external Blob filter is generally part of a library of routines you create and link to your
application.

To use an external filter, you must first write it, compile and link it, then declare it to the
database that contains the Blob data you want processed.

PROGRAMMER'S GUIDE 197

CHAPTER 8 WORKING WITH BLOB DATA

» Declaring an external filter to the database

To declare an external filter to a database, use the DECLARE FILTER statement. For example,
the following statement declares the filter, SAMPLE:

EXEC SQL
DECLARE FI LTER SAMPLE
I NPUT_TYPE -1 OQUTPUT_TYPE -2
ENTRY_PO NT "FilterFunction"
MODULE_NAME “filter.dlI";

In the example, the filter’s input subtype is defined as -1 and its output subtype as -2. In
this example, INPUT_TYPE specifies lowercase text and OUTPUT_TYPE specifies uppercase
text. The purpose of filter, SAMPLE, therefore, is to translate Blob data from lowercase text
to uppercase text.

The ENTRY_POINT and MODULE_NAME parameters specify the external routine that
InterBase calls when the filter is invoked. The MODULE_NAME parameter specifies filter.dll,
the dynamic link library containing the filter’s executable code. The ENTRY_POINT
parameter specifies the entry point into the DLL. The example shows only a simple file
name. It is good practice to specify a fully-qualified path name, since users of your
application need to load the file.

» Using a filter to read and write Blob data

The following illustration shows the default behavior of the SAMPLE filter that translates
from lowercase text to uppercase text.

FIGURES.2 Filtering from lowercase to uppercase

Application Blob

Filter:

Similarly, when reading data, the SAMPLE filter can easily read Blob data of subtype -2,
and translate it to data of subtype -1.

198 INTERBASE 5

WRITING AN EXTERNAL BLOB FILTER

FIGURE8.3

Filtering from uppercase to lowercase

Blob Application

Filter:
ABCDEF —P SAMPLE — abcdef

b Invoking a filter in an application

To invoke a filter in an application, use the FILTER option when declaring a Blob cursor.
Then, when the application performs operations using the cursor, InterBase
automatically invokes the filter.

For example, the following INSERT cursor definition specifies that the filter, SAMPLE, is to
be used in any operations involving the cursor, BCINSI:

EXEC SQL
DECLARE BCI NS1 CURSCR FOR
| NSERT Bl ob Bl obl | NTO TABLE1
FILTER FROM -1 TO -2;

When InterBase processes this declaration, it searches a list of filters defined in the
current database for a filter with matching FROM and TO subtypes. If such a filter exists,
InterBase invokes it during Blob operations that use the cursor, BCINS1. If InterBase
cannot locate a filter with matching FROM and TO subtypes, it returns an error to the
application.

Writing an external Blob filter

If you choose to write your own filters, you must have a detailed understanding of the
datatypes you plan to translate. As mentioned elsewhere in this chapter, InterBase does
not do strict datatype checking on Blob data, but does enforce the rule that Blob source
and target subtypes must be compatible. Maintaining and enforcing this compatibility is
your responsibility.

PROGRAMMER'S GUIDE 199

200

CHAPTER 8 WORKING WITH BLOB DATA

Filter types

Filters can be divided into two types: filters that convert data one segment at a time, and
filters that convert data many segments at a time.

The first type of filter reads a segment of data, converts it, and supplies it to the
application a segment at a time.

The second type of filter might read all the data and do all the conversion when the Blob
read cursor is first opened, and then simulate supplying data a segment at a time to the
application.

If timing is an issue for your application, you should carefully consider these two types
of filters and which might better serve your purpose.

Read-only and write-only filters

Some filters may only support reading from or writing to a Blob, but not both operations.
If you attempt to use a Blob filter for an operation that it does not support, InterBase
returns an error to the application.

Defining the filter function

When writing your filter, you must include an entry point, known as a filter function in
the declaration section of the program. InterBase calls the filter function when your
application performs a Blob access operation. All communication between InterBase and
the filter is through the filter function. The filter function itself may call other functions
that comprise the filter executable.

INTERBASE 5

WRITING AN EXTERNAL BLOB FILTER

FIGURE 8.4

Filter interaction with an application and a database

INTERBASE

APPLICATION

FILTER

Declare the name of the filter function and the name of the filter executable with the
ENTRY_POINT and MODULE_NAME parameters of the DECLARE FILTER statement.

A filter function must have the following declaration calling sequence:
filter_function_nane(short action, isc_blob_ctl control);
The parameter, action, is one of eight possible action macro definitions and the

parameter, control, is an instance of the isc_blob_ctl Blob control structure, defined in
the InterBase header file ibase.h. These parameters are discussed later in this chapter.

The following listing of a skeleton filter declares the filter function, jpeg_filter:

#i ncl ude <i base. h>

#define SUCCESS 0
#define FAILURE 1

| SC_STATUS jpeg_filter(short action, isc_blob_ctl control)

{
| SC_STATUS st atus = SUCCESS;

switch (action)

{

case isc_blob_filter_open:
br eak;

case isc_blob_filter_get_segnent:
br eak;

case isc_blob filter _create:

PROGRAMMER'S GUIDE 201

202

CHAPTER 8 WORKING WITH BLOB DATA

br eak;
case isc_blob_filter_put_segnent:
br eak;
case isc_blob filter_close:
br eak;
case isc_blob filter_all oc:
br eak;
case isc_blob filter free:
br eak;
case isc_blob filter_seek:
br eak;
defaul t:
status = isc_uns_ext /* unsupported action value */
br eak;
}

return status,;

}

InterBase passes one of eight possible actions to the filter function, jpeg_filter(), by way
of the action parameter, and also passes an instance of the Blob control structure,
isc_blob_ctl, by way of the parameter control.

The ellipses (...) in the previous listing represent code that performs some operations
based on each action, or event, that is listed in the case statement. Each action is a
particular event invoked by a database operation the application might perform. For
more information, see “Programming filter function actions” on page 205.

The isc_blob_ctl Blob control structure provides the fundamental data exchange between
InterBase and the filter. For more information on the Blob control structure, see
“Defining the Blob control structure” on page 202.

» Defining the Blob control structure

The Blob control structure, isc_blob_ctl, provides the fundamental method of data
exchange between InterBase and a filter. The declaration for the isc_blob_ctl control
structure is in the InterBase include file, ibase.b.

INTERBASE 5

WRITING AN EXTERNAL BLOB FILTER

The isc_blob_ctl structure is used in two ways:

1. When the application performs a Blob access operation, InterBase calls the
filter function and passes it an instance of isc_blob_ctl.

2. Internal filter functions can pass an instance of isc_blob_ctl to internal
InterBase access routines.

In either case, the purpose of certain isc_blob_ctl fields depends on the action being
performed.

For example, when an application attempts a Blob INSERT, InterBase passes an
isc_blob_filter_put_segment action to the filter function. The filter function passes an
instance of the control structure to InterBase. The ctl_buffer of the structure contains the
segment data to be written, as specified by the application in its Blob INSERT statement.
Because the buffer contains information to pass into the filter function, it is called an IV
field. The filter function should include instructions in the case statement under the
isc_blob_filter_put_segment case for performing the write to the database.

In a different case, for instance when an application attempts a FETCH operation, the case
of an isc_blob_filter_get_segment action should include instructions for filling c#/_buffer
with segment data from the database to return to the application. In this case, because
the buffer is used for filter function output, it is called an out field.

PROGRAMMER'S GUIDE 203

204

TABLES.3

CHAPTER 8 WORKING WITH BLOB DATA

The following table describes each of the fields in the isc_blob_ctl Blob control structure,
and whether they are used for filter function input (IN), or output (OUT).

Field name

Description

(*ctl_source)()

*ctl_source_handle

ctl_to_sub_type

ctl_from_sub_type

ctl_buffer_length

ctl_segment_length

ctl_bpb_length
*ctl_bpb
*ctl_buffer

Pointer to the internal InterBase Blob access routine. (IN)

Pointer to an instance of isc_blob_ct/ to be passed to the internal InterBase
Blob access routine. (IN)

Target subtype. Information field. Provided to support multi-purpose filters
that can perform more than one kind of translation. This field and the next one
enable such a filter to decide which translation to perform. (IN)

Source subtype. Information field. Provided to support multi-purpose filters
that can perform more than one kind of translation. This field and the previous
one enable such afilter to decide which translation to perform. (IN)

For isc_blob_filter_put_segment, field is an IN field that contains the length of
the segment data contained in ct/_buffer.

For isc_blob_filter_get_segment, field is an IN field set to the size of the buffer
pointed to by ctl_buffer, which is used to store the retrieved Blob data.

Length of the current segment. This field is not used for
isc_blob_filter_put_segment.

For isc_blob_filter_get_segment, the field is an ouT field set to the size of the
retrieved segment (or partial segment, in the case when the buffer length
ctl_buffer_length is less than the actual segment length).

Length of the Blob parameter buffer. Reserved for future enhancement.
Pointer to a Blob parameter buffer. Reserved for future enhancement.

Pointerto asegment buffer. Forisc_blob_filter_put_segment, fieldisan INfield
that contains the segment data.

For isc_blob_filter _get_segment, the field is an ouT field the filter function fills
with segment data for return to the application.

isc_blob_ctl structure field descriptions

INTERBASE 5

WRITING AN EXTERNAL BLOB FILTER

Field name

Description

ctl_max_segment

ctl_number_segments

ctl_total_length

*ctl_status

ctl_data[8]

Length of longest segment in the Blob. Initial value is 0. The filter function sets
this field. This field is informational only.

Total number of segments in the Blob. Initial value is 0. The filter function sets
this field. This field is informational only.

Total length of the Blob. Initial value is 0. The filter function sets this field. This
field is informational only.

Pointer to the InterBase status vector. (0UT)

8-element array of application-specific data. Use this field to store resource
pointers, such as memory pointers and file handles created by the
isc_blob_filter_open handler, for example. Then, the next time the filter
function is called, the resource pointers will be available for use. (IN/OUT)

TABLE83 isc_blob_ctl structure field descriptions (continued)

SETTING CONTROL STRUCTURE INFORMATION FIELD VALUES

The isc_blob_ctl structure contains three fields that store information about the Blob
currently being accessed: ctl_max_segment, ctl_number_segments, and ctl_total_length.

You should attempt to maintain correct values for these fields in the filter function,
whenever possible. Depending on the purpose of the filter, maintaining correct values for
the fields is not always possible. For example, a filter that compresses data on a
segment-by-segment basis cannot determine the size of ct/_max_segment until it
processes all segments.

These fields are informational only. InterBase does not use the values of these fields in

internal processing.

» Programming filter function actions

When an application performs a Blob access operation, InterBase passes a corresponding
action message to the filter function by way of the action parameter. There are eight
possible actions, each of which results from a particular access operation. The following
list of action macro definitions are declared in the ibase.b file:

#def i
#def i
#def i
#def i
#def i
#def i

PROGRAMMER'S GUIDE

ne
ne
ne
ne
ne
ne

isc_blob _filter_open
isc_blob filter_get_segnent
isc_blob filter_close
isc_blob filter_create
isc_blob filter_put_segnent
isc_blob filter_alloc

ga b~ wWNPEFEO

205

CHAPTER 8 WORKING WITH BLOB DATA

#define isc_blob filter free 6
#define isc_blob filter_seek 7

The following table describes the Blob access operation that corresponds to each action:

Action Invoked when ... Useto...
isc_blob_filter_open Application opens a Blob READ Set the information fields of the Blob control
cursor structure.

Perform initialization tasks, such as allocating
memory or opening temporary files.

Set the status variable, if necessary. The value of the
status variable becomes the filter function’s return
value.

isc_blob_filter_get_segment Application executes a Blob Set the ctl_buffer and ctl_segment_length fields of
FETCH statement the Blob control structure to contain a segment’s
worth of translated data on the return of the filter
function.

Perform the data translation if the filter processes
the Blob segment-by-segment.

Set the status variable. The value of the status
variable becomes the filter function’s return value.

isc_blob_filter_close Application closes a Blob cursor Perform exit tasks, such as freeing allocated
memory, closing, or removing temporary files.
isc_blob_filter_create Application opens a Blob INSERT Set the information fields of the Blob control
cursor structure.

Perform initialization tasks, such as allocating
memory or opening temporary files.

Set the status variable, if necessary. The value of the
status variable becomes the filter function’s return
value.

TABLE8.4 Blob access operations

206 INTERBASE 5

WRITING AN EXTERNAL BLOB FILTER

Action Invoked when ...

Useto...

isc_blob_filter_put_segment Application executes a Blob
INSERT statement

isc_blob_filter_alloc InterBase initializes filter
processing; not a result of a
particular application action

isc_blob_filter_free InterBase ends filter
processing; not a result of a
particular application action

isc_blob_filter_seek Reserved for internal filter use;
not used by external filters

Perform the data translation on the segment data
passed in through the Blob control structure.

Write the segment data to the database. If the
translation process changes the segment length,
the new value must be reflected in the values
passed to the writing function.

Set the status variable. The value of the status
variable becomes the filter function’s return value.

Set the information fields of the Blob control
structure.

Perform initialization tasks, such as allocating
memory or opening temporary files.

Set the status variable, if necessary. The value of the
status variable becomes the filter function’s return
value.

Perform exit tasks, such as freeing allocated
memory, closing, or removing temporary files.

TABLE8.4 Blob access operations (continued)

Tip Store resource pointers, such as memory pointers and file handles created by the
isc_blob_filter_open handler, in the ctl_data field of the isc_blob_ctl Blob control
structure. Then, the next time the filter function is called, the resource pointers are still

available.

» Testing the function return value

The filter function must return an integer indicating the status of the operation it
performed. You can have the function return any InterBase status value returned by an

internal InterBase routine.

PROGRAMMER'S GUIDE

207

208

TABLE8.S

CHAPTER 8 WORKING WITH BLOB DATA

In some filter applications, a filter function has to supply status values directly. The
following table lists status values that apply particularly to Blob processing:

Macro constant Value

Meaning

SUCCESS 0
FAILURE 1
isc_uns_ext See ibase.h
isc_segment See ibase.h
isc_segstr_eof See ibase.h

Indicates the filter action has been handled successfully. On a
Blob read (isc_blob_filter_get_segment) operation, indicates that
the entire segment has been read.

Indicates an unsuccessful operation. In most cases, a status more
specific to the error is returned.

Indicates that the attempted action is unsupported by the filter.
For example, a read-only filter would return isc_uns_ext for an
isc_blob_filter_put_segment action.

During a Blob read operation, indicates that the supplied buffer is
not large enough to contain the remaining bytes in the current
segment. In this case, only ctl_buffer_length bytes are copied,
and the remainder of the segment must be obtained through
additional isc_blob_filter_get_segment calls.

During a Blob read operation, indicates that the end of the Blob
has been reached; there are no additional segments remaining to
be read.

Blob filter status values

For more information about InterBase status values, see the Language Reference.

INTERBASE 5

CHAPTER

Using Arrays

InterBase supports arrays of most datatypes. Using an array enables multiple data items
to be stored in a single column. InterBase can treat an array as a single unit, or as a series
of separate units, called slices. Using an array is appropriate when:

® The data items naturally form a set of the same datatype

= The entire set of data items in a single database column must be represented and
controlled as a unit, as opposed to storing each item in a separate column

® Each item must also be identified and accessed individually

The data items in an array are called array elements. An array can contain elements of
any InterBase datatype except BLOB. It cannot be an array of arrays, although InterBase
does support multidimensional arrays. All of the elements of an array must be of the same
datatype.

Creating arrays

Arrays are defined with the CREATE DOMAIN or CREATE TABLE statements. Defining an array
column is just like defining any other column, except that you must also specify the array
dimensions.

Array indexes range from —23! to +231-1.

PROGRAMMER'S GUIDE 209

IMPORTANT

210

CHAPTER 9 USING ARRAYS

The following statement defines a regular character column and a single-dimension,
character array column containing four elements:

EXEC SQL
CREATE TABLE TABLE1
(
NAMVE CHAR(10),
CHAR_ARR CHAR(10)[4]
)

Array dimensions are always enclosed in square brackets following a column’s datatype
specification.

For a complete discussion of CREATE TABLE and array syntax, see the Language Reference.

Multi-dimensional arrays

InterBase supports multi-dimensional arrays, arrays with 1 to 16 dimensions. For
example, the following statement defines three integer array columns with two, three,
and six dimensions, respectively:

EXEC SQL
CREATE TABLE TABLE1
(
| NT_ARR2 | NTEGER 4, 5]
| NT_ARR3 | NTEGER] 4, 5, 6]
| NT_ARR6 | NTEGER[4, 5, 6, 7, 8, 9]
)

In this example, INT_ARR?2 allocates storage for 4 rows, 5 elements in width, for a total of
20 integer elements, INT_ARR3 allocates 120 elements, and INT_ARRG6 allocates 60,480
elements.

InterBase stores multi-dimensional arrays in row-major order. Some host languages,
such as FORTRAN, expect arrays to be in column-major order. In these cases, care must
be taken to translate element ordering correctly between InterBase and the host
language.

INTERBASE 5

CREATING ARRAYS

Specifying subscript ranges

In InterBase, array dimensions have a specific range of upper and lower boundaries,
called subscripts. In many cases, the subscript range is implicit: the first element of the
array is element 1, the second element 2, and the last is element 7. For example, the
following statement creates a table with a column that is an array of four integers:

EXEC SQL
CREATE TABLE TABLEL
(
I NT_ARR | NTEGER] 4]

)
The subscripts for this array are 1, 2, 3, and 4.

A different set of upper and lower boundaries for each array dimension can be explicitly
defined when an array column is created. For example, C programmers, familiar with
arrays that start with a lower subscript boundary of zero, may want to create array
columns with a lower boundary of zero as well.

To specify array subscripts for an array dimension, both the lower and upper boundaries
of the dimension must be specified using the following syntax:

| ower: upper

For example, the following statement creates a table with a single-dimension array
column of four elements where the lower boundary is 0 and the upper boundary is 3:

EXEC SQL
CREATE TABLE TABLE1
(
| NT_ARR | NTEGER] 0: 3]
)

The subscripts for this array are 0, 1, 2, and 3.

When creating multi-dimensional arrays with explicit array boundaries, separate each
dimension’s set of subscripts from the next with commas. For example, the following

statement creates a table with a two-dimensional array column where each dimension
has four elements with boundaries of 0 and 3:

EXEC SQL
CREATE TABLE TABLE1
(
| NT_ARR | NTEGER[0: 3, 0: 3]
)

PROGRAMMER'S GUIDE 211

CHAPTER 9 USING ARRAYS

Accessing arrays

InterBase can perform operations on an entire array, effectively treating it as a single
element, or it can operate on an array slice, a subset of array elements. An array slice can
consist of a single element, or a set of many contiguous elements.

InterBase supports the following data manipulation operations on arrays:
= Selecting data from an array
® Inserting data into an array
® Updating data in an array slice
= Selecting data from an array slice
® Evaluating an array element in a search condition
A user-defined function (UDF) can only reference a single array element.
The following array operations are 7ot supported:
® Referencing array dimensions dynamically in DSQL
® Inserting data into an array slice
= Setting individual array elements to NULL
® Using the aggregate functions, MINQ, MAX(, SUMQ, AVG(), and COUNT(with arrays
® Referencing arrays in the GROUP BY clause of a SELECT

® Creating views that select from array slices

Selecting data from an array

To select data from an array, perform the following steps:

1. Declare a host-language array variable of the correct size to hold the array
data. For example, the following statements create three such variables:

EXEC SQL
BEG N DECLARE SECTI ON;
BASED ON TABLEl. CHAR ARR char_arr;
BASED ON TABLEL. I NT_ARR int_arr;
BASED ON TABLELl. FLOAT_ARR fl oat _arr;
EXEC SQL
END DECLARE SECTI ON;

2. Declare a cursor that specifies the array columns to select. For example,

212 INTERBASE 5

ACCESSING ARRAYS

EXEC SQL
DECLARE TC1 CURSOR FOR
SELECT NAME, CHAR ARR[], |NT_ARR[]
FROM TABLEL;

Be sure to include brackets ([]) after the array column name to select the array data.
If the brackets are left out, InterBase reads the array ID for the column, instead of the
array data.

The ability to read the array ID, which is actually a Blob ID, is included only to
support applications that access array data using InterBase API calls.

3. Open the cursor, and fetch data:

EXEC SQL
OPEN TC1;
EXEC SQL
FETCH TC1 I NTO : nane, :char_arr, :int_arr;

Note It is not necessary to use a cursor to select array data. For example, a singleton
SELECT might be appropriate, too.

When selecting array data, keep in mind that InterBase stores elements in row-major
order. For example, in a 2-dimensional array, with 2 rows and 3 columns, all 3 elements
in row 1 are returned, then all three elements in row two.

Inserting data into an array

INSERT can be used to insert data into an array column. The data to insert must exactly
fill the entire array, or an error can occur.

To insert data into an array, follow these steps:

1. Declare a host-language variable to hold the array data. Use the BASED ON

clause as a handy way of declaring array variables capable of holding data to
insert into the entire array. For example, the following statements create three
such variables:

EXEC SQL
BEG N DECLARE SECTI ON;
BASED ON TABLELl. CHAR_ARR char_arr;
BASED ON TABLEL.INT_ARR int_arr;
BASED ON TABLELl. FLOAT_ARR fl oat _arr;
EXEC SQL
END DECLARE SECTI ON;

PROGRAMMER'S GUIDE 213

CHAPTER 9 USING ARRAYS

2. Load the host-language variables with data.
3. Use INSERT to write the arrays. For example,

EXEC SQL
| NSERT | NTO TABLEL (NAME, CHAR ARR, | NT_ARR, FLOAT_ARR)
VALUES (" Sanpl e", :char_arr, :int_arr, :float_arr);

4. Commit the changes:

EXEC SQL
COWM T;

IMPORTANT ~ When inserting data into an array column, provide data to fill all array elements, or the
results will be unpredictable.

Selecting from an array slice

The SELECT statement supports syntax for retrieving contiguous ranges of elements from
arrays. These ranges are referred to as array slices. Array slices to retrieve are specified
in square brackets ([]) following a column name containing an array. The number inside
the brackets indicates the elements to retrieve. For a one-dimensional array, this is a
single number. For example, the following statement selects the second element in a
one-dimensional array:

EXEC SQL
SELECT JOB_TI TLE[2]
INTO : title
FROM EMPLOYEE
WHERE LAST_NAME = : | nane;

To retrieve a subset of several contiguous elements from a one-dimensional array, specify
both the first and last elements of the range to retrieve, separating the values with a colon.
The syntax is as follows:

[1 ower_bound: upper_bound]
For example, the following statement retrieves a subset of three elements from a
one-dimensional array:

EXEC SQL
SELECT JOB_TI TLE[2: 4]
INTO : title
FROM EMPLOYEE
WHERE LAST_NAME = : | nane;

214 INTERBASE 5

ACCESSING ARRAYS

For multi-dimensional arrays, the lower and upper values for each dimension must be
specified, separated from one another by commas, using the following syntax:

[l over: upper, |ower: upper [, |ower:upper ...]]

