
100 Enterprise Way, Suite B2 Scotts Valley, CA 95066 http://www.interbase.com

InterBase®

S O F T W A R E C O R P O R A T I O N

InterBase 5

Programmer’s
Guide

August 10, 1998 (D:\55DocSet\Doc\ProgGd\PGTitle.fm5)

InterBase Software Corp. and INPRISE Corporation may have patents and/or pending patent applications
covering subject matter in this document. The furnishing of this document does not convey any license to
these patents.

Copyright 1998 InterBase Software Corporation. All rights reserved. All InterBase products are trademarks
or registered trademarks of InterBase Software Corporation. All Borland products are trademarks or
registered trademarks of INPRISE Corporation, Borland and Visibroker Products. Other brand and product
names are trademarks or registered trademarks of their respective holders.

1INT0050WW21003 5E4R0898

9899000102-9 8 7 6 5 4 3 2 1

D4

PROGRAMMER’S GUIDE iii

List of Tables ix
List of Figures xi

Chapter 1 Using the
Programmer’s Guide
Who should use this guide 13

Topics covered in this guide 14

Sample database and applications 15

Chapter 2 Application Requirements
Requirements for all applications 17

Porting considerations for SQL 18

Porting considerations for DSQL 18

Declaring host variables. 18

Declaring and initializing databases 21

Using SET DATABASE 22

Using CONNECT 22

Working with a single database 23

SQL statements 24

Error handling and recovery 24

Closing transactions 24

Accepting changes 25

Undoing changes 25

Closing databases 26

DSQL requirements 26

Declaring an XSQLDA 27

DSQL limitations 28

Using database handles 28

Using the active database 29

Using transaction names 29

Preprocessing programs 30

Chapter 3 Working with Databases
Declaring a database 31

Declaring multiple databases 32

Preprocessing and run time databases . . 34

Controlling SET DATABASE scope 35

Specifying a connection character set 36

Opening a database 37

Using simple CONNECT statements 37

Additional CONNECT syntax 41

Attaching to multiple databases 41

Handling CONNECT errors 42

Setting database cache buffers 43

Accessing an open database 44

Differentiating table names 44

Closing a database 45

With DISCONNECT 45

With COMMIT and ROLLBACK 46

Chapter 4 Working with Transactions
Starting the default transaction 49

Starting without SET TRANSACTION . . . 49

Starting with SET TRANSACTION 50

Starting a named transaction 51

Naming transactions 52

Specifying SET TRANSACTION behavior . 54

Using transaction names in data statements 66

Ending a transaction 67

Using COMMIT 68

Table of Contents

iv INTERBASE 5

Using ROLLBACK 71

Working with multiple transactions 73

The default transaction 73

Using cursors 74

A multi-transaction example 75

Working with multiple transactions in DSQL 76

Modifying transaction behavior with “?” 77

Chapter 5 Working with Data
Definition Statements
Creating metadata 80

Creating a database 81

Creating a domain 83

Creating a table 84

Creating a view 86

Creating an index 89

Creating generators 90

Dropping metadata 90

Dropping an index 91

Dropping a view 91

Dropping a table 92

Altering metadata 92

Altering a table 93

Altering a view 97

Altering an index. 97

Chapter 6 Working with Data
Supported datatypes 100

Understanding SQL expressions 102

Using the string operator in expressions 104

Using arithmetic operators in expressions .
105

Using logical operators in expressions 105

Using comparison operators in expressions
106

Determining precedence of operators . 114

Using CAST() for datatype conversions. 116

Using UPPER() on text data 117

Understanding data retrieval with SELECT 118

Listing columns to retrieve with SELECT 119

Specifying host variables with INTO . . 123

Listing tables to search with FROM . . . 123

Restricting row retrieval with WHERE . 126

Sorting rows with ORDER BY 129

Grouping rows with GROUP BY 131

Restricting grouped rows with HAVING 132

Appending tables with UNION 133

Specifying a query plan with PLAN . . . 134

Selecting a single row 135

Selecting multiple rows 136

Declaring a cursor 136

Opening a cursor 138

Fetching rows with a cursor 138

Closing the cursor 140

A complete cursor example 141

Selecting rows with NULL values 142

Selecting rows through a view 143

Selecting multiple rows in DSQL 144

Declaring a DSQL cursor 144

Opening a DSQL cursor 145

Fetching rows with a DSQL cursor . . . 146

Joining tables 146

Choosing join columns 147

Using inner joins 147

Using outer joins 150

Using nested joins 152

PROGRAMMER’S GUIDE v

Using subqueries 153

Simple subqueries 153

Correlated subqueries 154

Inserting data 155

Using VALUES to insert columns 156

Using SELECT to insert columns 157

Inserting rows with NULL column values . .
157

Inserting data through a view 160

Specifying transaction names in an INSERT
161

Updating data 161

Updating multiple rows 162

NULLing columns with UPDATE 165

Updating through a view 165

Specifying transaction names in UPDATE . .
166

Deleting data 167

Deleting multiple rows 168

Deleting through a view 170

Specifying transaction names in a DELETE .
171

Chapter 7 Working with Dates
Selecting dates 174

Inserting dates 175

Updating dates 176

Using CAST() to convert dates 176

Using date literals 177

Chapter 8 Working with Blob Data
What is a Blob? 179

How are Blob data stored? 180

Blob subtypes. 181

Blob database storage 182

Blob segment length 183

Overriding segment length 184

Accessing Blob data with SQL 184

Selecting Blob data 184

Inserting Blob data 187

Updating Blob data 188

Deleting Blob data 189

Accessing Blob data with API calls 190

Filtering Blob data 191

Using the standard InterBase text filters 191

Using an external Blob filter 191

Writing an external Blob filter 193

Filter types. 194

Read-only and write-only filters 194

Defining the filter function 194

Chapter 9 Using Arrays
Creating arrays 203

Multi-dimensional arrays 204

Specifying subscript ranges 205

Accessing arrays 206

Selecting data from an array 206

Inserting data into an array 207

Selecting from an array slice 208

Updating data in an array slice 209

Testing a value in a search condition . . 211

Using host variables in array subscripts 211

Using arithmetic expressions with arrays .
211

Chapter 10 Working with
User-Defined Functions
Creating a UDF 214

vi INTERBASE 5

Writing and compiling functions 214

Writing a function module 214

Writing a Blob UDF 217

Compiling a function module 220

Creating a UDF library 220

Modifying a UDF library. 220

Declaring a UDF to a database 221

Declaring a Blob UDF 223

Calling a UDF 223

Using a UDF with SELECT 223

Using a UDF with INSERT 224

Using a UDF with UPDATE 224

Using a UDF with DELETE 224

Chapter 11 Working with Stored Procedures
Using stored procedures 226

Procedures and transactions 226

Security for procedures 227

Using select procedures 227

Calling a select procedure 228

Using a select procedure with cursors . 228

Using executable procedures 229

Executing a procedure 229

Executing a procedure in a DSQL application
230

Chapter 12 Working with Events
Understanding the event mechanism 233

Signaling event occurrences 234

Registering interest in events 235

Registering interest in multiple events . . . 236

Waiting for events with EVENT WAIT . . . 236

Responding to events 237

Chapter 13 Error Handling and Recovery
Standard error handling 239

WHENEVER statements 240

Testing SQLCODE directly 242

Combining error-handling techniques . 244

Guidelines for error handling 245

Additional InterBase error handling . . . 246

Displaying error messages 247

Capturing SQL error messages 247

Capturing InterBase error messages . . 248

Handling InterBase error codes 250

Chapter 14 Using Dynamic SQL
Overview of the DSQL programming process
253

DSQL limitations 254

Accessing databases 254

Handling transactions 255

Creating a database 256

Processing Blob data 257

Processing array data 257

Writing a DSQL application 257

SQL statements that DSQL can process. 258

SQL character strings. 259

Value parameters in statement strings . 259

Understanding the XSQLDA 260

XSQLDA field descriptions 262

XSQLVAR field descriptions 263

Input descriptors 264

Output descriptors 264

Using the XSQLDA_LENGTH macro. . . 265

SQL datatype macro constants 266

Handling varying string datatypes . . . 268

NUMERIC and DECIMAL datatypes . . . 268

PROGRAMMER’S GUIDE vii

Coercing datatypes 269

Aligning numerical data 270

DSQL programming methods 271

Method 1: Non-query statements without parameters
271

Method 2: Non-query statements with parameters
272

Method 3: Query statements without parameters
276

Method 4: Query statements with parameters
280

Chapter 15 Preprocessing, Compiling,
and Linking
Preprocessing 289

Using gpre 290

Using a file extension to specify language .
294

Specifying the source file 294

Compiling and linking 296

Compiling an Ada program 296

Linking 296

Appendix A InterBase Document
Conventions
The InterBase documentation set 300

Printing conventions 301

Syntax conventions 302

viii INTERBASE 5

PROGRAMMER’S GUIDE ix