Note In this syntax, the bold brackets must be included.
For example, the following statement retrieves two rows of three elements each:

EXEC SQL

DECLARE TC2 CURSOR FOR
SELECT | NT_ARR[1: 2, 1: 3]
FROM TABLE1

Because InterBase stores array data in row-major order, the first range of values between
the brackets specifies the subset of rows to retrieve. The second range of values specifies
which elements in each row to retrieve.

To select data from an array slice, perform the following steps:

1. Declare a host-language variable large enough to hold the array slice data
retrieved. For example,

EXEC SQL
BEG N DECLARE SECTI ON;
char char_slice[11]; /* 11-byte string for CHAR(10) dat at ype
*/
long int_slice[2][3];
EXEC SQL
END DECLARE SECTI ON;

The first variable, char_slice, is intended to store a single element from the CHAR_ARR
column. The second example, int_slice, is intended to store a six-element slice from
the INT_ARR integer column.

2. Declare a cursor that specifies the array slices to read. For example,
EXEC SQL
DECLARE TC2 CURSOR FOR

SELECT CHAR ARR[1], INT_ARR[1:2,1: 3]
FROM TABLE1

3. Open the cursor, and the fetch data:

EXEC SQL
OPEN TC2;
EXEC SQL
FETCH TC2 I NTO : char_slice, :int_slice;

PROGRAMMER'S GUIDE 215

216

CHAPTER 9 USING ARRAYS

Updating data in an array slice

A subset of elements in an array can be updated with a cursor. To perform an update,
follow these steps:

1. Declare a host-language variable to hold the array slice data. For example,

EXEC SQL
BEG N DECLARE SECTI ON;
char char_slice[11]; /* 11-byte string for CHAR(10) dat at ype

long int_slice[2][3];
EXEC SQL
END DECLARE SECTI ON;

The first variable, char_slice, is intended to hold a single element of the CHAR_ARR
array column defined in the programming example in the previous section. The
second example, int_slice, is intended to hold a six-element slice of the INT_ARR
integer array column.

. Select the row that contains the array data to modify. For example, the

following cursor declaration selects data from the INT_ARRAY and CHAR_ARRAY
columns:

EXEC SQL
DECLARE TCl CURSOR FCOR
SELECT CHAR_ARRAY[1], | NT_ARRAY[1:2,1:3] FROM TABLEL;
EXEC SQL
OPEN TC1;
EXEC SQL
FETCH TC1 I NTO :char_slice, :int_slice;

This example fetches the data currently stored in the specified slices of CHAR_ARRAY
and INT_ARRAY, and stores it into the char_slice and int_slice host-language variables,
respectively.

. Load the host-language variables with new or updated data.

4. Execute an UPDATE statement to insert data into the array slices. For example,

the following statements put data into parts of CHAR_ARRAY and INT_ARRAY,
assuming char_slice and int_slice contain information to insert into the table:

EXEC SQL
UPDATE TABLE1
SET
CHAR _ARR[1] = :char_slice,

INTERBASE 5

ACCESSING ARRAYS

INT_ARR[1:2,1:3] = :int_slice
WHERE CURRENT OF TC1,
5. Commit the changes:
EXEC SQL
COW T;

The following fragment of the output from this example illustrates the contents of the
columns, CHAR_ARR and INT_ARR after this operation.

char_arr values:
[0]:string0 | [1]:NewString| [2]:string2 [3]:string3

int_arr values: updated values

[0]70]:0 [O]J[2]:1 ([o0][2]:2 [O][3]:3

[11007:10f [1701]:999 [1][2]:999 [1][3]:999
[21007:20[[2][1]:999 [2][2]:999 [2][3]:999
[3110]:30 [3]11]:31 [3][2]:32 [3]([3]:33

Testing a value in a search condition

A single array element’s value can be evaluated in the search condition of a WHERE
clause. For example,

EXEC SQL

DECLARE TC2 CURSOR FOR
SELECT CHAR ARR[1], INT_ARR[1:2,1: 3]
FROM TABLE1
WHERE SMALLINT_ARR[1, 1,1] = 111;

IMPORTANT You cannot evaluate multi-element array slices.

Using host variables in array subscripts

Integer host variables can be used as array subscripts. For example, the following cursor
declaration uses host variables, getval, and testval, in array subscripts:

EXEC SQL

DECLARE TC2 CURSOR FOR
SELECT CHAR ARR[1], INT_ARR[:getval:1,1:3]
FROM TABLE1
WHERE FLOAT_ARR[:testval,1,1] = 111.0;

PROGRAMMER'S GUIDE 217

218

CHAPTER 9 USING ARRAYS

Using arithmetic expressions with arrays

Arithmetic expressions involving arrays can be used only in search conditions. For
example, the following code fetches a row of array data at a time that meets the search
criterion:

for (i =1; i < 100 & SQ.CODE == 0; i++)
{
EXEC SQL
SELECT ARR[:i] INTO :array_var
FROM TABLE1

WHERE ARRL[:] + 1] = 5;
process_array(array_var);

INTERBASE 5

CHAPTER

10

Working with
User-Defined Functions

Just as InterBase has built-in SQL functions such as MINO, MAX(), and CAST(), it also
supports libraries of external functions, or user-defined functions (UDFs). A UDF is a
function written entirely in a host language to perform a data manipulation task not
directly supported by InterBase. Possibilities include statistical, string, and date functions.

IMPORTANT UDFs are not supported on NetWare.

Once a UDF is created, it can be used in a database application anywhere that a built-in
SQL function can be used. This chapter describes how to create UDFs and how to use
them in an application.

PROGRAMMER'S GUIDE 219

CHAPTER 10 WORKING WITH USER-DEFINED FUNCTIONS

Creating a UDF

Creating a UDF is a three-step process:

1. Writing and compiling a UDF in a programming language such as C or
Delphi

2. Building a dynamically linked library containing the UDF
3. Declaring the UDF to the database.

A UDF can be written in C or in any other host language that can be called from C.
Throughout this chapter, the sample UDF code comes from a single C source file,
udflib.c, which is in the InterBase examples subdirectory.

Note A /ibrary, in this context, is a shared object that typically has a .dll extension on
Wintel platforms, a .so extension on Solaris, and a .s/ extension on HP-UX.

Writing a function module

In C, a UDF is written like any standard function. The UDF can require up to ten input
parameters, and can return only a single C data value. A single source code module can
define one or more UDFs. For example, the sample UDF module, udflib.c, includes the
following UDFs:

® fn_abs() returns the absolute value of a number passed as an input argument.

= fn_datediff() takes two InterBase dates as input, and returns the number of days between
them.

= fn_trim() imitates the SQL-92 TRIM() function. It takes three input arguments, an integer
specifying the string trim operation to perform (trim leading characters, trim trailing
characters, or trim both leading and trailing characters), the character to trim, and the
string from which to trim characters. It returns the trimmed string.

The sample code for these functions is as follows:

#i ncl ude <mat h. h>
#i ncl ude <ctype. h>
#i nclude <string. h>
#i ncl ude <tine. h>

[* Defines for fn_trim(). */

#def i ne LEADI NG 0
#define TRAILING 1

220 INTERBASE 5

CREATING A UDF

#define BOTH 2
/* Function prototypes. */

static char *strtrim (char *string, int c);
static char *strtrinr(char *string, int c);

char *fn_trimint operation, int c, char *string);
I ong fn_datediff(ISC QUAD d1, |SC QUAD d2);

doubl e fn_abs(doubl e *x);

/* Function Definitons */

/* fn_abs() returns the absolute value of its argument. */
doubl e fn_abs(double *x)
{
return(*x < 0.0) ? -*x : *x;
}
[* fn_datediff() returns the nunber of days between two dates */
I ong fn_datediff(ISC QUAD dl1, |SC QUAD d2)

{

struct tmtnml, tng;

i sc_decode_date(dl, &nl); /* convert |IB date to tm*/

i sc_decode_date(d2, &tnR);

return(long) (tinmelocal (& ml) - timelocal (& nR)) / (24 * 3600.0);
}

/* trimleading and/or trailing characters of type ¢ fromstring */
char *fn_trimint operation, int c, char *string)
{
switch (operation) {
case LEADI NG
strtrim (string, c);
case TRAI LI NG
strtrinr(string, c);
br eak;
case BOTH:
defaul t:
strtrinr(string, c);
strtrim (string, c);
br eak;

PROGRAMMER'S GUIDE 221

222

CHAPTER 10 WORKING WITH USER-DEFINED FUNCTIONS

return(string);

}

/[* trimall chars of type ¢ fromleft of string and close up */

static char *strtrim (char *string, int c)

{
int n,i;
n =0;
while (string[n] == c¢) /* skip |leading characters */
n++;
for (i = 0;string[n];i++ n++t) /* copy backward over itself */
string[i] = string[n];
string[i] = NULL; /* don’t forget string terminator */
}

*trim all chars of type ¢ from right of string and truncate length */

static char *strtrimr(char *string, int c)

{
int n;
n = strlen(string) - 1;
while (string[n] == c)

n--;

string[n + 1] = NULL;
return(string);

}

As this sample code illustrates, a UDF source code module can use typedefs defined in
the InterBase ibase.h header file. To compile such a module successfully, include ibase.h
in the source code by adding the following include directive:

#include "ibase.h"
Note The sample code also includes calls to two InterBase library functions,

isc_decode_date(), and isc_encode_date(). The ibase.bh header file includes function
prototypes for all InterBase library function calls.

» Specifying parameters

A UDF can accept up to ten parameters corresponding to any InterBase datatype. Array
elements cannot be passed as parameters. If a UDF returns a Blob, the number of input
parameters is restricted to nine. All parameters are passed to the UDF by reference.

INTERBASE 5

CREATING A UDF

Programming language datatypes specified as parameters must be capable of handling
corresponding InterBase datatypes. For example, the C function declaration for fn_abs()
accepts one parameter of type double. The expectation is that when fn_abs() is called, it
will be passed a datatype of DOUBLE PRECISION by InterBase.

UDFs that accept Blob parameters require special data structure for processing. A Blob is
passed by reference to a Blob UDF structure. For more information about the Blob UDF
structure, see “Writing a Blob UDF” on page 229.

b Specifying a return value

A UDF can return values that can be translated into any InterBase datatype, including a
Blob, but it cannot return arrays of datatypes. For example, the C function declaration for
fn_abs() returns a value of type double, which corresponds to the InterBase DOUBLE
PRECISION datatype.

By default, return values are passed by reference. Numeric values can be returned by
reference or by value. To return a numeric parameter by value, include the optional BY
VALUE keyword after the return value when declaring a UDF to a database.

A UDF that returns a Blob does not actually define a return value. Instead, a pointer to a
structure describing the Blob to return must be passed as the last input parameter to the
UDFE

Handling memory for return values

InterBase 5’s single multi-threaded process requires some modification in the way
memory is allocated and released in UDFs and in the way these UDFs are declared. There
are several issues: in the single-process, multi-thread architecture, memory allocated
dynamically is not released, since the process does not end; users running UDFs
concurrently will conflict in their use of the same static memory space; and memory must
be released by the same runtime library that allocated it.

The procedure for allocating and freeing memory for return values in a fashion that is
both thread safe and compiler independent is as follows:

1. In the UDF code, use InterBase’s ib_util_malloc() function to allocate memory
for return values. This function is contained in the ib_install_dir/lib/ib_util
library (¢b_util.dll on Windows, ib_util.so on Solaris, and ib_util.sl on
HP-UX).

2. Linking and compiling:

Microsoft Visual C/C++ Link with ib_install_dir/lib/ib_util_ms.lib and include
ib_install_dir/include/ib_util.h

PROGRAMMER'S GUIDE 223

CHAPTER 10 WORKING WITH USER-DEFINED FUNCTIONS

Borland C++ Link with ib_install_dir/lib/ib_util.lib and include
ib_install_dir/include/ib_util.h

Delphi Use ib_install_dir/include/ib_util.pas.

3. Use the FREE_IT keyword in the RETURNS clause when declaring a function
that returns dynamically allocated objects. For example:

DECLARE EXTERNAL FUNCTI ON | ower s VARCHAR(256)
RETURNS CSTRI NG(256) FREE | T
ENTRY PO NT ’fn_| ower’ MODULE_NAME ’udflib.dll’

InterBase’s FREE_IT keyword allows InterBase users to write thread-safe UDF functions
without memory leaks.

Note UDFs must avoid static variables in order to be thread safe. You can use local
variables only if you can guarantee that only one user at a time will be accessing UDFs.
If you do return a pointer to static data, you must #zof use FREE_IT.

Compiling a function module

After a UDF module is complete, you can compile it in a normal fashion into object or
library format. You then declare the UDFs in the resulting object or library module to the
database using the DECLARE EXTERNAL FUNCTION statement. Once declared to the
database, the library containing all the UDFs is automatically loaded at run time from a
shared library or dynamic link library.

See “Handling memory for return values” on page 223 of this book for a detailed
description of how to allocate and return memory for return values as well as information
on linking and compiling the UDF library.

IMPORTANT See the makefiles (makefile.bc and makefile.msc on Wintel, makefile on UNIX) in the
InterBase examples subdirectory for details on how to compile a UDF library.

Note UDFs are not supported on NetWare.

224 INTERBASE 5

CREATING A UDF LIBRARY

Creating a UDF library

UDF libraries are standard C object libraries that are dynamically loaded by the database
at runtime. You can create UDF libraries on any platform—except NetWare—that is
supported by InterBase. To use the same set of UDFs with databases running on different
platforms, create separate libraries on each platform where the databases reside. UDFs
run on the server where the database resides.

The InterBase examples directory contains sample makefiles (makefile.bc and
makefile.msc on Wintel, makefile on UNIX) that build a UDF function library from
udflib.c.

Modifying a UDF library
To add a UDF to an existing UDF library on a platform:

Compile the UDF according to the instructions for the platform.

Include all object files previously included in the library and the newly-created object file
in the command line when creating the function library.

Note On some platforms, object files can be added directly to existing libraries. For more
information, consult the platform-specific compiler and linker documentation.

To delete a UDF from a library, follow the linker’s instructions for removing an object
from a library. Deleting a UDF from a library does not eliminate references to it in the
database.

Placing the UDF library

When you specify the module (library) name in the DECLARE EXTERNAL FUNCTION
statement, you can use an absolute path, a relative path, or the library name only.
Absolute paths are, of course, inflexible and relative paths are subject to misinterpretation
by the OS. If you use the module name only, the operating system will always find it in
the /ib subdirectory of the InterBase install directory. If you want to place the library
elsewhere, the operating system looks in the following places, in sequence:

Windows
- ib_install_dir\bin on the server

- win_install_dir\system32 when present

PROGRAMMER'S GUIDE 225

CHAPTER 10 WORKING WITH USER-DEFINED FUNCTIONS

- win_install_dir\system
- All directories in PATH
- ib_install_dir/lib

Solaris

- fusr/lib
- Directories in the LD_LIBRARY_PATH environment variable on the server
- ib_install_dir/lib

HP-UX
- Directories in the SH_LIB environment variable on the server
- ib_install_dir/lib

Declaring a UDF to a database

Once a UDF has been written and compiled into a library, you must declare it to each
database where you want to use it, using the DELCARE EXTERNAL FUNCTION statement.
Each UDF in a library must be declared separately, but needs to be declared only once to
each database.

Declaring a UDF to a database informs the database about its location and properties:
® The UDF name as it will be used in embedded SQL statements
® The number and datatypes of its arguments
® The return datatype
® The name of the function as it exists in the UDF module or library
® The name of the library that contains the UDF
You can use isql, interBase Windows ISQL, or a script to declare your UDFs.

For more information about declaring a UDF to a database, see “Declaring the external
function” on page 190 of the Data Definition Guide and “DECLARE EXTERNAL
FUNCTION” on page 90 of the Language Reference.

226 INTERBASE 5

CALLING AUDF

For example, the following isql script declares three UDFs, ABS(), DATEDIFF(), and TRIMQ),
to the employee.gdb database:

CONNECT " enpl oyee. gdb";
DECLARE EXTERNAL FUNCTI ON ABS
DOUBLE PRECI SI ON
RETURNS DOUBLE BY VALUE
ENTRY_PO NT "fn_abs" MODULE_NAME "udflib.dll";

COW T;
DECLARE EXTERNAL FUNCTI ON DATEDI FF
DATE, DATE

RETURNS | NTEGER
ENTRY_PO NT "fn_datediff" MODULE_NAME "udflib.dll";
COMM T:
DECLARE EXTERNAL FUNCTI ON TRI M
SMALLI NT, CSTRI NG(256), SMALLI NT
RETURNS CSTRI NG(256) FREE IT
ENTRY_PO NT "fn_trimf MODULE NAMVE "udflib.dll";
COMM T:

Although UDFs are written in a host language and therefore take host-language datatypes
for both its parameters and its return value, when a UDF is declared, it must translate
them to SQL datatypes or to a CSTRING type of a specified maximum byte length. CSTRING
is used to translate parameters of CHAR and VARCHAR datatypes into a null-terminated C
string for processing, and to return a variable-length, null-terminated C string to
InterBase for automatic conversion to CHAR or VARCHAR.

When you declare a UDF that returns a C string, CHAR or VARCHAR, you must include the
FREE_IT keyword in the declaration in order to free the memory used by the return value.

Calling a UDF

After a UDF is created and declared to a database, it can be used in SQL statements
wherever a built-in function is permitted. To use a UDF, insert its name in an SQL
statement at an appropriate location, and enclose its input arguments in parentheses.

For example, the following DELETE statement calls the ABSQ UDF as part of a search
condition that restricts which rows are deleted:

EXEC SQL
DELETE FROM Cl Tl ES
WHERE ABS (POPULATI ON - 100000) > 50000;

PROGRAMMER'S GUIDE 227

228

CHAPTER 10 WORKING WITH USER-DEFINED FUNCTIONS

UDFs can also be called in stored procedures and triggers. For more information, see the
Data Definition Guide.

Calling a UDF with SELECT

In SELECT statements, a UDF can be used in a select list to specify data retrieval, or in the
WHERE clause search condition.

The following statement uses ABSQ to guarantee that a returned column value is positive:

EXEC SQL
SELECT ABS (JOB_GRADE) FROM PROJECTS;

The next statement uses DATEDIFF() in a search condition to restrict rows retrieved:

EXEC SQL

SELECT START_DATE FROM PRQJECTS
WHERE DATEDI FF (:today, START_DATE) > 10;

Calling a UDF with INSERT

In INSERT statements, a UDF can be used in the comma-delimited list in the VALUES clause.

The following statement uses TRIM(to remove leading blanks from firstname and trailing
blanks from lastname before inserting the values of these host variables into the
EMPLOYEE table:

EXEC SQL
I NSERT | NTO EMPLOYEE(FI RST_NAME, LAST_NAME, EMP_NO, DEPT_NG,
SALARY)
VALUES (TRIM (0, ' ',:firstnanme), TRIM (1, ' ', :lastnane),

:enpno, :deptno, greater (30000, :est_salary));

Calling a UDF with UPDATE

In UPDATE statements, a UDF can be used in the SET clause as part of the expression
assigning column values.

For example, the following statement uses TRIMO to ensure that update values do not
contain leading or trailing blanks:

EXEC SQL
UPDATE COUNTRI ES

INTERBASE 5

WRITING A BLOB UDF

SET COUNTRY = TRIM (2, ' ', COUNTRY);

Calling a UDF with DELETE

In DELETE statements, a UDF can be used in a WHERE clause search condition:
EXEC SQL
DELETE FROM COUNTRI ES
WHERE ABS (POPULATI ON - 100000) < 50000;

Writing a Blob UDF

A Blob UDF differs from other UDFs, because pointers to Blob control structures are
passed to the UDF instead of references to actual data. A Blob UDF cannot open or close
a Blob, but instead invokes functions to perform Blob access.

Creating a Blob control structure

A Blob control structure is a C struct, declared within a UDF module as a
typedef. Programmers must provide the control structure definition, which should be
defined as follows:

typedef struct blob {

voi d (*bl ob_get_segnent) ();

int *bl ob_handl e;

| ong nunber _segmnents;

| ong max_segl en;

| ong total _size;

voi d (*bl ob_put_segnent) ();
} *Bl ob;

PROGRAMMER'S GUIDE 229

CHAPTER 10 WORKING WITH USER-DEFINED FUNCTIONS

Field Description

blob_get_segment The firstfield in the Blob struct, blob_get_segment, is a pointerto a
function thatis called to read a segment from a Blob if one is passed
to the UDF. The function takes four arguments: a Blob handle, the
address of a buffer into which to place Blob a segment of data that
is read, the size of that buffer, and the address of variable into to
store the size of the segment that is read. If Blob data is not read by
the UDF, set blob_get_segment to NULL.

blob_handle The second field in the Blob struct, blob_handle, is required. It is a
Blob handle that uniquely identifies a Blob passed to a UDF or
returned by it.

number_segments For Blob data passed to a UDF, number_segments specifies the total
number of segments in the Blob. Set this value to NULL if Blob data
is not passed to a UDF.

max_seglen For Blob data passed to a UDF, max_seglen specifies the size, in
bytes, of the largest single segment passed. Set this value to NULL if
Blob data is not passed to a UDF.

total_size For Blob data passed to a UDF, total_size specifies the actual size, in
bytes, of the Blob as a single unit. Set this value to NULL if Blob data
is not passed to a UDF.

blob_put_segment The last field in the Blob struct, blob_put_segment, is a pointerto a
function that is called to write a segment to a Blob if one is being
returned by the UDF. The function takes three arguments: a Blob
handle, the address of a buffer containing the data to write into the
Blob, and the size, in bytes, of the data to write. If Blob data is not
read by the UDF, set blob_put_segment to NULL.

TABLE10.1 Fields in the Blob struct

230 INTERBASE 5

WRITING A BLOB UDF

Declaring a Blob UDF

A Blob UDF is declared to the database using DECLARE EXTERNAL FUNCTION like any
non-Blob UDF. A UDF that returns a Blob does not actually define a return value. Instead,
a pointer to a structure describing the Blob to return must be passed as the last input
parameter to the UDF. For example, the following statement declares the Blob UDF,
Blob_PLUS_Blob, to a database:

DECLARE EXTERNAL FUNCTI ON Bl ob_PLUS Bl ob

Bl ob,

Bl ob,

Bl ob

ENTRY_PO NT "bl ob_concat enate" MODULE_NAME "udflib.dll";
COW T;

A Blob UDF example

The following code creates a UDF, blob_concatenate(), that appends data from one Blob to
the end of another Blob to return a third Blob consisting of concatenated Blob data.

/* Blob control structure */
typedef struct blob {

voi d (*bl ob_get_segnent) ();

int *bl ob_handl e;

| ong nunber _segnents;

| ong max_segl en;

| ong total _size;

voi d (*bl ob_put_segnent) ();
} *Bl ob;

extern char *isc_$alloc();
#define MAX(a, b) (a>Db) 2 a: b
#define DELIMTER "------mmmmmmmmmmmmmoon "

bl ob_concatenate(Blob fronl, Blob fron2, Blob to)
/* Note Blob to, as final input parameter, is actually for output! */

{

char *buffer;
I ong Il ength, b_Iength;

b _length = MAX(fronl->max_segl en, fron2->max_segl en);

PROGRAMMER'S GUIDE 231

232

CHAPTER 10 WORKING WITH USER-DEFINED FUNCTIONS

buf fer = isc_alloc(b_length);

/* wite the fronl Blob into the return Blob, to */
while ((*froml->bl ob_get_segnent) (froml->blob_handle, buffer,
b_length, & ength))
(*to->bl ob_put _segnent) (to->blob_handle, buffer, |ength);

/* nowwite a delimter as a dividing line in the blob */
(*to->bl ob_put _segnent) (to->blob_handl e, DELI M TER,
si zeof (DELIM TER) - 1);

[* finally wite the fron2 Blob into the return Blob, to */
while ((*frong->bl ob_get_segnent) (fronR->blob_handle, buffer,
b_length, & ength))
(*to->bl ob_put _segnent) (to->blob_handle, buffer, |ength);

/* free the nenory allocated to the buffer */
i sc_$free(buffer);

INTERBASE 5

CHAPTER

11

Working with
Stored Procedures

A stored procedure is a self-contained set of extended SQL statements stored in a database
as part of its metadata.

Applications can interact with stored procedures in the following ways:
® They can pass parameters to and receive return values from stored procedures.
® They can invoke stored procedures directly to perform a task.

® They can substitute an appropriate stored procedure for a table or view in a SELECT
statement.

The advantages of using stored procedures are:

= Applications can share code. A common piece of SQL code written once and stored in the
database can be used in any application that accesses the database, including the new
InterBase interactive SQL tool, isql.

® Modular design. Stored procedures can be shared among applications, eliminating
duplicate code, and reducing the size of applications.

®= Streamlined maintenance. When a procedure is updated, the changes are automatically
reflected in all applications that use it without the need to recompile and relink them.

PROGRAMMER'S GUIDE 233

CHAPTER 11 WORKING WITH STORED PROCEDURES

® Improved performance, especially for remote client access. Stored procedures are
executed by the server, not the client.

This chapter describes how to call and execute stored procedures in applications once
they are written. For information on how to create a stored procedure, see the Data
Definition Guide.

Using stored procedures

There are two types of procedures that can be called from an application:

= Select procedures that an application can use in place of a table or view in a SELECT
statement. A select procedure must return one or more values, or an error results.

= Executable procedures that an application can call directly, with the EXECUTE PROCEDURE
statement. An executable procedure may or may not return values to the calling program.

Both kinds of procedures are defined with CREATE PROCEDURE and have the same syntax.
The difference is in how the procedure is written and how it is intended to be used. Select
procedures always return zero or more rows, so that to the calling program they appear
as a table or view. Executable procedures are simply routines invoked by the calling
program that can return only a single set of values.

In fact, a single procedure conceivably can be used as a select procedure or an executable
procedure, but this is not recommended. In general a procedure is written specifically to
be used in a SELECT statement (a select procedure) or to be used in an EXECUTE
PROCEDURE statement (an executable procedure). For more information on creating
stored procedures, see the Data Definition Guide.

Procedures and transactions

Procedures operate within the context of a transaction in the program that uses them. If
procedures are used in a transaction, and the transaction is rolled back, then any actions
performed by the procedures are also rolled back. Similarly, a procedure’s actions are not
final until its controlling transaction is committed.

234 INTERBASE 5

USING SELECT PROCEDURES

Security for procedures

When an application calls a stored procedure, the person running the application must
have EXECUTE privilege on the stored procedure. An extension to the GRANT statement
enables assignment of EXECUTE privilege, and an extension to the REVOKE statement
enables removal of the privilege. For more information about granting privileges to users,
see the Data Definition Guide.

In addition, if the stored procedure accesses objects in the database, one of two things
must be true: either the user running the application or the called stored procedure must
have the appropriate permissions on the accessed objects. The GRANT statement assigns
privileges to procedures, and REVOKE eliminates privileges.

Using select procedures

A select procedure is used in place of a table or view in a SELECT statement and can return
zero or more rows. A select procedure must return one or more output parameters, or an
error results. If returned values are not specified, NULL values are returned by default.

The advantages of select procedures over tables or views are:
® They can take input parameters that can affect the output produced.

® They can contain control statements, local variables, and data manipulation statements,
offering great flexibility to the user.

Input parameters are passed to a select procedure in a comma-delimited list in
parentheses following the procedure name.

The following isql script defines the procedure, GET_EMP_PROJ, which returns emp_proj,
the project numbers assigned to an employee, when passed the employee number,
emp_no, as the input parameter:

SET TERM I'! ;
CREATE PROCEDURE GET_EMP_PRQJ (enp_no SMALLI NT)
RETURNS (enp_proj SMALLINT) AS
BEG N
FOR SELECT PRQJ_ID
FROM EMPLOYEE_PRQJECT
WHERE EMP_NO = :enp_no
I NTO : enp_pr oj
DO

PROGRAMMER'S GUIDE 235

IMPORTANT

236

CHAPTER 11 WORKING WITH STORED PROCEDURES

SUSPEND,;
END !!

The following statement retrieves PROJ_ID from the above procedure, passing the host
variable, number, as input:

SELECT PRQJ_I D FROM GET_EMP_PRQJ (: nunber);

Calling a select procedure

To use a select procedure in place of a table or view name in an application, use the
procedure name anywhere a table or view name is appropriate. Supply any input
parameters required in a comma-delimited list in parentheses following the procedure
name.

EXEC SQL
SELECT PROJ_| D FROM GET_EMP_PROJ (: enp_no)
ORDER BY PRQJ_I D;

InterBase does not support creating a view by calling a select procedure.

Using a select procedure with cursors

A select procedure can also be used in a cursor declaration. For example, the following
code declares a cursor named PROJECTS, using the GET_EMP_PROJ procedure in place of a
table:

EXEC SQL

DECLARE PRQIECTS CURSCR FOR

SELECT PRQJ_I D FROM GET_EMP_PRQJ (: enp_no)
CORDER BY PRQJ_I D

The following application C code with embedded SQL then uses the PROJECTS cursor to
print project numbers to standard output:

EXEC SQL
OPEN PRQJECTS

/* Print enployee projects. */
whil e (SQLCODE == 0)
{
EXEC SQL
FETCH PRQJECTS I NTO :proj _id :nullind;

INTERBASE 5

USING EXECUTABLE PROCEDURES

i f (SQLCODE == 100)
br eak;

if (nullind == 0)
printf("\t9%\n", proj_id);

Using executable procedures

An executable procedure is called directly by an application, and often performs a task
common to applications using the same database. Executable procedures can receive
input parameters from the calling program, and can optionally return a single row to the
calling program.

Input parameters pass to an executable procedure in a comma-delimited list following
the procedure name.

Note Executable procedures cannot return multiple rows.

Executing a procedure
To execute a procedure in an application, use the following syntax:
EXEC SQL
EXECUTE PROCEDURE name [: param [[| NDI CATOR] : i ndi cat or]]
[, :param[[| NDI CATOR]: i ndicator] ...]
[RETURNI NG_VALUES : param [[| NDI CATOR] : i ndi cat or]
[, :param[[I NDl CATOR]:indicator]...]];

When an executable procedure uses input parameters, the parameters can be literal
values (such as 7 or “Fred”), or host variables. If a procedure returns output parameters,
host variables must be supplied in the RETURNING_VALUES clause to hold the values
returned.

For example, the following statement demonstrates how the executable procedure,
DEPT_BUDGET, is called with literal parameters:

EXEC SQL
EXECUTE PROCEDURE DEPT_BUDGET 100 RETURNI NG VALUES : sumb;

The following statement also calls the same procedure using a host variable instead of a
literal as the input parameter:

EXEC SQL

PROGRAMMER'S GUIDE 237

238

CHAPTER 11 WORKING WITH STORED PROCEDURES

EXECUTE PROCEDURE DEPT_BUDGET :rdno RETURNI NG VALUES : sunb;

» Indicator variables

Both input parameters and return values can have associated indicator variables for
tracking NULL values. You must use indicator variables to indicate unknown or NULL
values of return parameters. The INDICATOR keyword is optional. An indicator variable
that is less than zero indicates that the parameter is unknown or NULL. An indicator
variable that is 0 indicates that the associated parameter contains a non-NULL value. For
more information about indicator variables, see Chapter 6, “Working with Data.”

Executing a procedure in a DSQL application

To execute a stored procedure in a dynamic SQL (DSQL) application follow these steps:

1. Use a PREPARE statement to parse and prepare the procedure call for
execution using the following syntax:

EXEC SQL
PREPARE sql _statenent_nanme FROM : var | "<statenent>";

2. Set up an input XSQLDA using the following syntax:

EXEC SQL
DESCRI BE | NPUT sql _statement _name | NTO SQL DESCRI PTOR
i nput _xsql da;

3. Use DESCRIBE OUTPUT to set up an output XSQLDA using the following syntax:

EXEC SQL
DESCRI BE QUTPUT sql/ _statenent_nane | NTO SQL DESCRI PTOR
out put _xsql da;
Setting up an output XSQLDA is only necessary for procedures that return values.

4. Execute the statement using the following syntax:

EXEC SQL
EXECUTE st atenent USI NG SQL DESCRI PTOR i nput _xsql da
| NTO DESCRI PTOR out put _xsql da;

Input parameters to stored procedures can be passed as run-time values by substituting
a question mark (?) for each value. For example, the following DSQL statements prepare
and execute the ADD_EMP_PROJ procedure:

strcpy(uquery, "EXECUTE PROCEDURE ADD EMP_PRQJ ?, ?");

INTERBASE 5

USING EXECUTABLE PROCEDURES

EXEC SQL
PREPARE QUERY FROM :uquery;
EXEC SQL
DESCRI BE | NPUT QUERY | NTO SQL DESCRI PTOR i nput _xsql da;
EXEC SQL
DESCRI BE QUTPUT QUERY | NTO SQL DESCRI PTOR out put _xsql da;
EXEC SQL
EXECUTE QUERY USI NG SQL DESCRI PTOR i nput _xsql da | NTO SQL DESCRI PTOR
out put _xsql da;

PROGRAMMER'S GUIDE 239

CHAPTER 11 WORKING WITH STORED PROCEDURES

240 INTERBASE 5

CHAPTER

12

Working with Events

This chapter describes the InterBase event mechanism and how to write applications that
register interest in and respond to events. The event mechanism enables applications to
respond to actions and database changes made by other, concurrently running
applications without the need for those applications to communicate directly with one
another, and without incurring the expense of CPU time required for periodic polling to
determine if an event has occurred.

Understanding the event mechanism

In InterBase, an event is a message passed by a trigger or a stored procedure to the
InterBase event manager to announce the occurrence of a specified condition or action,
usually a database change such as an INSERT, UPDATE, or DELETE. Events are passed by
triggers or stored procedures only when the transaction under which they occur is
committed.

The event manager maintains a list of events posted to it by triggers and stored
procedures. It also maintains a list of applications that have registered an interest in
events. Each time a new event is posted to it, the event manager notifies interested
applications that the event has occurred.

Applications can respond to specific events that might be posted by a trigger or stored
procedure by:

PROGRAMMER'S GUIDE 241

CHAPTER 12 WORKING WITH EVENTS

1. Indicating an interest in the events to the event manager.
2. Waiting for event notification.

3. Determining which event occurred (if an application is waiting for more than
one event to occur).

The InterBase event mechanism, then, consists of three parts:
= A trigger or stored procedure that posts an event to the event manager.

® The event manager that maintains an event queue and notifies applications when an
event occurs.

® An application that registers interest in the event and waits for it to occur.

A second application that uses the event-posting stored procedure (or that fires the
trigger) causes the event manager to notify the waiting application so that it can resume
processing.

Signaling event occurrences

A trigger or stored procedure must signal the occurrence of an event, usually a database
change such as an INSERT, UPDATE, or DELETE, by using the POST_EVENT statement.
POST_EVENT alerts the event manager to the occurrence of an event after a transaction is
committed. At that time, the event manager passes the information to registered
applications.

A trigger or stored procedure that posts an event is sometimes called an event alerter. For
example, the following isql script creates a trigger that posts an event to the event
manager whenever any application inserts data in a table:

SET TERM !'! ;
CREATE TRI GGER POST_NEW ORDER FOR SALES
ACTI VE
AFTER | NSERT
PCSI TION 0
AS
BEA N
POST_EVENT "new order";
END
I
SET TERM ; !!
Event names are restricted to 15 characters in size.

242 INTERBASE 5

REGISTERING INTEREST IN EVENTS

Note POST_EVENT is a stored procedure and trigger language extension, available only
within stored procedures and triggers.

For a complete discussion of writing a trigger or stored procedure as an event alerter, see
the Data Definition Guide.

Registering interest in events

An application must register a request to be notified about a particular event with the
InterBase event manager before waiting for the event to occur. To register interest in an
event, use the EVENT INIT statement. EVENT INIT requires two arguments:

® An application-specific request handle to pass to the event manager.
= A list of events to be notified about, enclosed in parentheses.

The application-specific request handle is used by the application in a subsequent EVENT
WAIT statement to indicate a readiness to receive event notification. The request handle
is used by the event manager to determine where to send notification about particular
events to wake up a sleeping application so that it can respond to them.

The list of event names in parentheses must match event names posted by triggers or
stored procedures, or notification cannot occur.

To register interest in a single event, use the following EVENT INIT syntax:
EXEC SQL
EVENT I NI T request_nane (event_nane);

event_name can be up to 15 characters in size, and can be passed as a constant string in
quotes, or as a host-language variable.

For example, the following application code creates a request named RESPOND_NEW that
registers interest in the “new_order” event:

EXEC SQL
EVENT | NI T RESPOND_NEW (" new_order");

The next example illustrates how RESPOND_NEW might be initialized using a
host-language variable, myevent, to specify the name of an event:
EXEC SQL

EVENT | NI T RESPOND_NEW (: nyevent) ;

After an application registers interest in an event, it is not notified about an event until it
first pauses execution with EVENT WAIT. For more information about waiting for events,
see “Waiting for events with EVENT WAIT” on page 244.

PROGRAMMER'S GUIDE 243

CHAPTER 12 WORKING WITH EVENTS

Note As an alternative to registering interest in an event and waiting for the event to
occur, applications can use an InterBase API call to register interest in an event, and
identify an asynchronous trap (AST) function to receive event notification. This method
enables an application to continue other processing instead of waiting for an event to
occur. For more information about programming events with the InterBase API, see the
API Guide.

Registering interest in multiple events

Often, an application may be interested in several different events even though it can only
wait on a single request handle at a time. EVENT INIT enables an application to specify a
list of event names in parentheses, using the following syntax:

EXEC SQL
EVENT I NI T request_nanme (event_nane [event_nane ...]);

Each event_name can be up to 15 characters in size, and should correspond to event
names posted by triggers or stored procedures, or notification may never occur. For
example, the following application code creates a request named RESPOND_MANY that
registers interest in three events, “new_order,” “change_order,” and “cancel_order”:

EXEC SQL
EVENT | NI T RESPOND_MANY ("new_ order", "change_order",
"cancel _order");

Note An application can also register interest in multiple events by using a separate
EVENT INIT statement with a unique request handle for a single event or groups of events,
but it can only wait on one request handle at a time.

Waiting for events with EVENT wAIT

244

Even after an application registers interest in an event, it does not receive notification
about that event. Before it can receive notification, it must use the EVENT WAIT statement
to indicate its readiness to the event manager, and to suspend its processing until
notification occurs.

To signal the event manager and suspend an application’s processing, use the following
EVENT WAIT statement syntax:

EXEC SQL
EVENT WAI T request_nane;

INTERBASE 5

RESPONDING TO EVENTS

request_name must be the name of a request handle declared in a previous EVENT INIT
statement.

The following statements register interest in an event, and wait for event notification:

EXEC SQL

EVENT | NI T RESPOND_NEW (" new_order");
EXEC SQL

EVENT WAI T RESPOND_NEW

Once EVENT WAIT is executed, application processing stops until the event manager sends
a notification message to the application.

Note An application can contain more than one EVENT WAIT statement, but all processing
stops when the first statement is encountered. Each time processing restarts, it stops
when it encounters the next EVENT WAIT statement.

If one event occurs while an application is processing another, the event manager sends
notification the next time the application returns to a wait state.

Responding to events

When event notification occurs, a suspended application resumes normal processing at
the next statement following EVENT WAIT.

If an application has registered interest in more than one event with a single EVENT INIT
call, then the application must determine which event occurred by examining the event
array, isc_event[]. The event array is automatically created for an application during
preprocessing. Each element in the array corresponds to an event name passed as an
argument to EVENT INIT. The value of each element is the number of times that event
occurred since execution of the last EVENT WAIT statement with the same request handle.

In the following code, an application registers interest in three events, then suspends
operation pending event notification:

EXEC SQL
EVENT | NI T RESPOND_MANY ("new_ order", "change_order",
"cancel _order");
EXEC SQL
EVENT WAI T RESPOND_MANY;

» «

When any of the “new_order,” “change_order,” or “cancel_order” events are posted and
their controlling transactions commit, the event manager notifies the application and
processing resumes. The following code illustrates how an application might test which
event occurred:

PROGRAMMER'S GUIDE 245

CHAPTER 12 WORKING WITH EVENTS

for (i =0; i <3; i++)

{
if (isc_$event[i] > 0)
{

/* this event occurred, so process it */

246 INTERBASE 5

CHAPTER

13

Error Handling and Recovery

All SQL applications should include mechanisms for trapping, responding to, and
recovering from run-time errors, the errors that can occur when someone uses an
application. This chapter describes both standard, portable SQL methods for handling
errors, and additional error handling specific to InterBase.

Standard error handling

Every time an SQL statement is executed, it returns a status indicator in the SQLCODE
variable, which is declared automatically for SQL programs during preprocessing with
gpre. The following table summarizes possible SQLCODE values and their meanings:

Value Meaning

0 Success

1-99 Warning or informational message
100 End of file (no more data)

<0 Error. Statement failed to complete

TABLE13.1 Possible SQLCODE values

PROGRAMMER'S GUIDE 247

CHAPTER 13 ERROR HANDLING AND RECOVERY

To trap and respond to run-time errors, SQLCODE should be checked after each SQL
operation. There are three ways to examine SQLCODE and respond to errors:

= Use WHENEVER statements to automate checking SQLCODE and handle errors when they
occur.

= Test SQLCODE directly after individual SQL statements.
® Use a judicious combination of WHENEVER statements and direct testing.

Each method has advantages and disadvantages, described fully in the remainder of this
chapter.

WHENEVER statements

The WHENEVER statement enables all SQL errors to be handled with a minimum of coding.
WHENEVER statements specify error-handling code that a program should execute when
SQLCODE indicates errors, warnings, or end-of-file. The syntax of WHENEVER is:

EXEC SQL

WHENEVER { SQLERROR | SQLWARNI NG | NOT FOUND}
{GOTO / abel | CONTI NUE};

After WHENEVER appears in a program, all subsequent SQL statements automatically jump
to the specified code location identified by label when the appropriate error or warning
occurs.

Because they affect all subsequent statements, WHENEVER statements are usually
embedded near the start of a program. For example, the first statement in the following
C code’s main() function is a WHENEVER that traps SQL errors:

mai n()
{
EXEC SQL
WHENEVER SQLERROR GOTO ErrorExit;

Error Exit:
i f (SQLCODE)
{
print_error();
EXEC SQL
ROLLBACK;
EXEC SQL
DI SCONNECT;
exit(1);

248 INTERBASE 5

STANDARD ERROR HANDLING

}
}
print_error()
{
printf("Database error, SQCODE = %\ n", SQLCCDE);
}

Up to three WHENEVER statements can be active at any time:

® WHENEVER SQLERROR is activated when SQLCODE is less than zero, indicating that a
statement failed.

B WHENEVER SQLWARNING is activated when SQLCODE contains a value from 1 to 99,
inclusive, indicating that while a statement executed, there is some question about the
way it succeeded.

® WHENEVER NOT FOUND is activated when SQLCODE is 100, indicating that end-of-file was
reached during a FETCH or SELECT.

Omitting a statement for a particular condition means it is not trapped, even if it occurs.
For example, if WHENEVER NOT FOUND is left out of a program, then when a FETCH or
SELECT encounters the end-of-file, SQLCODE is set to 100, but program execution
continues as if no error condition has occurred.

Error conditions also can be overlooked by using the CONTINUE statement inside a
WHENEVER statement:

EXEC SQL
WHENEVER SQLWARNI NG
CONTI NUE;

This code traps SQLCODE warning values, but ignores them. Ordinarily, warnings should
be investigated, not ignored.

IMPORTANT ~ Use WHENEVER SQLERROR CONTINUE at the start of error-handling routines to disable
error handling temporarily. Otherwise, there is a possibility of an infinite loop; should
another error occur in the handler itself, the routine will call itself again.

SCOPE OF WHENEVER STATEMENTS

WHENEVER only affects all subsequent SQL statements in the module, or source code file,
where it is defined. In programs with multiple source code files, each module must define
its own WHENEVER statements.

PROGRAMMER'S GUIDE 249

250

CHAPTER 13 ERROR HANDLING AND RECOVERY

CHANGING ERROR-HANDLING ROUTINES

To switch to another error-handling routine for a particular error condition, embed
another WHENEVER statement in the program at the point where error handling should be
changed. The new assignment overrides any previous assignment, and remains in effect
until overridden itself. For example, the following program fragment sets an initial jump
point for SQLERROR conditions to ErrorExit1, then resets it to ErrorExit2:

EXEC SQL
WHENEVER SQLERROR
GOTO ErrorExitl;
EXEC SQL
WHENEVER SQLERROR
GOTO ErrorExit2;

LIMITATIONS OF WHENEVER STATEMENTS
There are two limitations to WHENEVER. It:

Traps errors indiscriminately. For example, WHENEVER SQLERROR traps both missing
databases and data entry that violates a CHECK constraint, and jumps to a single
error-handling routine. While a missing database is a severe error that may require action
outside the context of the current program, invalid data entry may be the result of a
typing mistake that could be fixed by reentering the data.