List of Tables

Table 1.1 Chapters in the InterBase 5 Programmer’s Guide 14

Table 3.1 CONNECT syntax summary . 41

Table 4.1 SQL transaction management statements 48

Table 4.2 Default transaction default behavior 50

Table 4.3 SET TRANSACTION parameters . 54

Table 4.4 ISOLATION LEVEL options . 57

Table 4.5 InterBase management of classic transaction conflicts 58

Table 4.6 Isolation level Interaction with SELECT and UPDATE 62

Table 4.7 Table reservation options for the RESERVING clause 64

Table 5.1 Data definition statements supported for embedded applications . . 80

Table 6.1 Datatypes supported by InterBase 100

Table 6.2 Elements of SQL expressions .102

Table 6.3 Arithmetic operators .105

Table 6.4 InterBase comparison operators requiring subqueries 107

Table 6.5 Operator precedence by operator type 114

Table 6.6 Mathematical operator precedence 115

Table 6.7 Comparison operator precedence 115

Table 6.8 Logical operator precedence .116

Table 6.9 Compatible datatypes for CAST() 117

Table 6.10 SELECT statement clauses . 118

Table 6.11 Aggregate functions in SQL .121

Table 6.12 Elements of WHERE clause SEARCH conditions 127

Table 8.1 BLOB subtypes defined by InterBase181

Table 8.2 API Blob calls .190

Table 8.3 isc_blob_ctl structure field descriptions 197

Table 8.4 Blob access operations . 199

Table 8.5 Blob filter status values .201

Table 10.1 DECLARE EXTERNAL FUNCTION parameters221

Table 13.1 Possible SQLCODE values .239

Table 14.1 XSQLDA field descriptions .262

Table 14.2 XSQLVAR field descriptions .263

Table 14.3 SQL datatypes, macro expressions, and C datatypes 266

Table 14.4 SQL statement strings and recommended processing methods271

LIST OF TABLES

x INTERBASE 5

Table 15.1 gpre language switches available on all platforms 290

Table 15.2 Additional gpre language switches290

Table 15.3 gpre option switches .292

Table 15.4 Language-specific gpre option switches 293

Table 15.5 File extensions for language specification 294

Table A.1 Books in the InterBase 5 documentation set300

Table A.2 Text conventions .301

Table A.3 Syntax conventions .302

PROGRAMMER’S GUIDE xi

List of Figures

Figure 8.1 Relationship of a Blob ID to Blob segments in a database183

Figure 8.2 Filtering from lowercase to uppercase192

Figure 8.3 Filtering from uppercase to lowercase193

Figure 8.4 Filter interaction with an application and a database195

Figure 14.1 XSQLDA and XSQLVAR relationship 261

13

CHAPTER

1
Chapter 1Using the

Programmer’s Guide

The InterBase Programmer’s Guide is a task-oriented explanation of how to write,
preprocess, compile, and link embedded SQL and DSQL database applications using
InterBase and a host programming language, either C or C++. This chapter describes
who should read this book, and provides a brief overview of its chapters.

Who should use this guide
The InterBase Programmer’s Guide is intended for database applications programmers.
It assumes a general knowledge of:

g SQL

g Relational database programming

g C programming

The Programmer’s Guide assumes little or no previous experience with InterBase. See
the Operations Guide for an introduction to InterBase and the Language Reference for
an introduction to SQL.

CHAPTER 1 USING THE PROGRAMMER’S GUIDE

14 INTERBASE 5

Note The Programmer’s Guide focuses on embedded SQL and DSQL programming in C
or C++. It does not address Delphi-specific topics.

Topics covered in this guide
The following table provides a brief description of each chapter in this Programmer’s
Guide:

Chapter Description

Chapter 1, “Using the Programmer’s Guide” Introduces the structure of the book and describes its
intended audience.

Chapter 2, “Application Requirements” Describes elements common to programming all SQL and
DSQL applications.

Chapter 3, “Working with Databases” Describes using SQL statements that deal with databases.

Chapter 4, “Working with Transactions” Explains how to use and control transactions with SQL
statements.

Chapter 5, “Working with Data Definition
Statements”

Describes how to embed SQL data definition statements in
applications.

Chapter 6, “Working with Data” Explains how to select, insert, update, and delete standard
SQL data in applications.

Chapter 7, “Working with Dates” Describes how to select, insert, update, and delete DATE data
in applications.

Chapter 8, “Working with Blob Data” Describes how to select, insert, update, and delete Blob data
in applications.

Chapter 9, “Using Arrays” Describes how to select, insert, update, and delete array data
in applications.

Chapter 10, “Working with User-Defined Functions” Describes how to write UDFs, how to call UDFs in applications,
how to write Blob filters, and how to create Blob filter libraries.

Chapter 11, “Working with Stored Procedures” Explains how to call stored procedures in applications.

TABLE 1.1 Chapters in the InterBase 5 Programmer’s Guide

SAMPLE DATABASE AND APPLICATIONS

PROGRAMMER’S GUIDE 15

Sample database and applications
The InterBase examples subdirectory contains several useful items worth noting,
including:

g The ib_udf.sql file, which declares the UDFs in the library provided by InterBase; the
library of UDFs is in the InterBase lib subdirectory and is named ib_udf.dll on Wintel
platforms and ib_udf on UNIX platforms

g A sample database, employee.gdb

g Sample application source code, which produces several sample applications when
compiled; see the makefile and the readme in the examples directory for more
information about the sample applications and how to compile them

The Programmer’s Guide makes use of the sample database and source code for its
examples wherever possible.

Chapter 12, “Working with Events” Explains how triggers interact with applications. Describes
how to register interest in events, wait on them, and respond
to them in applications.

Chapter 13, “Error Handling and Recovery” Describes how to trap and handle SQL statement errors in
applications.

Chapter 14, “Using Dynamic SQL” Describes how to write DSQL applications.

Chapter 15, “Preprocessing, Compiling, and Linking” Describes how to convert source code into an executable
application.

Appendix A, “InterBase Document Conventions” Lists typefaces and special characters used in this book to
describe syntax and identify object types.

Chapter Description

TABLE 1.1 Chapters in the InterBase 5 Programmer’s Guide (continued)

CHAPTER 1 USING THE PROGRAMMER’S GUIDE

16 INTERBASE 5

PROGRAMMER’S GUIDE 17

CHAPTER

2
Chapter 2Application Requirements

This chapter describes programming requirements for InterBase SQL and dynamic SQL
(DSQL) applications. Many of these requirements may also affect developers moving
existing applications to InterBase.

Requirements for all applications
All embedded applications must include certain declarations and statements to ensure
proper handling by the InterBase preprocessor, gpre, and to enable communication
between SQL and the host language in which the application is written. Every application
must:

g Declare host variables to use for data transfer between SQL and the application.

g Declare and set the databases accessed by the program.

g Create transaction handles for each non-default transaction used in the program.

g Include SQL (and, optionally, DSQL) statements.

g Provide error handling and recovery.

g Close all transactions and databases before ending the program.

CHAPTER 2 APPLICATION REQUIREMENTS

18 INTERBASE 5

Dynamic SQL applications, those applications that build SQL statements at run time, or
enable users to build them, have additional requirements. For more information about
DSQL requirements, see “DSQL requirements” on page 26.

For more information about using gpre, see Chapter 15, “Preprocessing, Compiling,
and Linking.”

Porting considerations for SQL
When porting existing SQL applications to InterBase, other considerations may be
necessary. For example, many SQL variants require that host variables be declared
between BEGIN DECLARE SECTION and END DECLARE SECTION statements; InterBase has no
such requirements, but gpre can correctly handle section declarations from ported
applications. For additional portability, declare all host-language variables within
sections.

Porting considerations for DSQL
When porting existing DSQL applications to InterBase, statements that use another
vendor’s SQL descriptor area (SQLDA) must be modified to accommodate the extended
SQLDA (XSQLDA) used by InterBase.

Declaring host variables
A host variable is a standard host-language variable used to hold values read from a
database, to assemble values to write to a database, or to store values describing database
search conditions. SQL uses host variables in the following situations:

g During data retrieval, SQL moves the values in database fields into host variables where
they can be viewed and manipulated.

g When a user is prompted for information, host variables are used to hold the data until
it can be passed to InterBase in an SQL INSERT or UPDATE statement.

g When specifying search conditions in a SELECT statement, conditions can be entered
directly, or in a host variable. For example, both of the following SQL statement fragments
are valid WHERE clauses. The second uses a host-language variable, country, for
comparison with a column, COUNTRY:

… WHERE COUNTRY = "Mexico";

… WHERE COUNTRY = :country;

REQUIREMENTS FOR ALL APPLICATIONS

PROGRAMMER’S GUIDE 19

One host variable must be declared for every column of data accessed in a database. Host
variables may either be declared globally like any other standard host-language variable,
or may appear within an SQL section declaration with other global declarations. For more
information about reading from and writing to host variables in SQL programs, see
Chapter 6, “Working with Data.”