Does not easily enable a program to resume processing at the point where the error
occurred. For example, a single WHENEVER SQLERROR can trap data entry that violates a
CHECK constraint at several points in a program, but jumps to a single error-handling
routine. It might be helpful to allow the user to reenter data in these cases, but the error
routine cannot determine where to jump to resume program processing.

Error-handling routines can be very sophisticated. For example, in C or C++, a routine
might use a large CASE statement to examine SQLCODE directly and respond differently to
different values. Even so, creating a sophisticated routine that can resume processing at
the point where an error occurred is difficult. To resume processing after error recovery,
consider testing SQLCODE directly after each SQL statement, or consider using a
combination of error-handling methods.

INTERBASE 5

STANDARD ERROR HANDLING

Testing SQLCODE directly

A program can test SQLCODE directly after each SQL statement instead of relying on
WHENEVER to trap and handle all errors. The main advantage to testing SQLCODE directly
is that custom error-handling routines can be designed for particular situations.

For example, the following C code fragment checks if SQLCODE is not zero after a SELECT
statement completes. If so, an error has occurred, so the statements inside the i f clause
are executed. These statements test SQLCODE for two specific values,

-1, and 100, handling each differently. If SQLCODE is set to any other error value, a generic
error message is displayed and the program is ended gracefully.

EXEC SQL
SELECT CITY INTO :city FROM STATES
VWHERE STATE = :stat:statind;

i f (SQLCCDE)
{
if (SQLCODE ==-1)
printf("too many records found\n");
else if (SQLCODE == 100)
printf("no records found\n");
else
{
printf("Database error, SQLCODE = %d\n", SQLCODE);
EXEC SQL
ROLLBACK;
EXEC SQL
DISCONNECT;
exit(1);
}
}

printf(*found city named %s\n", city);
EXEC SQL

COMMIT;
EXEC SQL

DISCONNECT;

The disadvantage to checking SQLCODE directly is that it requires many lines of extra code
just to see if an error occurred. On the other hand, it enables errors to be handled with
function calls, as the following C code illustrates:

EXEC SQL

PROGRAMMER'S GUIDE 251

CHAPTER 13 ERROR HANDLING AND RECOVERY

SELECT CITY INTO :city FROM STATES
VWHERE STATE = :stat:statind;

switch (SQLCODE)
{
case O:
break; /* NO ERROR */
case -1
ErrorTooMany();
break;
case 100:
ErrorNotFound();
break;
default:
ErrorExit(); /* Handle all other errors */
break;
}

Using function calls for error handling enables programs to resume execution if errors
can be corrected.

Combining error-handling techniques

Error handling in many programs can benefit from combining WHENEVER with direct
checking of SQLCODE. A program might include generic WHENEVER statements for
handling most SQL error conditions, but for critical operations, WHENEVER statements
might be temporarily overridden to enable direct checking of SQLCODE.

For example, the following C code:
= Sets up generic error handling with three WHENEVER statements.

® Overrides the WHENEVER SQLERROR statement to force program continuation using the
CONTINUE clause.

® Checks SQLCODE directly.
® Overrides WHENEVER SQLERROR again to reset it.

main()
{
EXEC SQL
WHENEVER SQLERROR GOTO ErrorExit; /* trap all errors */
EXEC SQL

252 INTERBASE 5

STANDARD ERROR HANDLING

WHENEVER SQLWARNI NG GOTO Warni ngExit; /* trap warnings */
EXEC SQL
WHENEVER NOT FOUND GOTO Al | Done; /* trap end of file */

EXEC SQL
WHENEVER SQLERROR CONTI NUE; /* prevent trapping of errors */
EXEC SQL
SELECT CITY INTO :city FROM STATES
VWHERE STATE = :stat:statind;

switch (SQLCODE)
{
case O:
break; /* NO ERROR */
case -1
ErrorTooMany();
break;
case 100:
ErrorNotFound();
break;
default:
ErrorExitFunction(); /* Handle all other errors */
break;
}
EXEC SQL

WHENEVER SQLERROR GOTO ErrorExit; /*resettotrapall errors
*/

Guidelines for error handling

The following guidelines apply to all error-handling routines in a program.

USING SQL AND HOST-LANGUAGE STATEMENTS

All SQL statements and InterBase functions can be used in error-handling routines, except
for CONNECT.

Any host-language statements and functions can appear in an error-handling routine
without restriction.

PROGRAMMER'S GUIDE 253

IMPORTANT

CHAPTER 13 ERROR HANDLING AND RECOVERY

Use WHENEVER SQLERROR CONTINUE at the start of error-handling routines to disable
error-handling temporarily. Otherwise, there is a possibility of an infinite loop; should
another error occur in the handler itself, the routine will call itself again.

NESTING ERROR-HANDLING ROUTINES

Although error-handling routines can be nested or called recursively, this practice is not
recommended unless the program preserves the original contents of SQLCODE and the
InterBase error status array.

HANDLING UNEXPECTED AND UNRECOVERABLE ERRORS

Even if an error-handling routine catches and handles recoverable errors, it should always
contain statements to handle unexpected or unrecoverable errors.

The following code handles unrecoverable errors:

isc_print_sqlerr(SQ.CODE, isc_status);
EXEC SQL
ROLLBACK;
EXEC SQL
DI SCONNECT;
exit(1);

PORTABILITY

For portability among different SQL implementations, SQL programs should limit error
handling to WHENEVER statements or direct examination of SQLCODE values.

InterBase internal error recognition occurs at a finer level of granularity than SQLCODE
representation permits. A single SQLCODE value can represent many different internal
InterBase errors. Where portability is not an issue, it may be desirable to perform
additional InterBase error handling. The remainder of this chapter explains how to use
these additional features.

Additional InterBase error handling

254

The same SQLCODE value can be returned by multiple InterBase errors. For example, the
SQLCODE value, —901, is generated in response to many different InterBase errors. When
portability to other vendors’ SQL implementations is not required, SQL programs can
sometimes examine the InterBase error status array, isc_status, for more specific error
information.

INTERBASE 5

ADDITIONAL INTERBASE ERROR HANDLING

isc_status is an array of twenty elements of type ISC_STATUS. It is declared automatically
for programs when they are preprocessed with gpre. Two kinds of InterBase error
information are reported in the status array:

® InterBase error message components.
® InterBase error numbers.

As long as the current SQLCODE value is not —1, 0, or 100, error-handling routines that
examine the error status array can do any of the following:

= Display SQL and InterBase error messages.
® Capture SQL and InterBase error messages to a storage buffer for further manipulation.
®= Trap for and respond to particular InterBase error codes.

The InterBase error status array is usually examined only affer trapping errors with
WHENEVER or testing SQLCODE directly.

Displaying error messages

If SQLCODE is less than -1, additional InterBase error information can be displayed using
the InterBase isc_print_sqlerror() function inside an error-handling routine. During
preprocessing with gpre, this function is automatically declared for InterBase applications.

isc_print_sqlerror() displays the SQLCODE value, a related SQL error message, and any
InterBase error messages in the status array. It requires two parameters: SQLCODE, and a
pointer to the error status array, isc_status.

For example, when an error occurs, the following code displays the value of SQLCODE,
displays a corresponding SQL error message, then displays additional InterBase error
message information if possible:

EXEC SQL
SELECT CITY INTO :city FROM STATES
VWHERE STATE = :stat:statind;
i f(SQLCODE)
{
isc_print_sqlerror(SQCODE, isc_status);
EXEC SQL
ROLLBACK;
EXEC SQL
DI SCONNECT ALL;
exit(1);

PROGRAMMER'S GUIDE 255

IMPORTANT

256

CHAPTER 13 ERROR HANDLING AND RECOVERY

Some windowing systems do not encourage or permit direct screen writes. Do not use
isc_print_sqlerror() when developing applications for these environments. Instead, use

isc_sql_interprete() and isc_interprete() to capture messages to a buffer for display.

Capturing SQL error messages

Instead of displaying SQL error messages, an application can capture the text of those
messages in a buffer by using isc_sql_interprete(). Capture messages in a buffer when

applications:
® Run under windowing systems that do not permit direct writing to the screen.
= Store a record of all error messages in a log file.

® Manipulate or format error messages for display.

Given SQLCODE, a pointer to a storage buffer, and the maximum size of the buffer in bytes,
isc_sql_interprete() builds an SQL error message string, and puts the formatted string in the
buffer where it can be manipulated. A buffer size of 256 bytes is large enough to hold any

SQL error message.

For example, the following code stores an SQL error message in err_buf, then
err_bufto a log file:

writes

char err_buf[256]; /* error nessage buffer for isc_sql _interprete() */

FILE *efil e=NULL; /* code fragnment assunes pointer to an open
EXEC SQL
SELECT CITY INTO :city FROM STATES
VWHERE STATE = :stat:statind;
i f (SQLCODE)
{
isc_sql _interprete(SQLCODE, err_buf, sizeof(err_buf));
if(efile==NULL) efil e=fopen("errors", "w');

file */

fprintf(efile, "%\n", err_buf); /* wite buffer to log file */

EXEC SQL

ROLLBACK; /* undo dat abase changes */
EXEC SQL

DI SCONNECT ALL; /* cl ose open databases */
exit(l); /* exit with error flag set */

INTERBASE 5

ADDITIONAL INTERBASE ERROR HANDLING

IMPORTANT

isc_sql_interprete() retrieves and formats a single message corresponding to a given
SQLCODE. When SQLCODE is less than —1, more specific InterBase error information is
available. It, too, can be retrieved, formatted, and stored in a buffer by using the
isc_interprete() function.

Capturing InterBase error messages

The text of InterBase error messages can be captured in a buffer by using isc_interprete().
Capture messages in a buffer when applications:

Run under windowing systems that do not permit direct writing to the screen.
Store a record of all error messages in a log file.

Manipulate or format error messages for display.

isc_interprete() should not be used unless SQLCODE is less than —1 because the contents of
isc_status may not contain reliable error information in these cases.

Given both the location of a storage buffer previously allocated by the program, and a
pointer to the start of the status array, isc_interprete() builds an error message string from
the information in the status array, and puts the formatted string in the buffer where it
can be manipulated. It also advances the status array pointer to the start of the next
cluster of available error information.

isc_interprete() retrieves and formats a single error message each time it is called. When an
error occurs in an InterBase program, however, the status array may contain more than
one error message. To retrieve all relevant error messages, error-handling routines should
repeatedly call isc_interprete() until it returns no more messages.

Because isc_interprete() modifies the pointer to the status array that it receives, do 7ot pass
isc_status directly to it. Instead, declare a pointer to isc_status, then pass the pointer to
isc_interprete().

The following C code fragment illustrates how InterBase error messages can be captured
to a log file, and demonstrates the proper declaration of a string buffer and pointer to
isc_status. It assumes the log file is properly declared and opened before control is passed
to the error-handling routine. It also demonstrates how to set the pointer to the start of
the status array in the error-handling routine before isc_interprete() is first called.

#i ncl ude "i base. h";

PROGRAMMER'S GUIDE 257

258

CHAPTER 13 ERROR HANDLING AND RECOVERY

mai n()

{

char msg[512];

| SC_STATUS *vector;

FILE *efile; /* code fragnent assumes pointer to an open file */

i.f (.SQ.LCODE <-1)
ErrorExit();
}

ErrorExit()
{
vector = isc_status; /* (re)set to start of status vector */
isc_interprete(msg, &vector); /* retrieve first mesage */
fprintf(efile, "%s\n", msg); /* write buffer to log file */
msg[0] ='-'; /* append leading hyphen to secondary messages */
while (isc_interprete(msg + 1, &vector)) /* more?*/
fprintf(efile, "%s\n", msg); /* if so, write it to log */
fclose(efile); /* close log prior to quitting program */
EXEC SQL
ROLLBACK;
EXEC SQL
DISCONNECT ALL;
exit(1); /* quit program with an ‘abnormal termination’ code */

In this example, the error-handling routine performs the following tasks:
® Sets the error array pointer to the starting address of the status vector, isc_status.
= Callsisc_interprete() a single time to retrieve the first error message from the status vector.
= Writes the first message to a log file.

= Makes repeated calls to isc_interprete() within a WHILE loop to retrieve any additional
messages. If additional messages are retrieved, they are also written to the log file.

= Rolls back the transaction.

® Closes the database and releases system resources.

INTERBASE 5

ADDITIONAL INTERBASE ERROR HANDLING

Tip

Handling InterBase error codes

Whenever SQLCODE is less than —1, the error status array, isc_status, may contain detailed
error information specific to InterBase, including error codes, numbers that uniquely
identify each error. With care, error-handling routines can trap for and respond to specific
codes.

To trap and handle InterBase error codes in an error-handling routine, follow these steps:
1. Check SQLCODE to be sure it is less than —1.

2. Check that the first element of the status array is set to isc_arg_gds,
indicating that an InterBase error code is available. In C programs, the first
element of the status array is isc_status[0].

Do not attempt to handle errors reported in the status array if the first status array
element contains a value other than 1.

3. If SQLCODE is less than —1 and the first element in isc_status is set to
isc_arg_gds, use the actual InterBase error code in the second element of
isc_status to branch to an appropriate routine for that error.

InterBase error codes are mapped to mnemonic definitions (for example, isc_arg_gds)
that can be used in code to make it easier to read, understand, and maintain. Definitions
for all InterBase error codes can be found in the ibase.b file.

The following C code fragment illustrates an error-handling routine that:
= Displays error messages with isc_print_sqlerror().

® [llustrates how to parse for and handle six specific InterBase errors which might be
corrected upon roll back, data entry, and retry.

= Uses mnemonic definitions for InterBase error numbers.

int ¢, jval, retry_flag = O;
j mp_buf j unper;
mai n()
{
jval = setjnp(junper);
if (retry_flag)
ROLLBACK;

PROGRAMMER'S GUIDE 259

CHAPTER 13 ERROR HANDLING AND RECOVERY

i nt ErrorHandl er(void)

{
retry flag = 0; /* reset to O, no retry */
isc_print_sqlerror(SQCODE, isc_status); /* display errors */
if (SQLCODE < -1)
{
if (isc_status[0] == isc_arg_gds)
{
switch (isc_status[1])
{
case isc_convert_error:
case isc_deadlock:
case isc_integ_fail:
case isc_lock_conflict:
case isc_no_dup:
case isc_not_valid:
printf("\n Do you want to try again? (Y/N)");
¢ = getchar();
if(c=="Y"[lc==1)
{
retry_flag = 1; /* set flag to retry */
longjmp(jumper, 1);
}
break;
case isc_end_arg: /* there really isn’t an error */
retry_flag = 1; /* set flag to retry */
longjump(jumper, 1);
break;
default: /* we can’t handle everything, so abort */
break;
}
}
}
EXEC SQL
ROLLBACK;
EXEC SQL
DISCONNECT ALL;
exit(1);
}

260 INTERBASE 5

CHAPTER

14

Using Dynamic SQL

This chapter describes how to write dynamic SQL applications, applications that elicit or
build SQL statements for execution at run time.

In many database applications, the programmer specifies exactly which SQL statements
to execute against a particular database. When the application is compiled, these
statements become fixed. In some database applications, it is useful to build and execute
statements from text string fragments or from strings elicited from the user at run time.
These applications require the capability to create and execute SQL statements
dynamically at run time. Dynamic SQL (DSQL) provides this capability. For example, the
InterBase isql utility is a DSQL application.

Overview of the DSQL programming process

Building and executing DSQL statements involves the following general steps:
® Embedding SQL statements that support DSQL processing in an application.

® Using host-language facilities, such as datatypes and macros, to provide input and output
areas for passing statements and parameters at run time.

® Programming methods that use these statements and facilities to process SQL statements
at run time.

These steps are described in detail throughout this chapter.

PROGRAMMER'S GUIDE 261

CHAPTER 14 USING DYNAMIC SQL

DSQL limitations

262

Although DSQL offers many advantages, it also has the following limitations:
= Access to one database at a time.

® Dynamic transaction processing is not permitted; all named transactions must be
declared at compile time.

® Dynamic access to Blob and array data is not supported; Blob and array data can be
accessed, but only through standard, statically processed SQL statements, or through
low-level API calls.

= Database creation is restricted to CREATE DATABASE statements executed within the context
of EXECUTE IMMEDIATE.

For more information about handling transactions in DSQL applications, see “Handling
transactions” on page 263. For more information about working with Blob data in
DSQL, see “Processing Blob data” on page 265. For more information about handling
array data in DSQL, see “Processing array data” on page 265. For more information
about dynamic creation of databases, see “Creating a database” on page 264.

Accessing databases

Using standard SQL syntax, a DSQL application can only use one database handle per
source file module, and can, therefore, only be connected to a single database at a time.
Database handles must be declared and initialized when an application is preprocessed
with gpre. For example, the following code creates a single handle, db1, and initializes it
to zero:

#i ncl ude "i base. h"
i sc_db_handl e dbi;

dbl = OL;

After a database handle is declared and initialized, it can be assigned dynamically to a
database at run time as follows:

char dbnane[129];

pronpt _user (" Name of database to open: ");
get s(dbnan®) ;
EXEC SQL

SET DATABASE dbl = :dbnane;

INTERBASE 5

DSQL LIMITATIONS

EXEC SQL
CONNECT db1;

The database accessed by DSQL statements is always the last database handle mentioned
in a SET DATABASE command. A database handle can be used to connect to different
databases as long as a previously connected database is first disconnected with
DISCONNECT. DISCONNECT automatically sets database handles to NULL. The following
statements disconnect from a database, zero the database handle, and connect to a new
database:

EXEC SQL

DI SCONNECT db1;
EXEC SQL

SET DATABASE dbl = "enpl oyee. gdb";
EXEC SQL

CONNECT db1;

To access more than one database using DSQL, create a separate source file module for
each database, and use low-level API calls to attach to the databases and access data. For
more information about accessing databases with API calls, see the API Guide. For more
information about SQL database statements, see Chapter 3, “Working with Databases.”

Handling transactions

InterBase requires that all transaction names be declared when an application is
preprocessed with gpre. Once fixed at precompile time, transaction handles cannot be
changed at run time, nor can new handles be declared dynamically at run time.

SQL statements such as PREPARE, DESCRIBE, EXECUTE, and EXECUTE IMMEDIATE, can be

coded at precompile time to include an optional TRANSACTION clause specifying which
transaction controls statement execution. The following code declares, initializes, and

uses a transaction handle in a statement that processes a run-time DSQL statement:

#i ncl ude "i base. h"
isc_tr_handle t1;

t1 = 0L,
EXEC SQL
SET TRANSACTI ON NAME t1;
EXEC SQL
PREPARE TRANSACTION t1 Q FROM : sql _buf;

PROGRAMMER'S GUIDE 263

CHAPTER 14 USING DYNAMIC SQL

DSQL statements that are processed with PREPARE, DESCRIBE, EXECUTE, and EXECUTE
IMMEDIATE cannot use a TRANSACTION clause, even if it is permitted in standard,
embedded SQL.

The SET TRANSACTION statement cannot be prepared, but it can be processed with
EXECUTE IMMEDIATE if:

1. Previous transactions are first committed or rolled back.
2. The transaction handle is set to NULL.

For example, the following statements commit the previous default transaction, then start
a new one with EXECUTE IMMEDIATE:

EXEC SQL
COW T,
/* set default transaction nane to NULL */
gds__trans = NULL;
EXEC SQL
EXECUTE | MVEDI ATE " SET TRANSACTI ON READ ONLY";

Creating a database

To create a new database in a DSQL application:

1. Disconnect from any currently attached databases. Disconnecting from a
database automatically sets its database handle to NULL.

2. Build the CREATE DATABASE statement to process.
3. Execute the statement with EXECUTE IMMEDIATE.

For example, the following statements disconnect from any currently connected
databases, and create a new database. Any existing database handles are set to NULL, so
that they can be used to connect to the new database in future DSQL statements.

char *str = "CREATE DATABASE \"new_enp. gdb\"";
EXEC SQL
DI SCONNECT ALL;

EXEC SQL
EXECUTE | MVEDI ATE : str;

264 INTERBASE 5

WRITING A DSQL APPLICATION

Processing Blob data

DSQL does not directly support Blob processing. Blob cursors are not supported in DSQL.
DSQL applications can use API calls to process Blob data. For more information about
Blob API calls, see the API Guide.

Processing array data

DSQL does not directly support array processing. DSQL applications can use API calls to
process array data. For more information about array API calls, see the API Guide.

Writing a DSQL application
Write a DSQL application when any of the following are not known until run time:
= The text of the SQL statement
® The number of host variables
® The datatypes of host variables
= References to database objects

Writing a DSQL application is usually more complex than programming with regular SQL
because for most DSQL operations, the application needs explicitly to allocate and
process an extended SQL descriptor area (XSQLDA) data structure to pass data to and from
the database.

To use DSQL to process an SQL statement, follow these basic steps:
1. Determine if DSQL can process the SQL statement.
2. Represent the SQL statement as a character string in the application.

3. If necessary, allocate one or more XSQLDAs for input parameters and return
values.

4. Use an appropriate DSQL programming method to process the SQL
statement.

PROGRAMMER'S GUIDE 265

266

SQL statements that DSQL can process

CHAPTER 14 USING DYNAMIC SQL

DSQL can process most but not all SQL statements. The following table lists SQL
statement that are available to DSQL:

ALTER DATABASE
ALTER DOMAIN
ALTER EXCEPTION
ALTER INDEX

ALTER PROCEDURE
ALTER TABLE

ALTER TRIGGER
COMMIT

CONNECT

CREATE DATABASE
CREATE DOMAIN
CREATE EXCEPTION
CREATE GENERATOR
CREATE INDEX
CREATE PROCEDURE
CREATE ROLE
CREATE SHADOW
CREATE TABLE

CREATE TRIGGER
CREATE VIEW

DECLARE EXTERNAL FUNCTION

DECLARE FILTER
DELETE

DROP DATABASE
DROP DOMAIN
DROP EXCEPTION

DROP EXTERNAL FUNCTION

DROP FILTER

DROP INDEX

DROP PROCEDURE
DROP ROLE

DROP SHADOW
DROP TABLE

DROP TRIGGER

DROP VIEW

EXECUTE PROCEDURE

GRANT

INSERT

INSERT CURSOR (BLOB)
REVOKE

ROLLBACK

SELECT

SET GENERATOR
UPDATE

The following ESQL statements cannot be processed by DSQL: CLOSE, DECLARE, CURSOR,
DESCRIBE, EXECUTE, EXECUTE IMMEDIATE, FETCH, OPEN, PREPARE.