Host variables used in SQL programs are declared just like standard language variables.
They follow all standard host-language rules for declaration, initialization, and
manipulation. For example, in C, variables must be declared before they can be used as
host variables in SQL statements:

int empno; char fname[26], lname[26];

For compatibility with other SQL variants, host variables can also be declared between
BEGIN DECLARE SECTION and END DECLARE SECTION statements.

4 Section declarations
Many SQL implementations expect host variables to be declared between BEGIN DECLARE
SECTION and END DECLARE SECTION statements. For portability and compatibility,
InterBase supports section declarations using the following syntax:

EXEC SQL

BEGIN DECLARE SECTION;

<hostvar>;
. . .

EXEC SQL

END DECLARE SECTION;

For example, the following C code fragment declares three host variables, empno, fname,
and lname, within a section declaration:

EXEC SQL

BEGIN DECLARE SECTION;

int empno;

char fname[26];

char lname[26];

EXEC SQL

END DECLARE SECTION;

Additional host-language variables not used in SQL statements can be declared outside
DECLARE SECTION statements.

CHAPTER 2 APPLICATION REQUIREMENTS

20 INTERBASE 5

4 Using BASED ON to declare variables
InterBase supports a declarative clause, BASED ON, for creating C language character
variables based on column definitions in a database. Using BASED ON ensures that the
resulting host-language variable is large enough to hold the maximum number of
characters in a CHAR or VARCHAR database column, plus an extra byte for the
null-terminating character expected by most C string functions.

BASED ON uses the following syntax:

BASED ON <dbcolumn> hostvar;

For example, the following statements declare two host variables, fname, and lname,
based on two column definitions, FIRSTNAME, and LASTNAME, in an employee database:

BASED ON EMP.FIRSTNAME fname;

BASED ON EMP.LASTNAME lname;

Embedded in a C or C++ program, these statements generate the following host- variable
declarations during preprocessing:

char fname[26];

char lname[26];

To use BASED ON, follow these steps:

1. Use SET DATABASE to specify the database from which column definitions are
to be drawn.

2. Use CONNECT to attach to the database.

3. Declare a section with BEGIN DECLARE SECTION.

4. Use the BASED ON statement to declare a string variable of the appropriate
type.

The following statements show the previous BASED ON declarations in context:

EXEC SQL

SET DATABASE EMP = "employee.gdb";

EXEC SQL

CONNECT EMP;

EXEC SQL

BEGIN DECLARE SECTION;

int empno;

BASED ON EMP.FIRSTNAME fname;

BASED ON EMP.LASTNAME lname;

EXEC SQL

END DECLARE SECTION;

DECLARING AND INITIALIZING DATABASES

PROGRAMMER’S GUIDE 21

4 Host-language data structures
If a host language supports data structures, data fields within a structure can correspond
to a collection of database columns. For example, the following C declaration creates a
structure, BILLING_ADDRESS, that contains six variables, or data members, each of which
corresponds to a similarly named column in a table:

struct

{

char fname[25];

char lname[25];

char street[30];

char city[20];

char state[3];

char zip[11];

} billing_address;

SQL recognizes data members in structures, but information read from or written to a
structure must be read from or written to individual data members in SQL statements. For
example, the following SQL statement reads data from a table into variables in the C
structure, BILLING_ADDRESS:

EXEC SQL

SELECT FNAME, LNAME, STREET, CITY, STATE, ZIP

INTO :billing_address.fname, :billing_address.lname,

:billing_address.street, :billing_address.city,

:billing_address.state, :billing_address.zip

FROM ADDRESSES WHERE CITY = "Brighton";

Declaring and initializing databases
An SQL program can access multiple InterBase databases at the same time. Each database
used in a multiple-database program must be declared and initialized before it can be
accessed in SQL transactions. Programs that access only a single database need not
declare the database or assign a database handle if, instead, they specify a database on
the gpre command line.

IMPORTANT DSQL programs cannot connect to multiple databases.

InterBase supports the following SQL statements for handling databases:

g SET DATABASE declares the name of a database to access, and assigns it to a database
handle.

CHAPTER 2 APPLICATION REQUIREMENTS

22 INTERBASE 5

g CONNECT opens a database specified by a handle, and allocates it system resources.

Database handles replace database names in CONNECT statements. They can also be used
to qualify table names within transactions. For a complete discussion of database
handling in SQL programs, see Chapter 3, “Working with Databases.”

Using SET DATABASE
The SET DATABASE statement is used to:

g Declare a database handle for each database used in an SQL program.

g Associate a database handle with an actual database name. Typically, a database handle
is a mnemonic abbreviation of the actual database name.

SET DATABASE instantiates a host variable for the database handle without requiring an
explicit host variable declaration. The database handle contains a pointer used to
reference the database in subsequent SQL statements. To include a SET DATABASE
statement in a program, use the following syntax:

EXEC SQL

SET DATABASE handle = "<dbname>";

A separate statement should be used for each database. For example, the following
statements declare a handle, DB1, for the employee.gdb database, and another handle,
DB2, for employee2.gdb:

EXEC SQL

SET DATABASE DB1 = "employee.gdb";

EXEC SQL

SET DATABASE DB2 = "employee2.gdb";

Once a database handle is created and associated with a database, the handle can be used
in subsequent SQL database and transaction statements that require it, such as CONNECT.

Note SET DATABASE also supports user name and password options. For a complete
discussion of SET DATABASE options, see Chapter 3, “Working with Databases.”

Using CONNECT
The CONNECT statement attaches to a database, opens the database, and allocates system
resources for it. A database must be opened before its tables can be used. To include
CONNECT in a program, use the following syntax:

DECLARING AND INITIALIZING DATABASES

PROGRAMMER’S GUIDE 23

EXEC SQL

CONNECT handle;

A separate statement can be used for each database, or a single statement can connect to
multiple databases. For example, the following statements connect to two databases:

EXEC SQL

CONNECT DB1;

EXEC SQL

CONNECT DB2;

The next example uses a single CONNECT to establish both connections:

EXEC SQL

CONNECT DB1, DB2;

Once a database is connected, its tables can be accessed in subsequent transactions. Its
handle can qualify table names in SQL applications, but not in DSQL applications. For a
complete discussion of CONNECT options and using database handles, see Chapter 3,
“Working with Databases.”

Working with a single database
In single-database programs preprocessed without the gpre -m switch, SET DATABASE and
CONNECT are optional. The -m switch suppresses automatic generation of transactions.
Using SET DATABASE and CONNECT is strongly recommended, however, especially as a way
to make program code as self-documenting as possible. If you omit these statements, take
the following steps:

1. Insert a section declaration in the program code where global variables are
defined. Use an empty section declaration if no host-language variables are
used in the program. For example, the following declaration illustrates an
empty section declaration:

EXEC SQL

BEGIN DECLARE SECTION;

EXEC SQL

END DECLARE SECTION;

2. Specify a database name on the gpre command line at precompile time. A
database need not be specified if a program contains a CREATE DATABASE
statement.

For more information about working with a single database in an SQL program, see
Chapter 3, “Working with Databases.”

CHAPTER 2 APPLICATION REQUIREMENTS

24 INTERBASE 5

SQL statements
An SQL application consists of a program written in a host language, like C or C++, into
which SQL and dynamic SQL (DSQL) statements are embedded. Any SQL or DSQL
statement supported by InterBase can be embedded in a host language. Each SQL or
DSQL statement must be:

g Preceded by the keywords EXEC SQL.

g Ended with the statement terminator expected by the host language. For example, in C
and C++, the host terminator is the semicolon (;).

For a complete list of SQL and DSQL statements supported by InterBase, see the
Language Reference.

Error handling and recovery
Every time an SQL statement is executed, it returns an error code in the SQLCODE variable.
SQLCODE is declared automatically for SQL programs during preprocessing with gpre. To
catch run-time errors and recover from them when possible, SQLCODE should be
examined after each SQL operation.

SQL provides the WHENEVER statement to monitor SQLCODE and direct program flow to
recovery procedures. Alternatively, SQLCODE can be tested directly after each SQL
statement executes. For a complete discussion of SQL error handling and recovery, see
Chapter 13, “Error Handling and Recovery.”

Closing transactions
Every transaction should be closed when it completes its tasks, or when an error occurs
that prevents it from completing its tasks. Failure to close a transaction before a program
ends can cause limbo transactions, where records are entered into the database, but are
neither committed or rolled back. Limbo transactions can be cleaned up using the
database administration tools provided with InterBase.

CLOSING TRANSACTIONS

PROGRAMMER’S GUIDE 25

Accepting changes
The COMMIT statement ends a transaction, makes the transaction’s changes available to
other users, and closes cursors. A COMMIT is used to preserve changes when all of a
transaction’s operations are successful. To end a transaction with COMMIT, use the
following syntax:

EXEC SQL

COMMIT TRANSACTION name;

For example, the following statement commits a transaction named MYTRANS:

EXEC SQL

COMMIT TRANSACTION MYTRANS;

For a complete discussion of SQL transaction control, see Chapter 4, “Working with
Transactions.”