The following ISQL commands cannot be processed by DSQL: BLOBDUMP, EDIT, EXIT, HELP,
INPUT, OUTPUT, QUIT, SET, SET AUTODDL, SET BLOBDISPLAY, SET COUNT, SET ECHO, SET LIST,
SET NAMES, SET PLAN, SET STATS, SET TERM, SET TIME, SHELL, SHOW CHECK, SHOW DATABASE,
SHOW DOMAINS, SHOW EXCEPTIONS, SHOW FILTERS, SHOW FUNCTIONS, SHOW GENERATORS,
SHOW GRANT, SHOW INDEX, SHOW PROCEDURES, SHOW SYSTEM, SHOW TABLES, SHOW

TRIGGERS, SHOW VERSION, SHOW VIEWS.

INTERBASE 5

WRITING A DSQL APPLICATION

SQL character strings

Within a DSQL application, an SQL statement can come from different sources. It can
come directly from a user who enters a statement at a prompt, as does isql. Or it can be
generated by the application in response to user interaction. Whatever the source of the
SQL statement it must be represented as an SQL statement string, a character string that
is passed to DSQL for processing.

Because SQL statement strings are C character strings that are processed directly by
DSQL, they cannot begin with the EXEC SQL prefix or end with a semicolon (;). The
semicolon is, of course, the appropriate terminator for the C string declaration itself. For
example, the following host-language variable declaration is a valid SQL statement string:

char *str = "DELETE FROM CUSTOVER WHERE CUST_NO = 256";

Value parameters in statement strings

SQL statement strings often include value parameters, expressions that evaluate to a
single numeric or character value. Parameters can be used anywhere in statement strings
where SQL expects a value that is not the name of a database object.

A value parameter in a statement string can be passed as a constant, or passed as a
placeholder at run time. For example, the following statement string passes 256 as a
constant:

char *str = "DELETE FROM CUSTOVER WHERE CUST_NO = 256";
It is also possible to build strings at run time from a combination of constants. This

method is useful for statements where the variable is not a true constant, or it is a table
or column name, and where the statement is executed only once in the application.

To pass a parameter as a placeholder, the value is passed as a question mark (?)
embedded within the statement string:

char *str = "DELETE FROM CUSTOMER WHERE CUST_NO = ?";

When DSQL processes a statement containing a placeholder, it replaces the question
mark with a value supplied in the XSQLDA. Use placeholders in statements that are
prepared once, but executed many times with different parameter values.

Replaceable value parameters are often used to supply values in WHERE clause
comparisons and in the UPDATE statement SET clause.

PROGRAMMER'S GUIDE 267

CHAPTER 14 USING DYNAMIC SQL

Understanding the XSQLDA

268

All DSQL applications must declare one or more extended SQL descriptor areas
(XSQLDASs). The XSQLDA structure definition can be found in the ibase.h header file in the
InterBase include directory. Applications declare instances of the XSQLDA for use.

The XSQLDA is a host-language data structure that DSQL uses to transport data to or from
a database when processing an SQL statement string. There are two types of XSQLDAs:
input descriptors and output descriptors. Both input and output descriptors are
implemented using the XSQLDA structure.

One field in the XSQLDA, the XSQLVAR, is especially important, because one XSQLVAR must
be defined for each input parameter or column returned. Like the XSQLDA, the XSQLVAR is
a structure defined in ibase.b in the InterBase include directory.

Applications do not declare instances of the XSQLVAR ahead of time, but must, instead,
dynamically allocate storage for the proper number of XSQLVAR structures required for
each DSQL statement before it is executed, then deallocate it, as appropriate, after
statement execution.

The following figure illustrates the relationship between the XSQLDA and the XSQLVAR:

INTERBASE 5

UNDERSTANDING THE XSQLDA

FIGURE14.1 XSQLDA and XSQLVAR relationship

Single instance of XSQLDA

short version

char sqldaid[8]

ISC_LONG sqldabc

short sqin

short sqld

XSQLVAR sqlvar[n]

Array of n instances of XSQLVAR

1stinstance

short sqltype

nth instance

short sqlscale

short sqltype

short sglsubtype

short sqlscale

short sgllen

short sqlsubtype

char *sgldata

short sqllen

short *sqlind

char *sqldata

short sqiname_length

short *sqlind

char sqiname[32]

short sqiname_length

short relname_length

char sqiname[32]

char relname[32]

short relname_length

short ownname_length

char relname[32]

char ownname[32]

short ownname_length

short aliasname_length

char ownname[32]

char aliasname[32]

short aliasname_length

char aliasname[32]

An input XSQLDA consists of a single XSQLDA structure, and one XSQLVAR structure for
each input parameter. An output XSQLDA also consists of one XSQLDA structure and one

XSQLVAR structure for each data item returned by the statement. An XSQLDA and its

associated XSQLVAR structures are allocated as a single block of contiguous memory.

PROGRAMMER'S GUIDE

269

270

TABLE 14.1

CHAPTER 14 USING DYNAMIC SQL

The PREPARE and DESCRIBE statements can be used to determine the proper number of
XSQLVAR structures to allocate, and the XSQLDA_LENGTH macro can be used to allocate the
proper amount of space. For more information about the XSQLDA_LENGTH macro, see
“Using the XSQLDA_LENGTH macro” on page 273.

XSQLDA field descriptions

The following table describes the fields that comprise the XSQLDA structure:

Field definition Description

short version Indicates the version of the XSQLDA structure. Set by an application. The current
version is defined in ibase.h as SQOLDA_VERSION1.

charsqldaid[8] Reserved for future use.

ISC_LONG Reserved for future use.

sqldabc

short sgin Indicates the number of elements in the sglvar array. Set by the application.
Whenever the application allocates storage for a descriptor, it should set this field.

short sqld Indicates the number of parameters (for an input XSQLDA), or the number of
select-list items (for an output XSQLDA). Set by InterBase during a DESCRIBE or
PREPARE.
For an input descriptor, an sqld of 0 indicates that the SQL statement has no
parameters. For an output descriptor, an sq/d of 0 indicates that the SQL statement is
not a SELECT statement.

XSQLVAR sglvar The array of XSQLVAR structures. The number of elements in the array is specified in
the sqgin field.

XSQLDA field descriptions

INTERBASE 5

UNDERSTANDING THE XSQLDA

XSQLVAR field descriptions

The following table describes the fields that comprise the XSQLVAR structure:

Field definition Description

short sqltype Indicates the SQL datatype of parameters or select-list items. Set by InterBase
during PREPARE or DESCRIBE.

short sqlscale Provides scale, specified as a negative number, for exact numeric datatypes
(DECIMAL, NUMERIC). Set by InterBase during PREPARE or DESCRIBE.

short sqlsubtype Specifies the subtype for Blob data. Set by InterBase during PREPARE or
DESCRIBE.

short sqllen Indicates the maximum size, in bytes, of data in the sqldata field. Set by

InterBase during PREPARE or DESCRIBE.

char *sgldata For input descriptors, specifies either the address of a select-list item or a
parameter. Set by the application.

For output descriptors, contains a value for a select-list item. Set by InterBase.

short *sqlind On input, specifies the address of an indicator variable. Set by an application.

On output, specifies the address of column indicator value for a select-list
item following a FETCH. A value of 0 indicates that the column is not NULL; a
value of —1 indicates the column is NULL. Set by InterBase.

short sqiname_length Specifies the length, in bytes, of the data in field, sginame. Set by InterBase
during DESCRIBE OUTPUT.

char sqiname[32] Contains the name of the column. Not null (\0) terminated. Set by InterBase
during DESCRIBE OUTPUT.

short relname_length Specifies the length, in bytes, of the data in field, relname. Set by InterBase
during DESCRIBE OUTPUT.

TABLE14.2 XSQLVAR field descriptions

PROGRAMMER'S GUIDE 271

272

TABLE14.2

CHAPTER 14 USING DYNAMIC SQL

Field definition Description

char relname[32] Contains the name of the table. Not null (\0) terminated. Set by InterBase
during DESCRIBE OUTPUT.

short Specifies the length, in bytes, of the data in field, ownname. Set by InterBase

ownname_length during DESCRIBE OUTPUT.

char ownname[32] Contains the owner name of the table. Not null (\0) terminated. Set by
InterBase during DESCRIBE OUTPUT.

short Specifies the length, in bytes, of the data in field, aliasname. Set by InterBase
aliasname_length during DESCRIBE OUTPUT.

char aliasname[32] Contains the alias name of the column. If no alias exists, contains the column
name. Not null (\0) terminated. Set by InterBase during DESCRIBE OUTPUT.

XSQLVAR field descriptions (continued)

Input descriptors

Input descriptors process SQL statement strings that contain parameters. Before an
application can execute a statement with parameters, it must supply values for them. The
application indicates the number of parameters passed in the XSQLDA sg/d field, then
describes each parameter in a separate XSQLVAR structure. For example, the following
statement string contains two parameters, so an application must set sg/d to 2, and
describe each parameter:

char *str = "UPDATE DEPARTMENT SET BUDGET = ? WHERE LOCATION = ?";

When the statement is executed, the first XSQLVAR supplies information about the BUDGET
value, and the second XSQLVAR supplies the LOCATION value.

For more information about using input descriptors, see “DSQL programming
methods” on page 279.

Output descriptors

Output descriptors return values from an executed query to an application. The sq/d field
of the XSQLDA indicates how many values were returned. Each value is stored in a
separate XSQLVAR structure. The XSQLDA sqlvar field points to the first of these XSQLVAR
structures. The following statement string requires an output descriptor:

char *str = "SELECT * FROM CUSTOMER WHERE CUST_NO > 100";

INTERBASE 5

UNDERSTANDING THE XSQLDA

For information about retrieving information from an output descriptor, see “DSQL
programming methods” on page 279.

Using the XSQLDA_LENGTH macro

The ibase.h header file defines a macro, XSQLDA_LENGTH, to calculate the number of bytes
that must be allocated for an input or output XSQLDA. XSQLDA_LENGTH is defined as
follows:

#def i ne XSQLDA _LENGTH (n) (sizeof (XSQDA) + (n - 1) * sizeof (XSQLVAR))
n is the number of parameters in a statement string, or the number of select-list items
returned from a query. For example, the following C statement uses the XSQLDA_LENGTH

macro to specify how much memory to allocate for an XSQLDA with 5 parameters or
return items:

XSQ.DA *my_xsql da;

eryl_xlsqI da = (XSQLDA *) nmal | oc(XSQ.DA LENGTH(5));

For more information about using the XSQLDA_LENGTH macro, see “DSQL programming
methods” on page 279.

PROGRAMMER'S GUIDE 273

CHAPTER 14 USING DYNAMIC SQL

SQL datatype macro constants

InterBase defines a set of macro constants to represent SQL datatypes and NULL status
information in an XSQLVAR. An application should use these macro constants to specify
the datatype of parameters and to determine the datatypes of select-list items in an SQL
statement. The following table lists each SQL datatype, its corresponding macro constant
expression, C datatype or InterBase typedef, and whether or not the sglind field is used
to indicate a parameter or variable that contains NULL or unknown data:

sqlind
SQLdatatype Macro expression Cdatatype or typedef uZed?
Array SQL_ARRAY ISC_QUAD No
Array SQL_ARRAY + 1 ISC_QUAD Yes
Blob SQL_BLOB ISC_QUAD No
Blob SQL_BLOB + 1 ISC_QUAD Yes
CHAR SQL_TEXT char] No
CHAR SQL_TEXT + 1 char[] Yes
DATE SQL_DATE ISC_QUAD No
DATE SQL_DATE + 1 ISC_QUAD Yes
DECIMAL SQL_SHORT, SQL_LONG, or int, long, or double No
QL_DOUBLE
DECIMAL SQL_SHORT + 1, 5QL_LONG + 1, int, long, or double Yes
or SQL_DOUBLE + 1
DOUBLE PRECISON SQL_DOUBLE double No
DOUBLE PRECISION sQL_DOUBLE + 1 double Yes
INTEGER SQL_LONG long No
INTEGER SQL_LONG + 1 long Yes
FLOAT SQL_FLOAT float No
FLOAT SQL_FLOAT + 1 float Yes

TABLE143 SQL datatypes, macro expressions, and C datatypes

274 INTERBASE 5

UNDERSTANDING THE XSQLDA

TABLE 143

Tip

sqlind
SQL datatype Macro expression Cdatatype or typedef used?
NUMERIC SQL_SHORT, SQL_LONG, int, long, or double No
or SQL_DOUBLE
NUMERIC SQL_SHORT + 1, SQL_LONG + 1, int, long, or double Yes
or SQL_DOUBLE + 1
SMALLINT SQL_SHORT short No
SMALLINT SQL_SHORT + 1 short Yes
VARCHAR SQL_VARYING First 2 bytes: short containing No
the length of the character string.
Remaining bytes: char[]
VARCHAR SQL_VARYING + 1 First 2 bytes: short containing Yes

the length of the character string.
Remaining bytes: char[]

SQL datatypes, macro expressions, and C datatypes (continued)

Note DECIMAL and NUMERIC datatypes are stored internally as SMALLINT, INTEGER, or
DOUBLE PRECISION datatypes. To specify the correct macro expression to provide for a
DECIMAL or NUMERIC column, use isql to examine the column definition in the table to see
how InterBase is storing column data, then choose a corresponding macro expression.

The datatype information for a parameter or select-list item is contained in the sqltype
field of the XSQLVAR structure. The value contained in the sgltype field provides two pieces
of information:

The datatype of the parameter or select-list item.

Whether sglind is used to indicate NULL values. If sqlind is used, its value specifies
whether the parameter or select-list item is NULL (~1), or not NULL (0).

For example, if the sgltype field equals SQL_TEXT, the parameter or select-list item is a
CHAR that does not use sqlind to check for a NULL value (because, in theory, NULL values
are not allowed for it). If sqltype equals SQL_TEXT + 1, then sqlind can be checked to see
if the parameter or select-list item is NULL.

The C language expression, sql t ype & 1, provides a useful test of whether a parameter
or select-list item can contain a NULL. The expression evaluates to 0 if the parameter or
select-list item cannot contain a NULL, and 1 if the parameter or select-list item can
contain a NULL. The following code fragment demonstrates how to use the expression:

if (sgltype & 1 == 0)

PROGRAMMER'S GUIDE 275

276

CHAPTER 14 USING DYNAMIC SQL

{
/* parameter or select-list itemthat CANNOT contain a NULL */

}

el se

{

/* parameter or select-list item CAN contain a NULL */

}

By default, both PREPARE INTO and DESCRIBE return a macro expression of type + 1, so
the sqlind should always be examined for NULL values with these statements.

Handling varying string datatypes

VARCHAR, CHARACTER VARYING, and NCHAR VARYING datatypes require careful handling in
DSQL. The first two bytes of these datatypes contain string length information, while the
remainder of the data contains the actual bytes of string data to process.

To avoid having to write code to extract and process variable-length strings in an
application, it is possible to force these datatypes to fixed length using SQL macro
expressions. For more information about forcing variable-length data to fixed length for
processing, see “Coercing datatypes” on page 277.

Applications can, instead, detect and process variable-length data directly. To do so, they
must extract the first two bytes from the string to determine the byte-length of the string
itself, then read the string, byte-by-byte, into a null-terminated buffer.

NUMERIC and DECIMAL datatypes

DECIMAL and NUMERIC datatypes are stored internally as SMALLINT, INTEGER, or DOUBLE
PRECISION datatypes, depending on the precision and scale defined for a column
definition that uses these types. To determine how a DECIMAL or NUMERIC value is actually
stored in the database, use isql to examine the column definition in the table. If NUMERIC
is reported, then data is actually being stored as DOUBLE PRECISION.

When a DECIMAL or NUMERIC value is stored as a SMALLINT or INTEGER, the value is stored
as a whole number. During retrieval in DSQL, the sglscale field of the XSQLVAR is set to a
negative number that indicates the factor of ten by which the whole number (returned in
sqldata), must be divided in order to produce the correct NUMERIC or DECIMAL value with
its fractional part. If sglcale is —1, then the number must be divided by 10, if it is -2, then
the number must be divided by 100, —3 by 1,000, and so forth.

INTERBASE 5

UNDERSTANDING THE XSQLDA

IMPORTANT

Coercing datatypes

Sometimes when processing DSQL input parameters and select-list items, it is desirable
or necessary to translate one datatype to another. This process is referred to as datatype
coercion. For example, datatype coercion is often used when parameters or select-list
items are of type VARCHAR. The first two bytes of VARCHAR data contain string length
information, while the remainder of the data is the string to process. By coercing the data
from SQL_VARYING to SQL_TEXT, data processing can be simplified.

Coercion can only be from one compatible datatype to another. For example,
SQL_VARYING to SQL_TEXT, or SQL_SHORT to SQL_LONG.

b Coercing character datatypes

To coerce SQL_VARYING datatypes to SQL_TEXT datatypes, change the sgitype field in the
parameter’s or select-list item’s XSQLVAR structure to the desired SQL macro datatype
constant. For example, the following statement assumes that var is a pointer to an
XSQLVAR structure, and that it contains an SQL_VARYING datatype to convert to SQL_TEXT:

var->sqgl type = SQ._TEXT;
After coercing a character datatype, provide proper storage space for it. The XSQLVAR field,

sqllen, contains information about the size of the uncoerced data. Set the XSQLVAR sg/data
field to the address of the data.

) Coercing numeric datatypes

To coerce one numeric datatype to another, change the sg/fype field in the parameter’s or
select-list item’s XSQLVAR structure to the desired SQL macro datatype constant. For
example, the following statement assumes that var is a pointer to an XSQLVAR structure,
and that it contains an SQL_SHORT datatype to convert to SQL_LONG:

var->sqgl type = SQ._LONG

Do not coerce a larger datatype to a smaller one. Data can be lost in such a translation.

) Setting a NULL indicator

If a parameter or select-list item can contain a NULL value, the sqlind field is used to
indicate its NULL status. Appropriate storage space must be allocated for sqlind before
values can be stored there.

On insertion, set sqlind to -1 to indicate that NULL values are legal. Otherwise set sqlind
to 0.

PROGRAMMER'S GUIDE 277

CHAPTER 14 USING DYNAMIC SQL

On selection, an sglind of —1 indicates a field contains a NULL value. Other values indicate
a field contains non-NULL data.

Aligning numerical data

Ordinarily, when a variable with a numeric datatype is created, the compiler will ensure
that the variable is stored at a properly aligned address, but when numeric data is stored
in a dynamically allocated buffer space, such as can be pointed to by the XSQLDA and
XSQLVAR structures, the programmer must take precautions to ensure that the storage
space is properly aligned.

Certain platforms, in particular those with RISC processors, require that numeric data in

dynamically allocated storage structures be aligned properly in memory. Alignment is
dependent both on datatype and platform.

For example, a short integer on a Sun SPARCstation must be located at an address divisible
by 2, while a long on the same platform must be located at an address divisible by 4. In
most cases, a data item is properly aligned if the address of its starting byte is divisible by
the correct alignment number. Consult specific system and compiler documentation for
alignment requirements.

A useful rule of thumb is that the size of a datatype is always a valid alignment number
for the datatype. For a given type T, if size of (T) equals 7, then addresses divisible by 7
are correctly aligned for T. The following macro expression can be used to align data:

#define ALIGN(ptr, n) ((ptr + n - 1) & ~(n - 1))
where pir is a pointer to char.
The following code illustrates how the ALIGN macro might be used:

char *buffer_pointer, *next_aligned;
next _al i gned = ALI G\(buffer_pointer, sizeof(T));

278 INTERBASE 5

DSQL PROGRAMMING METHODS

DSQL programming methods

There are four possible DSQL programming methods for handling an SQL statement
string. The best method for processing a string depends on the type of SQL statement in
the string, and whether or not it contains placeholders for parameters. The following
decision table explains how to determine the appropriate processing method for a given
string.

Processing method to
Isitaquery? Does it have placeholders? use

No No Method 1
No Yes Method 2
Yes No Method 3
Yes Yes Method 4

TABLE14.4 SQL statement strings and recommended processing methods

Method 1: Non-query statements without parameters

There are two ways to process an SQL statement string containing a non-query statement
without placeholder parameters:

= Use EXECUTE IMMEDIATE to prepare and execute the string a single time.

® Use PREPARE to parse the statement for execution and assign it a name, then use EXECUTE
to carry out the statement’s actions as many times as required in an application.

» Using EXECUTE IMMEDIATE
1. To execute a statement string a single time, use EXECUTE IMMEDIATE:

2. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates an
SQL statement string:

char *str = "UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05";

3. Parse and execute the statement string using EXECUTE IMMEDIATE:

EXEC SQL
EXECUTE | MVEDI ATE : str;

PROGRAMMER'S GUIDE 279

CHAPTER 14 USING DYNAMIC SQL

Note EXECUTE IMMEDIATE also accepts string literals. For example,

EXEC SQL
EXECUTE | MVEDI ATE
" UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05";

» Using PREPARE and EXECUTE
To execute a statement string several times, use PREPARE and EXECUTE:
1. Elicit a statement string from the user or create one that contains the SQL

statement to be processed. For example, the following statement creates an
SQL statement string:

char *str = "UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05";

2. Parse and name the statement string with PREPARE. The name is used in
subsequent calls to EXECUTE:

EXEC SQL
PREPARE SQL_STMI FROM :str;

SQL_STMT is the name assigned to the parsed statement string.
3. Execute the named statement string using EXECUTE. For example, the
following statement executes a statement string named SQL_STMT:
EXEC SQL
EXECUTE SQL_STMT;
Note PREPARE also accepts string literals. For example,

EXEC SQL
PREPARE SQL_STMI FROM
" UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05";

Once a statement string is prepared, it can be executed as many times as required in
an application.

Method 2: Non-query statements with parameters

There are two steps to processing an SQL statement string containing a non-query
statement with placeholder parameters:

1. Creating an input XSQLDA to process a statement string’s parameters.

2. Preparing and executing the statement string with its parameters.

280 INTERBASE 5

DSQL PROGRAMMING METHODS

) Creating the input XSQLDA

Placeholder parameters are replaced with actual data before a prepared SQL statement
string is executed. Because those parameters are unknown when the statement string is
created, an input XSQLDA must be created to supply parameter values at execute time. To
prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA needed to process parameters. For
example, the following declaration creates an XSQLDA called in_sglda:
XSQLDA *in_sql da;
2. Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:

XSQLVAR *var ;

Declaring a pointer to the XSQLVAR structure is not necessary, but can simplify
referencing the structure in subsequent statements.

3. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
following statement allocates storage for in_sqlda:
in_sglda = (XSQ.DA *) nal | oc(XSQLDA_LENGTH(10)) ;
In this statement space for 10 XSQLVAR structures is allocated, allowing the XSQLDA
to accommodate up to 10 parameters.

4. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the sg/n field
to indicate the number of XSQLVAR structures allocated:
i n_sqgl da_versi on = SQLDA VERSI ON1;
i n_sqgl da->sqln = 10;

» Preparing and executing a statement string with parameters

After an XSQLDA is created for holding a statement string’s parameters, the statement
string can be created and prepared. Local variables corresponding to the placeholder
parameters in the string must be assigned to their corresponding sqldata fields in the
XSQLVAR structures.

To prepare and execute a non-query statement string with parameters, follow these steps:

1. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates an
SQL statement string with placeholder parameters:
char *str = "UPDATE DEPARTMENT SET BUDGET = ?, LOCATION = ?";
This statement string contains two parameters: a value to be assigned to the BUDGET
field and a value to be assigned to the LOCATION field.

PROGRAMMER'S GUIDE 281

282

CHAPTER 14 USING DYNAMIC SQL

. Parse and name the statement string with PREPARE. The name is used in

subsequent calls to DESCRIBE and EXECUTE:

EXEC SQL
PREPARE SQL_STMI' FROM : str;
SQL_STMT is the name assigned to the prepared statement string.

. Use DESCRIBE INPUT to fill the input XSQLDA with information about the

parameters contained in the SQL statement:

EXEC SQL
DESCRI BE | NPUT SQL_STMI' USI NG SQL DESCRI PTCR i n_sql da;

. Compare the value of the sg/n field of the XSQLDA to the value of the sqg/d field

to make sure enough XSQLVARs are allocated to hold information about each
parameter. sq/n should be at least as large as sg/n. If not, free the storage
previously allocated to the input descriptor, reallocate storage to reflect the
number of parameters specified by sqld, reset sqin and version, then execute
DESCRIBE INPUT again:

if (in_sqglda->sqld > in_sqlda->sqln)

{

n = in_sql da->sql d;

free(in_sql da);

in_sqglda = (XSQLDA *)nal | oc(XSQ.DA_LENGTH(n));

i n_sqglda->sqln = n;

i n_sql da->version = SQ.DA_VERSI| ON1;

EXEC SQL

DESCRI BE | NPUT SQL_STMI USI NG SQL DESCRI PTOR i n_sql da;

}

. Process each XSQLVAR parameter structure in the XSQLDA. Processing a

parameter structure involves up to four steps:
- Coercing a parameter’s datatype (optional).

- Allocating local storage for the data pointed to by the sqldata field of the XSQLVAR.
This step is only required if space for local variables is not allocated until run time.
The following example illustrates dynamic allocation of local variable storage space.

- Providing a value for the parameter consistent with its datatype (required).
- Providing a NULL value indicator for the parameter.

The following code example illustrates these steps, looping through each XSQLVAR
structure in the #n_sqlda XSQLDA:

for (i=0, var = in_sqglda->sqlvar; i < in_sqlda->sqld; i++, var++)

{

INTERBASE 5

DSQL PROGRAMMING

PROGRAMMER'S GUIDE

METHODS

/* Process each XSQLVAR paraneter structure here.
The paraneter structure is pointed to by var.*/
dtype = (var->sqgltype & ~1) /* drop NULL flag for now */
swi t ch(dtype)
{
case SQ._VARYING /* coerce to SQ._TEXT */
var->sqgl type = SQ._TEXT;
/* Allocate |ocal variable storage. */
var->sqgl data = (char *)mal | oc(si zeof (char)*var->sqll en);
br eak;
case SQ._TEXT:
var->sql data = (char *)mal | oc(si zeof (char)*var->sqll en);
/* Provide a value for the paraneter. */
br eak;
case SQ._LONG
var->sql data = (char *)nmall oc(sizeof(long));
/* Provide a value for the paraneter. */
*(long *)(var->sqldata) = 17;
br eak;

} /* End of switch statenment. */
if (sqgltype & 1)

{
/* Allocate variable to hold NULL status. */
var->sqglind = (short *)nmalloc(sizeof(short));
}
} /* End of for |oop. */

For more information about datatype coercion and NULL indicators, see “Coercing
datatypes” on page 277.

Execute the named statement string with EXECUTE. Reference the parameters
in the input XSQLDA with the USING SQL DESCRIPTOR clause. For example, the
following statement executes a statement string named SQL_STMT:
EXEC SQL
EXECUTE SQL_STMI USI NG SQL DESCRI PTOR i n_sql da;

283

284

CHAPTER 14 USING DYNAMIC SQL

) Re-executing the statement string

Once a non-query statement string with parameters is prepared, it can be executed as
often as required in an application. Before each subsequent execution, the input XSQLDA
can be supplied with new parameter and NULL indicator data.

To supply new parameter and NULL indicator data for a prepared statement, repeat steps
3-5 of “Preparing and Executing a Statement String with Parameters,” in this chapter.

Method 3: Query statements without parameters

There are three steps to processing an SQL query statement string without parameters:

1. Preparing an output XSQLDA to process the select-list items returned when the
query is executed.

2. Preparing the statement string.

3. Using a cursor to execute the statement and retrieve select-list items from the
output XSQLDA.

) Preparing the output XSQLDA

Most queries return one or more rows of data, referred to as a select-list. Because the
number and kind of items returned are unknown when a statement string is created, an
output XSQLDA must be created to store select-list items that are returned at run time. To
prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA needed to store the column data for
each row that will be fetched. For example, the following declaration creates
an XSQLDA called out_sqlda:

XSQ.DA *out _sql da;
2. Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:
XSQLVAR *var ;
Declaring a pointer to the XSQLVAR structure is not necessary, but can simplify

referencing the structure in subsequent statements.

3. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
following statement allocates storage for out_sqlda:

out _sqlda = (XSQLDA *) mal | oc(XSQLDA_LENGTH(10)) ;

INTERBASE 5

DSQL PROGRAMMING METHODS

Space for 10 XSQLVAR structures is allocated in this statement, enabling the XSQLDA to
accommodate up to 10 select-list items.

4. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the sg/n field
of the XSQLDA to indicate the number of XSQLVAR structures allocated:
out _sql da->versi on = SQLDA VERSI ON1;
out _sql da->sqln = 10;

» Preparing a query statement string

After an XSQLDA is created for holding the items returned by a query statement string, the
statement string can be created, prepared, and described. When a statement string is
executed, InterBase creates the select-list of selected rows.

To prepare a query statement string, follow these steps:

1. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates an
SQL statement string that performs a query:

char *str = "SELECT * FROM CUSTOVER';

The statement appears to have only one select-list item (*). The asterisk is a wildcard
symbol that stands for all of the columns in the table, so the actual number of items
returned equals the number of columns in the table.

2. Parse and name the statement string with PREPARE. The name is used in
subsequent calls to statements such as DESCRIBE and EXECUTE:

EXEC SQL
PREPARE SQL_STMI FROM : str;

SQL_STMT is the name assigned to the prepared statement string.

3. Use DESCRIBE OUTPUT to fill the output XSQLDA with information about the
select-list items returned by the statement:

EXEC SQL
DESCRI BE OUTPUT SQL_STMT | NTO SQL DESCRI PTOR out _sql da;

4. Compare the sqin field of the XSQLDA to the sqld field to determine if the
output descriptor can accommodate the number of select-list items specified
in the statement. If not, free the storage previously allocated to the output
descriptor, reallocate storage to reflect the number of select-list items
specified by sqld, reset sqln and version, then execute DESCRIBE OUTPUT
again:

i f (out_sqglda->sqgld > out_sgl da->sqgl n)
{

PROGRAMMER'S GUIDE 285

286

CHAPTER 14 USING DYNAMIC SQL

n = out_sql da->sql d;
free(out_sqgl da);
out _sqlda = (XSQLDA *) mal | oc(XSQLDA_LENGTH(n)) ;
out _sql da->sqln = n;
out _sql da- >versi on = SQLDA VERSI ON1;
EXEC SQL
DESCRI BE QUTPUT SQL_STMI | NTO SQL DESCRI PTCR out _sql da;

}

5. Set up an XSQLVAR structure for each item returned. Setting up an item

structure involves the following steps:
- Coercing an item’s datatype (optional).

- Allocating local storage for the data pointed to by the sqldata field of the XSQLVAR.
This step is only required if space for local variables is not allocated until run time.
The following example illustrates dynamic allocation of local variable storage space.

- Providing a NULL value indicator for the parameter.

The following code example illustrates these steps, looping through each XSQLVAR
structure in the out_sqlda XSQLDA:
for (i=0, var = out_sql da->sqgl var; i < out_sqlda->sqld; i++, var++)
{
dtype = (var->sqgltype & ~1) /* drop flag bit for now */
swi tch (dtype)
{
case SQ._VARYI NG
var->sqgl type = SQ._TEXT;
var->sql data = (char *)nal | oc(si zeof (char)*var->sqllen +
2);
br eak;
case SQ._TEXT:
var->sql data = (char *)mal | oc(si zeof (char)*var->sqll en);
br eak;
case SQ._LONG
var->sql data = (char *)nmall oc(sizeof(long));
br eak;

/* process remaining types */
} /* end of switch statenments */
if (sqgltype & 1)
{

/* allocate variable to hold NULL status */

INTERBASE 5

DSQL PROGRAMMING METHODS

var->sqglind = (short *)nmalloc(sizeof(short));

} /* end of for |oop */

For more information about datatype coercion and NULL indicators, see “Coercing
datatypes” on page 277.

) Executing a statement string within the context of a cursor

To retrieve select-list items from a prepared statement string, the string must be executed
within the context of a cursor. All cursor declarations in InterBase are fixed, embedded
statements inserted into the application before it is compiled. DSQL application
developers must anticipate the need for cursors when writing the application and declare
them ahead of time.

A looping construct is used to fetch a single row at a time from the cursor and to process
each select-list item (column) in that row before the next row is fetched.

To execute a statement string within the context of a cursor and retrieve rows of select-list
items, follow these steps:

1. Declare a cursor for the statement string. For example, the following
statement declares a cursor, DYN_CURSOR, for the SQL statement string,
SQL_STMT:

EXEC SQL
DECLARE DYN_CURSOR CURSOR FOR SQL_STM;

2. Open the cursor:

EXEC SQL
OPEN DYN_CURSCR;

Opening the cursor causes the statement string to be executed, and an active set of
rows to be retrieved. For more information about cursors and active sets, see Chapter
6, “Working with Data.”

3. Fetch one row at a time and process the select-list items (columns) it
contains. For example, the following loops retrieve one row at a time from
DYN_CURSOR and process each item in the retrieved row with an
application-specific function (here called process_column()):

whi | e (SQLCODE == 0)
{
EXEC SQL
FETCH DYN_CURSOR US| NG SQL DESCRI PTOR out _sql da;
i f (SQLCODE == 100)
br eak;

PROGRAMMER'S GUIDE 287

288

CHAPTER 14 USING DYNAMIC SQL

for (i =0; i < out_sglda->sqgld; i++)

{

process_col um(out _sql da->sql var[i]);

}
}

The process_column() function mentioned in this example processes each returned
select-list item. The following skeleton code illustrates how such a function can be set
up:

voi d process_col um(XSQLVAR *var)

{
/* test for NULL value */
if ((var->sqgltype & 1) && (*(var->sqglind) = -1))
{
/* process the NULL val ue here */
}
el se
{
/* process the data instead */
}
}
4. When all the rows are fetched, close the cursor:
EXEC SQL

CLOSE DYN_CURSOR;

» Re-executing a query statement string

Once a query statement string without parameters is prepared, it can be executed as often
as required in an application by closing and reopening its cursor.

To reopen a cursor and process select-list items, repeat steps 2—4 of “Executing a
Statement String Within the Context of a Cursor,” in this chapter.

Method 4: Query statements with parameters

There are four steps to processing an SQL query statement string with placeholder
parameters:

INTERBASE 5

DSQL PROGRAMMING METHODS

1. Preparing an input XSQLDA to process a statement string’s parameters.

2. Preparing an output XSQLDA to process the select-list items returned when the
query is executed.

3. Preparing the statement string and its parameters.

Using a cursor to execute the statement using input parameter values from
an input XSQLDA, and to retrieve select-list items from the output XSQLDA.

» Preparing the input XSQLDA

Placeholder parameters are replaced with actual data before a prepared SQL statement
string is executed. Because those parameters are unknown when the statement string is
created, an input XSQLDA must be created to supply parameter values at run time. To
prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA needed to process parameters. For
example, the following declaration creates an XSQLDA called in_sqlda:

XSQ.DA *in_sql da;
2. Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:
XSQLVAR *var;
Declaring a pointer to the XSQLVAR structure is not necessary, but can simplify
referencing the structure in subsequent statements.

3. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
following statement allocates storage for in_slgda:
in_sqglda = (XSQ.DA *) nal | oc(XSQLDA _LENGTH(10));
In this statement, space for 10 XSQLVAR structures is allocated, allowing the XSQLDA to

accommodate up to 10 input parameters. Once structures are allocated, assign values
to the sgldata field in each XSQLVAR.

4. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the sgl#n field
of the XSQLDA to indicate the number of XSQLVAR structures allocated:

i n_sqgl da- >versi on = SQ.DA VERSI ON1;
i n_sqgl da->sqln = 10;

) Preparing the output XSQLDA

Because the number and kind of items returned are unknown when a statement string is
executed, an output XSQLDA must be created to store select-list items that are returned at
run time. To prepare the XSQLDA, follow these steps:

PROGRAMMER'S GUIDE 289

CHAPTER 14 USING DYNAMIC SQL

1. Declare a variable to hold the XSQLDA needed to process parameters. For
example, the following declaration creates an XSQLDA called out_sqlda:

XSQ.DA *out _sql da;

2. Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:

XSQLVAR *var ;

Declaring a pointer to the XSQLVAR structure is not necessary, but can simplify
referencing the structure in subsequent statements.

3. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
following statement allocates storage for out_sqlda:

out _sqlda = (XSQLDA *) mal | oc(XSQLDA_LENGTH(10)) ;

Space for 10 XSQLVAR structures is allocated in this statement, enabling the XSQLDA to
accommodate up to 10 select-list items.

4. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the sgln field
of the XSQLDA to indicate the number of XSQLVAR structures allocated:

out _sql da- >versi on = SQLDA VERSI ON1;
out _sql da->sqln = 10;

» Preparing a query statement string with parameters

After an input and an output XSQLDA are created for holding a statement string’s
parameters, and the select-list items returned when the statement is executed, the
statement string can be created and prepared. When a statement string is prepared,
InterBase replaces the placeholder parameters in the string with information about the
actual parameters used. The information about the parameters must be assigned to the
input XSQLDA (and perhaps adjusted) before the statement can be executed. When the
statement string is executed, InterBase stores select-list items in the output XSQLDA.

To prepare a query statement string with parameters, follow these steps:

1. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates an
SQL statement string with placeholder parameters:
char *str = "SELECT * FROM DEPARTMENT WHERE BUDGET = ?, LOCATI ON =
?" .

This statement string contains two parameters: a value to be assigned to the BUDGET
field and a value to be assigned to the LOCATION field.

290 INTERBASE 5

DSQL PROGRAMMING METHODS

2. Prepare and name the statement string with PREPARE. The name is used in
subsequent calls to DESCRIBE and EXECUTE:

EXEC SQL
PREPARE SQL_STMI FROM : str;

SQL_STMT is the name assigned to the prepared statement string.

3. Use DESCRIBE INPUT to fill the input XSQLDA with information about the
parameters contained in the SQL statement:

EXEC SQL
DESCRI BE | NPUT SQL_STMI' USI NG SQL DESCRI PTCR i n_sql da;

4. Compare the sqin field of the XSQLDA to the sqld field to determine if the
input descriptor can accommodate the number of parameters contained in
the statement. If not, free the storage previously allocated to the input
descriptor, reallocate storage to reflect the number of parameters specified by
sqld, reset sqin and version, then execute DESCRIBE INPUT again:

if (in_sqglda->sqld > in_sqlda->sqln)

{

n = in_sql da->sql d;

free(in_sql da);

in_sqglda = (XSQLDA *)nal | oc(XSQ.DA_LENGTH(n));

i n_sqglda->sqln = n;

i n_sql da->version = SQ.DA_VERSI| ON1;

EXEC SQL

DESCRI BE | NPUT SQL_STMI USI NG SQL DESCRI PTOR i n_sql da;

}

5. Process each XSQLVAR parameter structure in the input XSQLDA. Processing a
parameter structure involves up to four steps:

- Coercing a parameter’s datatype (optional).

- Allocating local storage for the data pointed to by the sgldata field of the XSQLVAR.
This step is only required if space for local variables is not allocated until run time.
The following example illustrates dynamic allocation of local variable storage space.

- Providing a value for the parameter consistent with its datatype (required).
- Providing a NULL value indicator for the parameter.

These steps must be followed in the order presented. The following code example
illustrates these steps, looping through each XSQLVAR structure in the in_sqlda
XSQLDA:

for (i=0, var = in_sqglda->sqlvar; i < in_sqlda->sqld; i++, var++)

PROGRAMMER'S GUIDE 291

CHAPTER 14 USING DYNAMIC SQL

{
/* Process each XSQLVAR paraneter structure here.
The paraneter structure is pointed to by var.*/
dtype = (var->sqltype & ~1) /* drop flag bit for now */
switch (dtype)
{
case SQ._VARYING /* coerce to SQ._TEXT */
var->sqgl type = SQ_TEXT;
/* allocate proper storage */
var->sql data = (char *)mal | oc(si zeof (char)*var->sqll en);
/* provide a val ue for the paraneter. See case SQ._LONG */
br eak;
case SQ._TEXT:
var->sqgl data = (char *)mal | oc(si zeof (char)*var->sqll en);
/* provide a val ue for the paraneter. See case SQ._LONG */
br eak;
case SQ._LONG
var->sql data = (char *)mall oc(sizeof(long));
/* provide a value for the paraneter */
*(long *)(var->sqldata) = 17;
br eak;
} /* end of switch statement */
if (sqgltype & 1)
{
/* allocate variable to hold NULL status */
var->sqglind = (short *)malloc(sizeof(short));
}
} /* end of for |oop */

For more information about datatype coercion and NULL indicators, see “Coercing
datatypes” on page 277.

6. Use DESCRIBE OUTPUT to fill the output XSQLDA with information about the
select-list items returned by the statement:

EXEC SQL
DESCRI BE OUTPUT SQL_STMT | NTO SQL DESCRI PTOR out _sql da;

292 INTERBASE 5

DSQL PROGRAMMING METHODS

7. Compare the sqin field of the XSQLDA to the sg/d field to determine if the
output descriptor can accommodate the number of select-list items specified
in the statement. If not, free the storage previously allocated to the output
descriptor, reallocate storage to reflect the number of select-list items
specified by sqld, reset sqln and version, and execute DESCRIBE OUTPUT again:

i f (out_sqglda->sqgld > out_sqgl da->sqgl n)
{

n = out_sql da->sql d;

free(out_sqgl da);

out _sqlda = (XSQLDA *) mal | oc(XSQLDA_LENGTH(n)) ;

out _sql da->sqln = n;

out _sql da- >versi on = SQLDA VERSI ON1;

EXEC SQL

DESCRI BE OUTPUT SQL_STMT | NTO SQL DESCRI PTOR out _sql da;

}

8. Set up an XSQLVAR structure for each item returned. Setting up an item
structure involves the following steps:

- Coercing an item’s datatype (optional).

- Allocating local storage for the data pointed to by the sqldata field of the XSQLVAR.
This step is only required if space for local variables is not allocated until run time.
The following example illustrates dynamic allocation of local variable storage space.

- Providing a NULL value indicator for the parameter (optional).

The following code example illustrates these steps, looping through each XSQLVAR
structure in the out_sqlda XSQLDA:

for (i=0, var = out_sqgl da->sqgl var; i < out_sql da->sqld; i++, var++)
{
dtype = (var->sqltype & ~1) /* drop flag bit for now */
switch (dtype)
{
case SQ._VARYI NG
var->sqgl type = SQ._TEXT;
br eak;
case SQ._TEXT:
var->sqgl data = (char *)mal | oc(si zeof (char)*var->sqll en);
br eak;
case SQ._LONG
var->sql data = (char *)nmall oc(sizeof(long));
br eak;
/* process remaining types */

PROGRAMMER'S GUIDE 293

294

CHAPTER 14 USING DYNAMIC SQL

} /* end of switch statenments */
if (sqgltype & 1)

{
/* allocate variable to hold NULL status */
var->sqglind = (short *)nmalloc(sizeof(short));
}
} /* end of for |oop */

For more information about datatype coercion and NULL indicators, see “Coercing
datatypes” on page 277.

) Executing a query statement string within the context of a cursor

To retrieve select-list items from a statement string, the string must be executed within
the context of a cursor. All cursor declarations in InterBase are fixed, embedded
statements inserted into the application before it is compiled. DSQL application
developers must anticipate the need for cursors when writing the application and declare
them ahead of time.

A looping construct is used to fetch a single row at a time from the cursor and to process
each select-list item (column) in that row before the next row is fetched.

To execute a statement string within the context of a cursor and retrieve rows of select-list
items, follow these steps:

1. Declare a cursor for the statement string. For example, the following
statement declares a cursor, DYN_CURSOR, for the prepared SQL statement
string, SQL_STMT:

EXEC SQL
DECLARE DYN_CURSOR CURSOR FOR SQL_STM;

2. Open the cursor, specifying the input descriptor:

EXEC SQL
OPEN DYN_CURSCOR USI NG SQL DESCRI PTCR i n_sql da;

Opening the cursor causes the statement string to be executed, and an active set of
rows to be retrieved. For more information about cursors and active sets, see Chapter
6, “Working with Data.”