Undoing changes
The ROLLBACK statement undoes a transaction’s changes, ends the current transaction,
and closes open cursors. Use ROLLBACK when an error occurs that prevents all of a
transaction’s operations from being successful. To end a transaction with ROLLBACK, use
the following syntax:

EXEC SQL

ROLLBACK TRANSACTION name;

For example, the following statement rolls back a transaction named MYTRANS:

EXEC SQL

ROLLBACK TRANSACTION MYTRANS;

To roll back an unnamed transaction (i.e., the default transaction), use the following
statement:

EXEC SQL

ROLLBACK;

For a complete discussion of SQL transaction control, see Chapter 4, “Working with
Transactions.”

CHAPTER 2 APPLICATION REQUIREMENTS

26 INTERBASE 5

Closing databases
Once a database is no longer needed, close it before the program ends, or subsequent
attempts to use the database may fail or result in database corruption. There are two ways
to close a database:

g Use the DISCONNECT statement to detach a database and close files.

g Use the RELEASE option with COMMIT or ROLLBACK in a program.

DISCONNECT, COMMIT RELEASE, and ROLLBACK RELEASE perform the following tasks:

g Close open database files.

g Close remote database connections.

g Release the memory that holds database descriptions and InterBase engine-compiled
requests.

Note Closing databases with DISCONNECT is preferred for compatibility with the SQL-92
standard.

For a complete discussion of closing databases, see Chapter 3, “Working with
Databases.”

DSQL requirements
DSQL applications must adhere to all the requirements for all SQL applications and meet
additional requirements as well. DSQL applications enable users to enter ad hoc SQL
statements for processing at run time. To handle the wide variety of statements a user
might enter, DSQL applications require the following additional programming steps:

g Declare as many extended SQL descriptor areas (XSQLDAs) as are needed in the
application; typically a program must use one or two of these structures. Complex
applications may require more.

g Declare all transaction names and database handles used in the program at compile time;
names and handles are not dynamic, so enough must be declared to accommodate the
anticipated needs of users at run time.

g Provide a mechanism to get SQL statements from a user.

g Prepare each SQL statement received from a user for processing.
PREPARE loads statement information into the XSQLDA.

g EXECUTE each prepared statement.

DSQL REQUIREMENTS

PROGRAMMER’S GUIDE 27

EXECUTE IMMEDIATE combines PREPARE and EXECUTE in a single statement. For more
information, see the Language Reference.

In addition, the syntax for cursors involving Blob data differs from that of cursors for
other datatypes. For more information about Blob cursor statements, see the Language
Reference.

Declaring an XSQLDA
The extended SQL descriptor area (XSQLDA) is used as an intermediate staging area for
information passed between an application and the InterBase engine. The XSQLDA is used
for either of the following tasks:

g Pass input parameters from a host-language program to SQL.

g Pass output, from a SELECT statement or stored procedure, from SQL to the host-language
program.

A single XSQLDA can be used for only one of these tasks at a time. Many applications
declare two XSQLDAs, one for input, and another for output.

The XSQLDA structure is defined in the InterBase header file, ibase.h, that is automatically
included in programs when they are preprocessed with gpre.

Note DSQL applications written using versions of InterBase prior to 3.3 use an older SQL
descriptor area, the SQLDA. For backward compatibility, the SQLDA continues to be
supported. You can examine its structure in ibase.h. The new structure, XSQLDA, is used
automatically when preprocessing an application with gpre. To use the old structure,
specify the gpre -sqlda old switch. As convenient, older applications should be modified to
use the XSQLDA.

To create an XSQLDA for a program, a host-language datatype of the appropriate type must
be set up in a section declaration. For example, the following statement creates two
XSQLDA structures, inxsqlda, and outxsqlda:

. . .

EXEC SQL

BEGIN DECLARE SECTION;

XSQLDA inxsqlda;

XSQLDA outxsqlda;

. . .

EXEC SQL

END DECLARE SECTION;

. . .

CHAPTER 2 APPLICATION REQUIREMENTS

28 INTERBASE 5

When an application containing XSQLDA declarations is preprocessed, gpre automatically
includes the header file, ibase.h, which defines the XSQLDA as a host-language datatype.
For a complete discussion of the structure of the XSQLDA, see Chapter 14, “Using
Dynamic SQL.”

DSQL limitations
DSQL enables programmers to create flexible applications that are capable of handling a
wide variety of user requests. Even so, not every SQL statement can be handled in a
completely dynamic fashion. For example, database handles and transaction names must
be specified when an application is written, and cannot be changed or specified by users
at run time. Similarly, while InterBase supports multiple databases and multiple
simultaneous transactions in an application, the following limitations apply:

g Only a single database can be accessed at a time.

g Transactions can only operate on the currently active database.

g Users cannot specify transaction names in DSQL statements; instead, transaction names
must be supplied and manipulated when an application is coded.