3. Fetch one row at a time and process the select-list items (columns) it
contains. For example, the following loops retrieve one row at a time from
DYN_CURSOR and process each item in the retrieved row with an
application-specific function (here called process_column()):

whi | e (SQLCODE == 0)
{

INTERBASE 5

DSQL PROGRAMMING METHODS

EXEC SQL

FETCH DYN_CURSOR USI NG SQ. DESCRI PTCR out _sql da;

if (SQLCODE == 100)
br eak;

for (i =0; i < out_sglda->sqld;

{

process_col um(out _sql da->sql var[i]);

}
}

4. When all the rows are fetched, close the cursor:

EXEC SQL
CLOSE DYN_CURSOR;

» Re-executing a query statement string with parameters

Once a query statement string with parameters is prepared, it can be used as often as
required in an application. Before each subsequent use, the input XSQLDA can be supplied
with new parameter and NULL indicator data. The cursor must be closed and reopened

before processing can occur.

To provide new parameters to the input XSQLDA, follow steps 3—5 of “Preparing a Query

Statement String with Parameters,” in this chapter.

To provide new information to the output XSQLDA, follow steps 68 of “Preparing a Query

Statement String with Parameters,” in this chapter.

To reopen a cursor and process select-list items, repeat steps 2—4 of “Executing a Query

Statement String Within the Context of a Cursor,” in this chapter.

PROGRAMMER'S GUIDE

295

CHAPTER 14 USING DYNAMIC SQL

296 INTERBASE 5

CHAPTER

15

Preprocessing, Compiling,
and Linking

This chapter describes how to preprocess a program by using gpre, and how to compile
and link it for execution.

Preprocessing

After coding an SQL or dynamic SQL (DSQL) program, the program must be
preprocessed with gpre before it can be compiled. gpre translates SQL and DSQL
commands into statements the host-language compiler accepts by generating InterBase
library function calls. gpre translates SQL and DSQL database variables into ones the
host-language compiler accepts and declares these variables in host-language format.
gpre also declares certain variables and data structures required by SQL, such as the
SQLCODE variable and the extended SQL descriptor area (XSQLDA) used by DSQL.

PROGRAMMER'S GUIDE 297

298

TABLE15.1

TABLE15.2

CHAPTER 15 PREPROCESSING, COMPILING, AND LINKING

Using gpre

The syntax for gpre is:

gpre [-language] [-options] infile [outfile]
The infile argument specifies the name of the input file.

The optional outfile argument specifies the name of the output file. If no file is specified,
gpre sends its output to a file with the same name as the input file, with an extension
depending on the language of the input file.

gpre has switches that allow you to specify the language of the source program and a
number of other options. You can place the switches either before or after the input and
output file specification. Each switch must include at least a hyphen preceded by a space
and a unique character specifying the switch.

» Language switches

The language switch specifies the language of the source program. C and C++ are
languages available on all platforms. The switches are shown in the following table:

Switch Language
-C C
-CXX C++

gpre language switches available on all platforms

In addition, some platforms support other languages if an additional InterBase license
for the language is purchased. The following table lists the available languages and the
corresponding switches:

Switch Language
-al[sys] Ada (Alsys)

Additional gpre language switches

INTERBASE 5

PREPROCESSING

Switch Language

-a[da] Ada (VERDIX, VMS, Telesoft)
-ansi ANSI-85 COBOL

-co[bol] COBOL

-flortran] FORTRAN

-pa[scal] Pascal

TABLE15.2 Additional gpre language switches

For example, to preprocess a C program called census.e, type:

gpre -c census.e

PROGRAMMER'S GUIDE 299

CHAPTER 15 PREPROCESSING, COMPILING, AND LINKING

» Option switches

The option switches specify preprocessing options. The following table describes the
available switches:

Switch Description
-charset name Determines the active character set at compile time, where name is the
character set name.

-d[atabase] filename Declares a database for programs. filename is the file name of the database
to access. Use this option if a program contains SQL statements and does
not attach to the database itself. Do not use this option if the program
includes a database declaration.

-d_float VAX/VMS only. Specifies that double-precision data will be passed from the
application in D_FLOAT format and stored in the database in G_FLOAT
format. Data comparisons within the database will be performed in
G_FLOAT format. Data returned to the application from the database will be
in D_FLOAT format.

-e[ither_case] Enables gpre to recognize both uppercase and lowercase. Use the
-either_case switch whenever SQL keywords appear in code in lowercase
letters. If case is mixed, and this switch is not used, gpre cannot process the
input file. This switch is not
necessary with languages other than C, since they are case-insensitive.

-m[anual] Suppresses the automatic generation of transactions. Use the
-m switch for SQL programs that perform their own transaction handling,
and for all DSQL programs that must, by definition, explicitly control their

own transactions.
-n[o_lines] Suppresses line numbers for C programs.
-o[utput] Directs gpre’s output to standard output, rather than to afile.

-password password Specifies password, the database password, if the program connects to a
database that requires one.

TABLE15.3 gpre option switches

300 INTERBASE 5

PREPROCESSING

Switch

Description

-rlaw]

-sqlda [old | new]
-user username

-X handle

Prints BLR as raw numbers, rather than as their mnemonic equivalents. This
option cam be useful for making the gpre output file smaller; however, it
will be unreadable.

Argument old specifies SQLDA, new specifies XSQLDA. If this switch is not
used, the default is XSQLDA.

Specifies username, the database user name, if the program connects to a
database that requires one.

Gives the database handle identified with the -database option an
external declaration. This option directs the program to pick up a global
declaration from another linked module. Use only if the -d switch is also
used.

Prints the version number of gpre and the version number of all declared
databases. These databases can be declared either in the program or with
the -database switch.

TABLE153 gpre option switches (continued)

For sites with the appropriate license and are using a language other than C, additional
gpre options can be specified, as described in the following table:

Switch

Description

-h[andles] pkg

Specifies, pkg, an Ada handles package.

TABLE15.4 Language-specific gpre option switches

» Examples

The following command preprocesses a C program in a file named appli.e. The output
file will be appli.c. Since no database is specified, the source code must connect to the

database.

gpre -c appl1l

The following command is the same as the previous, except that it does not assume the

source code opens a database, instead, explicitly declaring the database, mydb.gdb:

gpre -c appl 1l -d nydb. gdb

PROGRAMMER'S GUIDE

301

302

TABLE15.5

CHAPTER 15 PREPROCESSING, COMPILING, AND LINKING

Using a file extension to specify language

In addition to using a language switch to specify the host language, it is also possible to
indicate the host language with the file-name extension of the source file. The following
table lists the file-name extensions for each language that gpre supports and the default
extension of the output file:

Input file Default output file

Language extension extension

Ada (VERDIX) ea a

Ada (Alsys, Telesoft) eada ada

C e C

++ exx XX

COBOL ecob cob

FORTRAN ef f

Pascal epas pas

File extensions for language specification

For example, to preprocess a COBOL program called census.ecob, type:

gpre census_report.ecob

This generates an output file called census.cob.

When specifying a file-name extension, it is possible to specify a language switch as well:

gpre -cob census. ecob

Specifying the source file

Because both the language switch and the filename extension are optional, gpre can
encounter three different situations:

® A language switch and input file with no extension
® No language switch, but an input file with extension

= Neither a language switch, nor a file extension

INTERBASE 5

PREPROCESSING

This section describes gpre’s behavior in each of these cases.

Language switch and no input file extension

If gpre encounters a language switch, but the specified input file has no extension, it does
the following:

1. It looks for the input file without an extension. If gpre finds the file, it
processes it and generates an output file with the appropriate extension.

If gpre does not find the input file, it looks for the file with the extension that
corresponds to the indicated language. If it finds such a file, it generates an output
file with the appropriate extension.

2. If gprecannot find either the named file or the named file with the appropriate
extension, it returns the following error:

gpre: can’t open filenameor filenane.extension

filename is the file specified in the gpre command. extension is the language-specific
file extension for the specified program.

For example, suppose the following command is issued:

gpre -c census

gpre performs the following sequence of actions:

1. Tt looks for a file called census without an extension. If it finds the file, it
processes it and generates census.c.

2. If it cannot find census, it looks for a file called census.e. If it finds census.e,
it processes the file and generates census.c.

3. If it cannot find census or census.e, it returns this error:

gpre: can't open census or census.e

No language switch and an input file with extension

If a language switch is not specified, but the input file includes a file-name extension,
gpre looks for the specified file and assumes the language is indicated by the extension.

For example, suppose the following command is processed:

gpre census.e

gpre looks for a file called census.e. If gpre finds this file, it processes it as a C program
and generates an output file called census.c. If gpre does not find this file, it returns the
following error:

gpre: can’t open census.e

PROGRAMMER'S GUIDE 303

CHAPTER 15 PREPROCESSING, COMPILING, AND LINKING

Neither a language switch nor a file extension

If gpre finds neither a language extension nor a filename extension, it looks for a file in
the following order:

1. filename.e (C)

2. filename.epas (Pascal)

3. filename.ef (FORTRAN)

4. filename.ecob (COBOL)

5. filename.ea (VERDIX Ada)

6. filename.eada (Alsys, and Telesoft Ada)

If gpre finds such a file, it generates an output file with the appropriate extension. If gpre
does not find the file, it returns the following error:

gpre: can't find filename with any known extension. Giving up.

Compiling and linking

304

After preprocessing a program, it must be compiled and linked. Compiling creates an
object module from the preprocessed source file. Use a host-language compiler to
compile the program.

The linking process resolves external references and creates an executable object. Use the
tools available on a given platform to link a program’s object module to other object
modules and libraries, based on the platform, operating system and host language used.

Compiling an Ada program

Before compiling an Ada program, be sure the Ada library contains the package
interbase.ada (or interbase.a for VERDIX Ada). This package is in the InterBase include
directory.

To use the programs in the InterBase examples directory, use the package basic_io.ada
(or basic_io.a for VERDIX Ada), also located in the examples directory.

Linking

On Unix platforms, programs can be linked to the following libraries:

INTERBASE 5

COMPILING AND LINKING

= A library that uses pipes, obtained with the -igds option. This library yields faster links
and smaller images. It also lets your application work with new versions of InterBase
automatically when they are installed.

= A library that does not use pipes, obtained with the -Igds_b option. This library has faster
execution, but binds an application to a specific version of InterBase. When installing a
new version of InterBase, programs must be relinked to use the new features or databases
created with that version.

Under SunOS-4, programs can be linked to a shareable library by using the

-lgd’slib option. This creates a dynamic link at run time and yields smaller images with
the execution speed of the full library. This option also provides the ability to upgrade
InterBase versions automatically.

For specific information about linking options for InterBase on a particular platform,
consult the online readme in the interbase directory.

PROGRAMMER'S GUIDE 305

CHAPTER 15 PREPROCESSING, COMPILING, AND LINKING

306 INTERBASE 5

APPENDIX

InterBase Document
Conventions

This appendix describes the InterBase 5 documentation set, the printing conventions
used to display information in text and in code examples, and conventions for naming
database objects and files in applications.

PROGRAMMER'S GUIDE 307

APPENDIX A INTERBASE DOCUMENT CONVENTIONS

The InterBase documentation set

The InterBase documentation set is an integrated package designed for all levels of users.
It consists of five printed books. Each of these books is also provided in Adobe Acrobat
PDF format and is accessible on line through the Help menu. If Adobe Acrobat is not
already installed on your system, you can find it on the InterBase distribution CD-ROM
or at http//www.adobe.com/prodindex/acrobat/readstep.btml. Acrobat is available for
Windows NT, Windows 95, and most flavors of UNIX. Windows users also have help
available through the WinHelp system.

Book Description

Operations Guide Provides an introduction to InterBase and an explanation of tools and
procedures for performing administrative tasks on databases and database
servers. Also includes full reference on InterBase utilities, including isql,
gbak, Server Manager for Windows, and others.

Data Definition Guide ~ Explains how to create, alter, and delete database objects through isqL.
Language Reference Describes SQL and DSQL syntax and usage.

Programmer’s Guide Describes how to write embedded SQL and DSQL database applications in
a host language, precompiled through gpre.

API Guide Explains how to write database applications using the InterBase API.

TABLEA.1 Books in the InterBase 5 documentation set

308 INTERBASE 5

PRINTING CONVENTIONS

Printing conventions

The InterBase documentation set uses various typographic conventions to identify objects
and syntactic elements.

The following table lists typographic conventions used in text, and provides examples of

their use:
Convention Purpose Example
UPPERCASE SQL keywords, SQL functions, and names of ~ The following SELECT statement retrieves data from

all database objects such as tables, columns, the cITY column in the CITIES table.
indexes, and stored procedures.

italic New terms, emphasized words, file names, The isc4.gdb security database is not accessible
and host- language variables. without a valid user name and password.

bold Utility names, user-defined functions,and ~ Use gbak to back up and restore a database.
host-language function names. Function Use the datediff() function to calculate the

names are always followed by parenthesesto ,ymper of days between two dates.
distinguish them from utility names.

TABLEA.2 Text conventions

PROGRAMMER'S GUIDE 309

APPENDIX A INTERBASE DOCUMENT CONVENTIONS

Syntax conventions

The following table lists the conventions used in syntax statements and sample code, and

provides examples of their use:

Convention Purpose

Example

UPPERCASE

italic

<italic>

{}

Keywords that must be typed exactly as
they appear when used.

Parameters that cannot be broken into
smaller units. For example, a table name
cannot be subdivided.

Parametersin angle brackets that can be
broken into smaller syntactic units.

Optional syntax: you do not need to
include anything that is enclosed in
square brackets.

One of the enclosed options must be
included in actual statement use. If the
contents are separated by a pipe symbol
(|), you must choose only one.

You can choose only one of a group
whose elements are separated by this
pipe symbol.

When objects separated by this symbol
occur within curly brackets, you must
choose one; when they are within
square brackets you can choose one or
none.

The clause enclosed in brackets with the
... symbol can be repeated as many
times as necessary.

SET TERM !'I;

CREATE CGENERATCR nane,

WH LE (<condition>) DO <conpound_st at enent >

CREATE [UNI QUE] [ASCENDI NG| DESCENDI NG

{SMALLI NT | | NTEGER | FLOAT | DOUBLE
PRECI S| ON}

SET { DATABASE | SCHEMA}
SELECT [DI STINCT | ALL]

(<col > [,<col >..)])

TABLEA3

310

Syntax conventions

INTERBASE 5

Index

* (asterisk), in code 120
* operator 105
+ operator 105
/ operator 105

[] (brackets), arrays 204, 207-208

|| operator 104
— operator 105

A
absolute values 214
access mode parameter 56
default transactions 50
access privileges See security
accessing
arrays 206-212
Blob data 190
data 21, 41, 44
actions See events
active database 29
Ada programs 296
adding
See also inserting
columns 93
addition operator (+) 105
aggregate functions 121
arrays and 206
NULL values 121
alerter (events) 234
aliases
database 32
tables 125
ALIGN macro 270
ALL keyword 44
ALL operator 107, 111
allocating memory 43
ALTER INDEX 97-98
ALTER TABLE 93-96
ADD option 93

PROGRAMMER'S GUIDE

DROP option 94
altering
column definitions 95-96
metadata 92-98
views 92,97
AND operator 105
ANY operator 107, 112
API calls
Blob data 190
appending tables 133
applications 17
See also DSQL applications
building 82
event handling 233, 235-237
porting 18, 246
preprocessing See gpre
arithmetic expressions 211
arithmetic functions See aggregate functions
arithmetic operators 105
precedence 105, 115
array elements 208
defined 203
evaluating 211
porting 204
retrieving 208
array IDs 207
array slices 208-209
adding data 206
defined 206
updating data 209
arrays 101, 217
See also error status array
accessing 206-212
aggregate functions 206
creating 203-205
cursors 206-207, 209
DSQL applications and 206
inserting data 207
multi-dimensional 204, 208

referencing 206
search conditions 211
selecting data 206-209
storing data 203
subscripts 205, 211
UDFs and 206
updating 209
views and 206
ASC keyword 129
ascending sort order 89, 129
asterisk (¥), in code 120
attaching to databases 23, 37
multiple 33, 39-41
averages 121
AVG() 121

B
BASED ON 20
arrays and 207
basic_io.a 296
basic_io.ada 296
BEGIN DECLARE SECTION 19
BETWEEN operator 107
NOT operator and 107
binary large objects See Blob
Blob API functions 190
Blob data 184-201
deleting 189
filtering 191-201
inserting 187-188
selecting 184-187
storing 180, 182
updating 188-189
Blob filter function 194
action macro definitions 199-200
return values 200-201
Blob filters 191-201
external 191
declaring 192
writing 193
invoking 193
text 191
types 194
Blob segments 182-184
Blob subtypes 181

Blob UDFs 217, 217-219, 223
control structures 217-218
declaring 223

blob_concatenate() 219

blob_get_segment 218

blob_handle 218

blob_put_segment 218

Boolean expressions 126
evaluating 105

Borland C/C++ See C language

brackets ([1), arrays 204, 207-208

buffers
database cache 43-44

BY VALUE keyword 217

byte-matching rules 111

C
C language
character variables 20, 222
host terminator 24
host-language variables 19-21
writing function modules 214
cache buffers 43-44
CACHE keyword 43
calculations 105, 121
calling
UDFs 223-224
case-insensitive comparisons 108
case-sensitive comparisons 109, 111
CAST keyword 106
CASTO 116, 176
CHAR datatype
converting to DATE 176
description 100
CHAR VARYING keyword 101
CHARACTER keyword 100
character sets
converting 111
default 82
NONE 82
specifying 36, 82
character strings
characters, trimming 214
comparing 108, 109, 111
literal file names 38-39

INTERBASE 5

CHARACTER VARYING keyword 101
characters
trimming 214
closing
databases 26, 34, 45-46
multiple 34
transactions 24-25
coercing datatypes 269
COLLATE clause 128
collation orders
GROUP BY clause 131
ORDER BY clause 130
WHERE clause 129
column names
qualifying 122
views 87
column-major order 204
columns
adding 93
computed 85, 94
creating 84
defining
altering 95-96
global 83
views 87
dropping 94
selecting 119-122
eliminating duplicates 120
sorting by 130
values, returning 121
COMMIT 25, 46, 48, 67-71
multiple databases 34
comparison operators 106-113
NULL values and 107, 113
precedence 115
subqueries 107, 109-113
COMPILETIME keyword 34
compiling
programs 296-297
UDFs 220
computed columns
creating 85, 94
defined 85
concatenation operator (||) 104
CONNECT 22, 31, 37-44

PROGRAMMER'S GUIDE

ALL option 44

CACHE option 43

error handling 42

multiple databases 39-42

omitting 23

SET DATABASE and 37
constraints 84, 91, 92, 93, 94

See also specific constraints

optional 84
CONTAINING operator 108

NOT operator and 108
conversion functions 116-118, 176
converting

datatypes 116

dates 173-177

international character sets 111
COUNT(O 121
CREATE DATABASE 81-82

in DSQL 256

specifying character sets 82
CREATE DOMAIN 83

arrays 203
CREATE GENERATOR 90
CREATE INDEX 89-90

DESCENDING option 89

UNIQUE option 89
CREATE PROCEDURE 226
CREATE TABLE 84-86

arrays 203

multiple tables 85
CREATE VIEW 86-88

WITH CHECK OPTION 88
creating

arrays 203-205

columns 84

computed columns 85, 94

integrity constraints 84

metadata 80-90

UDFs 214
CSTRING datatype 222
cursors 136

arrays 206-207, 209

multiple transaction programs 74

select procedures 228

D

data 99

accessing 21, 41, 44
DSQL applications 21, 29
host-language variables and 19
changes
committing See COMMIT
rolling back See ROLLBACK
defining 79
protecting See security
retrieving
optimizing 134, 225
selecting 89, 102, 118
multiple tables 122, 124
storing 203

data structures

Blob 217-218
host-language 21

database cache buffers 43-44
database handles 22, 32, 37

DSQL applications 26, 28
global 35

multiple databases 32-34, 40
naming 32

scope 35

transactions and 32, 45

database specification parameter 48, 55
databases

attaching to 23, 37
multiple 33, 39-41
closing 26, 34, 45-46
creating 81-82
declaring multiple 21-23, 32-35
DSQL and attaching 254
initializing 21-23
naming 37
opening 31, 37, 39
remote 81

datatypes 100-101

coercing 269
compatible 117

UDFs and 217, 222
converting 116
DSQL applications 268-270
macro constants 266-268

DATE datatype
converting 176
description 100, 173

date literals 103, 177

dates 214
converting 173-177
inserting 175
selecting 174
updating 176

DECIMAL datatype 100

declarations, changing scope 35

DECLARE CURSOR 74

DECLARE EXTERNAL FUNCTION 221-223

DECLARE TABLE 85
declaring
Blob filters 192
host-language variables 18-21
multiple databases 21-23, 32-35
one database only 23, 31
SQLCODE variable 24
transaction names 53
XSQLDAs 27-28
default character set 82
default transactions
access mode parameter 50
default behavior 50
DSQL applications 51
isolation level parameter 50
lock resolution parameter 50
rolling back 25
starting 49-51
DELETE
UDFs 224
deleting See dropping
DESC keyword 129
DESCENDING keyword 89
descending sort order 89, 129
detaching from databases 34, 45
directories
specifying 32
dirty reads 58
DISCONNECT 26, 45
multiple databases 34, 45
DISTINCT keyword 120
division operator (/) 105

INTERBASE 5

DLLs
UDFs and 214, 220
domains
creating 83
DOUBLE PRECISION datatype 100
DROP INDEX 91
DROP TABLE 92
DROP VIEW 91
dropping
columns 94
metadata 90-92
DSQL
CREATE DATABASE 256
limitations 254
macro constants 266-268
programming methods 271-287
requirements 26-28
DSQL applications 17, 253
accessing data 21, 29
arrays and 206
attaching to databases 254
creating databases 256
data definition statements 79
database handles 26, 28
datatypes 268-270
default transactions 51
executing stored procedures 230
multiple transactions 76
porting 18
preprocessing 27, 30, 49, 289
programming requirements 26-30
SQL statements
embedded 29
transaction names 26, 28-30
transactions 28
writing 257
XSQLDAs 260-270
DSQL limitations 28-30
DSQL statements 253
dynamic link libraries See DLLs
dynamic SQL See DSQL

E
END DECLARE SECTION 19
error codes and messages 24, 250

PROGRAMMER'S GUIDE

capturing 247-250

displaying 247
error status array 246, 250
error-handling routines 42, 239, 246

changing 242

disabling 245

guidelines 245-246

nesting 245

testing SQLCODE directly 242, 244

WHENEVER and 240-242, 244
errors 24

run-time

recovering from 239

trapping 240, 242, 250

unexpected 245

user-defined See exceptions
ESCAPE keyword 110
EVENT INIT 235

multiple events 236
EVENT WAIT 236-237
events 233-238

See also triggers

alerter 234

defined 233

manager 233

multiple 236-237

notifying applications 235-236

posting 234

responding to 237
executable objects 296
executable procedures 226, 229-231

DSQL 230

input parameters 229-230
EXECUTE 26, 29
EXECUTE IMMEDIATE 27, 29, 77
EXECUTE PROCEDURE 229
EXISTS operator 107, 112

NOT operator and 113
expression-based columns See computed columns
expressions 126

evaluating 105
extended SQL descriptior areas See XSQLDAs
EXTERN keyword 36

F
file names
specifying 38-39
files
See also specific files
source, specifying 294
FLOAT datatype 100
fn_absQ) 214
fn_datediff) 214
fn_trim() 214
FROM keyword 123-126
functions
aggregate 121
conversion 116-118, 176
error-handling 245
numeric 90
user-defined See UDFs

G

GEN_IDO 90

generators

creating 90

defined 90

global column definitions 83

global database handles 35

gpre 30, 77, 289-296
command-line options 292-293
databases, specifying 34
DSQL applications 27, 49
handling transactions 255
language options 290

file names vs. 294-296

-m switch 49, 81
programming requirements 17
specifying source files 294
-sqlda old switch 27
syntax 290

group aggregates 131

grouping rows 131
restrictions 132

H
hard-coded strings
file names 38-39

Vi

HAVING keyword 132
header files See ibase.h
host languages 24
data structures 21
host-language variables 38
arrays 211
declaring 18-21
specifying 123
hosts, specifying 32

|
I/0 See input, output
ibase.h 27, 251
including 216
identifiers 32
database handles 32
databases 37
views 86
IN operator 108
NOT operator and 109
INDEX keyword 134
indexes
altering 92, 97-98
creating 89-90
dropping 91
preventing duplicate entries 89
primary keys 90
sort order 89
changing 98
system-defined 89
unique 89
INDICATOR keyword 230
indicator variables 230
NULL values 230
initializing
databases 21-23
transaction names 53
input parameters 227, 229-230
See also stored procedures
INSERT

arrays 207
UDFs 224
inserting

See also adding
Blob data 187-188

INTERBASE 5

dates 175
INTEGER datatype 100
integrity constraints 84

See also specific type

optional 84
Interactive SQL See isql
interbase.a 296
interbase.ada 296
international character sets 111
INTO keyword 123, 135
IS NULL operator 110

NOT operator and 110
isc_blob_ctl 196

field descriptions 197
isc_blob_default_desc) 190
isc_blob_gen_bpb() 190
isc_blob_info() 190
isc_blob_lookup_desc() 190
isc_blob_set_desc() 190
isc_cancel_blob() 190
isc_close_blob() 190
isc_create_blob2() 190
isc_decode_date() 174
isc_encode_date() 175
isc_get_segment() 190
isc_interprete() 247, 248-250
isc_open_blob2() 190
isc_print_sqlerror(Q) 247
isc_put_segment() 190
ISC_QUAD structure 174-175
isc_sql_interprete() 247-248
isc_status 246, 250
isolation level parameter 48, 55, 56

default transactions 50

J
JOIN keyword 134
joins 125

K
key constraints See FOREIGN KEY constraints;
PRIMARY KEY constraints
keys
primary 90

PROGRAMMER'S GUIDE

L
language options (gpre) 290
file names vs. 294-296
leading characters 214
libraries
dynamic link See DLLs
UDFs and 214, 220
Unix platforms 296
LIKE operator 109
NOT operator and 110
limbo transactions 24
linking
programs 296-297
literal strings, file names 38-39
literal symbols 110
lock resolution parameter 48, 54, 62
default transactions 50
logical operators 105-106
precedence 106, 116
loops See repetitive statements
lost updates 57

M
-m switch 49
macro constants 266-268
make.lib 220
mathematical operators 105
precedence 105, 115
MAX(O 121
max_seglen 218
maximum values 121
memory

allocating 43
metadata 79

altering 92-98

creating 80-90
dropping 90-92

failing 93

Microsoft C/C++ See C language
MINO 121
minimum values 121
modifying See altering;updating
modules

object 296

UDFs 214

vii

multi-column sorts 130
multi-dimensional arrays
creating 204
selecting data 208
multi-module programs 36
multiple databases
attaching to 33, 39-41
closing 34
database handles 32-34, 40
declaring 21-23, 32-35
detaching 34, 45
opening 39
transactions 44
multiple tables
creating 85
selecting data 122, 124
multiple transactions 122
DSQL applications 76
running 73-78
multiplication operator (*) 105
multi-row selects 123, 136-144

N
named transactions 48, 66
starting 51-52
names
column 87, 122
qualifying 32, 33, 45
in SELECT statements 122
specifying at run time 38
naming
database handles 32
databases 37
transactions 52-54
views 86
NATURAL keyword 134
NO RECORD_VERSION 55
NO WAIT 54, 63
NONE character set option 82
non-reproducible reads 58
NOT operator 105
BETWEEN operator and 107
CONTAINING operator and 108
EXISTS operator and 113
IN operator and 109

Vi

IS NULL operator and 110

LIKE operator and 110

SINGULAR operator and 113
STARTING WITH operator and 111

NOW 103
NOW date literal 177
NULL values

aggregate functions 121
arrays and 206
comparisons 107, 113
indicator variables 230

number_segments 218
numbers

absolute values 214
generating 90

NUMERIC datatype 101

converting to DATE 176

numeric function 90
numeric values See values

o
object modules 296
opening

databases 31, 37, 39
multiple 39

operators

arithmetic 105
comparison 106-113
concatenation 104
logical 105-106
precedence 114-116

changing 116
string 104

optimizing

data retrieval 134, 225

OR operator 105, 106
ORDER keyword 135
order of evaluation (operators) 114-116

changing 116

output parameters

P

See also stored procedures

parameters

INTERBASE 5

access mode 50, 56 sorting rows 129

database specification 48, 55, 65 specific tables 123-126
isolation level 48, 50, 55, 56 with joins 125, 134
lock resolution 48, 50, 54, 62 query optimizer 134
table reservation 48, 55, 64

UDFs 217 R

unknown 230

phantom rows 58 READ COMMITTED 55, 57, 59
PLAN keyword 134 read-only views 87
porting RECORD_VERSION 55
applications 18, 246 remote databases 81
arrays 204 RESERVING clause 55, 63
POST _EVENT 234 table reservation options 64
precedence of operators 114-116 result tables 136

changing 116 See also joins
PREPARE 26, 77 ROLLBACK 25, 46, 48, 67, 71-72

preprocessor See gpre multiple databases 34

PRIMARY KEY constraints 89 rollbacks 25

primary keys 90 routines 226 . .
privileges See security See also error-handling routines

procedures See stored procedures row-major order 204

programming rows
DSQL applications 26-30 counting 121
gpre 17 grouping 131
programs restrictions 132

compiling and linking 296-297 selectmg 126
projection (defined) 118 mult1ple 123, 136-144
PROTECTED READ 64 single 135
PROTECTED WRITE 64 sorting 129

protecting data See security run-time errors
recovering from 239

RUNTIME keyword 34
Q
qualify (defined) 32, 45

queries 89, 118 s _
See also SQL scientific notation 100
eliminating duplicate columns 120 scope
grouping rows 131 changing 35
multi-column sorts 130 database handles 35

WHENEVER 241
search conditions (queries) 102-113, 126-129
arrays and 211
combining simple 106
reversing 106
SELECT 102-113, 118-135, 227
arrays 206-209

restricting row selection 126, 132
search conditions 102-113, 126-129
arrays and 211
combining simple 106
reversing 106
selecting multiple rows 123, 136-144
selecting single rows 135

PROGRAMMER'S GUIDE

CAST clause 106
CREATE VIEW and 87
DISTINCT option 120
FROM clause 123-126
GROUP BY clause 131-132
collation order 131
HAVING clause 132
INTO option 123, 135
ORDER BY clause 129
collation order 130
PLAN clause 134
TRANSACTION option 122
UDFs 223

WHERE clause 102-117, 126-129, 135

ALL operator 111

ANY operator 112
BETWEEN operator 107
CAST option 116, 176
collation order 129

CONTAINING operator 108

EXISTS operator 112
IN operator 108
IS NULL operator 110
LIKE operator 109
SINGULAR operator 113
SOME operator 112
STARTING WITH operator
select procedures 226, 227-229
calling 228
cursors 228
input parameters 227
selecting 124
tables vs. 227
views vs. 227
SELECT statements

singleton SELECTs 118, 123, 135

selecting
Blob data 184-187
columns 119-122
data 89, 102, 118
See also SELECT
dates 174
multiple rows 123, 136-144
single rows 135
views 124

SET DATABASE 22, 31
COMPILETIME option 34
CONNECT and 37
DSQL applications 28
EXTERN option 36

multiple databases and 33, 40

omitting 23, 39

RUNTIME option 34

STATIC option 35-36
SET NAMES 31

SET TRANSACTION 48, 50, 54-65

access mode parameter 48
parameters 54
syntax 55
SHARED READ 64
SHARED WRITE 64
singleton SELECTs 118, 123
defined 135
SINGULAR operator 107, 113
NOT operator and 113
SMALLINT datatype 101
SNAPSHOT 55, 57, 59

SNAPSHOT TABLE STABILITY 55, 57, 62

SOME operator 107, 112
SORT MERGE keywords 134
sort order
ascending 89, 129
descending 89, 129
indexes 89, 98
queries 129
sticky 130
sorting
multiple columns 130
rows 129
source files 294
specifying
character sets 36, 82
directories 32
file names 38-39
host-language variables 123
hosts 32
SQL statements
DSQL applications 29
strings 259
SQLCODE variable

INTERBASE 5

declaring 24
examining 240
return values 239, 246, 250
displaying 247
testing 242, 244
SQLDAs 27
porting applications and 18
starting default transactions 49-51
STARTING WITH operator 111
NOT operator and 111
statements
See also DSQL statements; SQL statements
data definition 79
data structures and 21
embedded 24, 99
error-handling 245
transaction management 47, 48
STATIC keyword 35-36
status array See error status array
sticky sort order 130
stored procedures 225-231, 233
defined 225
return values 226, 230
values 226, 230
XSQLDAs and 230
string operator (||) 104
subqueries
comparison operators 107, 109-113
defined 153
subscripts (arrays) 205, 211
subtraction operator (-) 105
SUM(O 121
SunOS-4 platforms 297
system tables 81
system-defined indexes 89

T
table names
aliases 125
duplicating 85
identical 32, 33, 45
table reservation parameter 48, 55
tables
altering 93-96
appending with UNION 133

PROGRAMMER'S GUIDE

creating 84-86
multiple 85
declaring 85
dropping 92
qualifying 32, 33, 45
querying specific 123-126
select procedures vs. 227
time structures 174
time.h 174
TODAY 103
TODAY date literal 177
TOMORROW 103
total_size 218
totals, calculating 121
trailing characters 214
TRANSACTION keyword 122
transaction management statements
transaction names 51, 255
declaring 53
DSQL applications 26, 28-30
initializing 53
multi-table SELECTs 122
transactions 226
accessing data 44
closing 24-25
committing 25
database handles and 32, 45
default 49-51
rolling back 25
DSQL applications 28
ending 67
multiple databases 44
named 48, 66
starting 51-52
naming 52-54
rolling back 25
running multiple 73-78, 122
unnamed 25
trapping
errors 240, 242, 250
triggers 233

TRIMO) 214
u
udflib.c 214

47, 48

Xi

UDFs

arrays and 206

Blob 217, 217-219, 223

calling 223-224

compiling 220

creating 214, 217

declaring 221-223

defined 213

inserting 224

libraries 214, 220

changing 220

modules 214

parameters 217

return values 217

selecting 223

updating 224
unexpected errors 245
UNION

appending tables 133

in SELECT statements 119
unique indexes 89
UNIQUE keyword 89
unique values 90
Unix platforms 296
unknown values

testing for 110
unrecoverable errors 245
updatable views 88
UPDATE

arrays 210

dates 176

UDFs 224
update side effects 58
updating

See also altering

Blob data 188-189
UPPERO) 117
user-defined functions See UDFs
USING clause 55, 65

\"/
values
See also NULL values
absolute 214
comparing 106

Xii

manipulating 105
matching 108, 112
maximum 121
minimum 121
selecting 121
stored procedures 226, 230
UDFs 217
unique 90
unknown, testing for 110
VARCHAR datatype 101
variables
host-language 38
arrays 211
declaring 18-21
specifying 123
indicator 230
NULL values 230
views 86
altering 92, 97
arrays and 206
creating 86-88
defining columns 87
dropping 91
naming 86
read-only 87
select procedures vs. 227
selecting 124
updatable 88
virtual tables 86

w
WAIT 54, 63
WHENEVER 240-242, 244
embedding 242
limitations 242
scope 241
WHERE clause See SELECT
WHERE keyword 126
wildcards
string comparisons 109
writing external Blob filters 193

X
XSQLDA_LENGTH macro 265

XSQLDAs 260-270
declaring 27-28
fields 262
input descriptors 264
output descriptors 264
porting applications and 18
stored procedures and 230
structures 27

XSQLVAR structure 260
fields 263

Y
YESTERDAY 103

PROGRAMMER'S GUIDE Xiii

Xiv INTERBASE 5

	Programmer’s Guide
	Table of Contents
	List of Tables
	List of Figures
	Using the Programmer’s�Guide
	Who should use this guide
	Topics covered in this guide
	Sample database and applications

	Application Requirements
	Requirements for all applications
	Porting considerations for SQL
	Porting considerations for DSQL
	Declaring host variables
	Section declarations
	Using BASED ON to declare variables
	Host-language data structures

	Declaring and initializing databases
	Using SET DATABASE
	Using CONNECT
	Working with a single database

	SQL statements
	Error handling and recovery
	Closing transactions
	Accepting changes
	Undoing changes

	Closing databases
	DSQL requirements
	Declaring an XSQLDA

	DSQL limitations
	Using database handles
	Using the active database
	Using transaction names

	Preprocessing programs

	Working with Databases
	Declaring a database
	Declaring multiple databases
	Using handles for table names
	Using handles with operations

	Preprocessing and run time databases
	Using the COMPILETIME clause
	Using the RUNTIME clause

	Controlling SET DATABASE scope

	Specifying a connection character set
	Opening a database
	Using simple CONNECT statements
	Using a database handle
	Using strings or host-language variables
	Using a hard-coded database names

	Additional CONNECT syntax
	Attaching to multiple databases
	Handling CONNECT errors
	Setting database cache buffers
	Setting individual database buffers
	Specifying buffers for all databases

	Accessing an open database
	Differentiating table names
	Closing a database
	With DISCONNECT
	With COMMIT and ROLLBACK

	Working with Transactions
	Starting the default transaction
	Starting without SET TRANSACTION
	Starting with SET TRANSACTION

	Starting a named transaction
	Naming transactions
	Declaring transaction names
	Initializing transaction names

	Specifying SET TRANSACTION behavior
	Access mode
	Isolation level
	Lock resolution
	RESERVING clause
	USING clause

	Using transaction names in data statements
	Ending a transaction
	Using COMMIT
	Specifying transaction names
	Committing without freeing a transaction�

	Using ROLLBACK

	Working with multiple transactions
	The default transaction
	Using cursors
	A multi-transaction example

	Working with multiple transactions in DSQL
	Modifying transaction behavior with�“?”

	Working with Data Definition Statements
	Creating metadata
	Creating a database
	Optional parameters
	Specifying a default character set

	Creating a domain
	Creating a table
	Creating a computed column
	Declaring and creating a table

	Creating a view
	Creating a view for SELECT
	Creating a view for update

	Creating an index
	Preventing duplicate index entries
	Specifying index sort order

	Creating generators

	Dropping metadata
	Dropping an index
	Dropping a view
	Dropping a table

	Altering metadata
	Altering a table
	Adding a new column to a table
	Dropping an existing column
	Modifying a column

	Altering a view
	Altering an index

	Working with Data
	Supported datatypes
	Understanding SQL expressions
	Using the string operator in expressions
	Using arithmetic operators in expressions
	Using logical operators in expressions
	Using comparison operators in expressions
	Using BETWEEN
	Using CONTAINING
	Using IN
	Using LIKE
	Using IS NULL
	Using STARTING WITH
	Using ALL
	Using ANY and SOME
	Using EXISTS
	Using SINGULAR

	Determining precedence of operators
	Precedence among operators
	Changing evaluation order of operators

	Using CAST() for datatype conversions
	Using UPPER() on text data

	Understanding data retrieval with SELECT
	Listing columns to retrieve with SELECT
	Retrieving a list of columns
	Retrieving all columns
	Retrieving aggregate column information
	Multi-table SELECT statements
	Specifying transaction names

	Specifying host variables with INTO
	Listing tables to search with FROM
	Listing a single table or view
	Listing multiple tables
	Declaring and using correlation names

	Restricting row retrieval with WHERE
	What is a search condition?
	Structure of a search condition
	Collation order in comparisons

	Sorting rows with ORDER BY
	ORDER BY with multiple columns
	Collation order in an ORDER BY clause

	Grouping rows with GROUP BY
	Collation order in a GROUP BY clause
	Limitations of GROUP BY

	Restricting grouped rows with HAVING
	Appending tables with UNION
	Specifying a query plan with PLAN

	Selecting a single row
	Selecting multiple rows
	Declaring a cursor
	Updating through cursors

	Opening a cursor
	Fetching rows with a cursor
	Retrieving indicator status
	Refetching rows with a cursor

	Closing the cursor
	A complete cursor example
	Selecting rows with NULL values
	Limitations on NULL values

	Selecting rows through a view

	Selecting multiple rows in DSQL
	Declaring a DSQL cursor
	Opening a DSQL cursor
	Fetching rows with a DSQL cursor

	Joining tables
	Choosing join columns
	Using inner joins
	Creating equi-joins
	Joins based on comparison operators
	Creating self-joins

	Using outer joins
	Using a left outer join
	Using a right outer join
	Using a full outer join

	Using nested joins

	Using subqueries
	Simple subqueries
	Correlated subqueries

	Inserting data
	Using VALUES to insert columns
	Using SELECT to insert columns
	Inserting rows with NULL column values
	Ignoring a column
	Assigning a NULL value to a column
	Using indicator variables

	Inserting data through a view
	Specifying transaction names in an INSERT

	Updating data
	Updating multiple rows
	Using a searched update
	Using a positioned update

	NULLing columns with UPDATE
	Updating through a view
	Specifying transaction names in UPDATE

	Deleting data
	Deleting multiple rows
	Using a searched delete
	Using a positioned delete

	Deleting through a view
	Specifying transaction names in a DELETE

	Working with Dates
	Selecting dates
	Inserting dates
	Updating dates
	Using CAST() to convert dates
	Using date literals

	Working with Blob Data
	What is a Blob?
	How are Blob data stored?
	Blob subtypes
	Blob database storage
	Blob segment length
	Overriding segment length

	Accessing Blob data with SQL
	Selecting Blob data
	Inserting Blob data
	Updating Blob data
	Deleting Blob data

	Accessing Blob data with API calls
	Filtering Blob data
	Using the standard InterBase text filters
	Using an external Blob filter
	Declaring an external filter to the database
	Using a filter to read and write Blob data
	Invoking a filter in an application

	Writing an external Blob filter
	Filter types
	Read-only and write-only filters
	Defining the filter function
	Defining the Blob control structure
	Programming filter function actions
	Testing the function return value

	Using Arrays
	Creating arrays
	Multi-dimensional arrays
	Specifying subscript ranges

	Accessing arrays
	Selecting data from an array
	Inserting data into an array
	Selecting from an array slice
	Updating data in an array slice
	Testing a value in a search condition
	Using host variables in array subscripts
	Using arithmetic expressions with arrays

	Working with User-Defined�Functions
	Creating a UDF
	Writing a function module
	Specifying parameters
	Specifying a return value

	Handling memory for return values
	Compiling a function module

	Creating a UDF library
	Modifying a UDF library
	Placing the UDF library

	Declaring a UDF to a database
	Calling a UDF
	Calling a UDF with SELECT
	Calling a UDF with INSERT
	Calling a UDF with UPDATE
	Calling a UDF with DELETE

	Writing a Blob UDF
	Creating a Blob control structure
	Declaring a Blob UDF
	A Blob UDF example

	Working with Stored�Procedures
	Using stored procedures
	Procedures and transactions
	Security for procedures

	Using select procedures
	Calling a select procedure
	Using a select procedure with cursors

	Using executable procedures
	Executing a procedure
	Indicator variables

	Executing a procedure in a DSQL application

	Working with Events
	Understanding the event mechanism
	Signaling event occurrences
	Registering interest in events
	Registering interest in multiple events
	Waiting for events with EVENT WAIT
	Responding to events

	Error Handling and Recovery
	Standard error handling
	WHENEVER statements
	Testing SQLCODE directly
	Combining error-handling techniques
	Guidelines for error handling

	Additional InterBase error handling
	Displaying error messages
	Capturing SQL error messages
	Capturing InterBase error messages
	Handling InterBase error codes

	Using Dynamic SQL
	Overview of the DSQL programming process
	DSQL limitations
	Accessing databases
	Handling transactions
	Creating a database
	Processing Blob data
	Processing array data

	Writing a DSQL application
	SQL statements that DSQL can process
	SQL character strings
	Value parameters in statement strings

	Understanding the XSQLDA
	XSQLDA field descriptions
	XSQLVAR field descriptions
	Input descriptors
	Output descriptors
	Using the XSQLDA_LENGTH macro
	SQL datatype macro constants
	Handling varying string datatypes
	NUMERIC and DECIMAL datatypes
	Coercing datatypes
	Coercing character datatypes
	Coercing numeric datatypes
	Setting a NULL indicator

	Aligning numerical data

	DSQL programming methods
	Method 1: Non-query statements without parameters
	Using EXECUTE IMMEDIATE
	Using PREPARE and EXECUTE

	Method 2: Non-query statements with parameters�
	Creating the input XSQLDA
	Preparing and executing a statement string with parameters
	Re-executing the statement string

	Method 3: Query statements without parameters
	Preparing the output XSQLDA
	Preparing a query statement string
	Executing a statement string within the context�of a cursor
	Re-executing a query statement string

	Method 4: Query statements with parameters
	Preparing the input XSQLDA
	Preparing the output XSQLDA
	Preparing a query statement string with parameters
	Executing a query statement string within the context of a cursor
	Re-executing a query statement string with parameters

	Preprocessing, Compiling, and�Linking
	Preprocessing
	Using gpre
	Language switches
	Option switches
	Examples

	Using a file extension to specify language
	Specifying the source file

	Compiling and linking
	Compiling an Ada program
	Linking

	InterBase Document Conventions
	The InterBase documentation set
	Printing conventions
	Syntax conventions

	Index