Using database handles
Database handles are always static, and can only be declared when an application is
coded. Enough handles must be declared to satisfy the expected needs of users. Once a
handle is declared, it can be assigned to a user-specified database at run time with SET
DATABASE, as in the following C code fragment:

. . .

EXEC SQL

SET DATABASE DB1 = "dummydb.gdb";

EXEC SQL

SET DATABASE DB2 = "dummydb.gdb";

. . .

printf("Specify first database to open: ");

gets(fname1);

printf("\nSpecify second database to open: ");

gets(fname2);

EXEC SQL

SET DATABASE DB1 = :fname1;

EXEC SQL

DSQL LIMITATIONS

PROGRAMMER’S GUIDE 29

SET DATABASE DB2 = :fname2;

. . .

For a complete discussion of SET DATABASE, see Chapter 3, “Working with Databases.”

Using the active database
A DSQL application can only work with one database at a time, even if the application
attaches to multiple databases. All DSQL statements operate only on the currently active
database, the last database associated with a handle in a SET DATABASE statement.

Embedded SQL statements within a DSQL application can operate on any open database.
For example, all DSQL statements entered by a user at run time might operate against a
single database specified by the user, but the application might also contain non-DSQL
statements that record user entries in a log database.

For a complete discussion of SET DATABASE, see Chapter 3, “Working with Databases.”

Using transaction names
Many SQL statements support an optional transaction name parameter, used to specify
the controlling transaction for a specific statement. Transaction names can be used in
DSQL applications, too, but must be set up when an application is compiled. Once a
name is declared, it can be directly inserted into a user statement only by the application
itself.

After declaration, use a transaction name in an EXECUTE or EXECUTE IMMEDIATE statement
to specify the controlling transaction, as in the following C code fragment:

. . .

EXEC SQL

BEGIN DECLARE SECTION:

long first, second; /* declare transaction names */

EXEC SQL

END DECLARE SECTION;

. . .

first = second = 0L; /* initialize names to zero */

. . .

EXEC SQL

SET TRANSACTION first; /* start transaction 1 */

EXEC SQL

SET TRANSACTION second; /* start transaction 2 */

CHAPTER 2 APPLICATION REQUIREMENTS

30 INTERBASE 5

printf("\nSQL> ");

gets(userstatement);

EXEC SQL

EXECUTE IMMEDIATE TRANSACTION first userstatement;

. . .

For complete information about named transactions, see Chapter 4, “Working with
Transactions.”

Preprocessing programs
After an SQL or DSQL program is written, and before it is compiled and linked, it must
be preprocessed with gpre, the InterBase preprocessor. gpre translates SQL statements and
variables into statements and variables that the host-language compiler accepts. For
complete information about preprocessing with gpre, see Chapter 15, “Preprocessing,
Compiling, and Linking.”

PROGRAMMER’S GUIDE 31

CHAPTER

3
Chapter 3Working with Databases

This chapter describes how to use SQL statements in embedded applications to control
databases. There are three database statements that set up and open databases for access:

g SET DATABASE declares a database handle, associates the handle with an actual database
file, and optionally assigns operational parameters for the database.

g SET NAMES optionally specifies the character set a client application uses for CHAR,
VARCHAR, and text Blob data. The server uses this information to transliterate from a
database’s default character set to the client’s character set on SELECT operations, and to
transliterate from a client application’s character set to the database character set on
INSERT and UPDATE operations.

g CONNECT opens a database, allocates system resources for it, and optionally assigns
operational parameters for the database.

All databases must be closed before a program ends. A database can be closed by using
DISCONNECT, or by appending the RELEASE option to the final COMMIT or ROLLBACK in a
program.

Declaring a database
Before a database can be opened and used in a program, it must first be declared with
SET DATABASE to:

CHAPTER 3 WORKING WITH DATABASES

32 INTERBASE 5

g Establish a database handle.

g Associate the database handle with a database file stored on a local or remote node.

A database handle is a unique, abbreviated alias for an actual database name. Database
handles are used in subsequent CONNECT, COMMIT RELEASE, and ROLLBACK RELEASE
statements to specify which databases they should affect. Except in dynamic SQL (DSQL)
applications, database handles can also be used inside transaction blocks to qualify, or
differentiate, table names when two or more open databases contain identically named
tables.

Each database handle must be unique among all variables used in a program. Database
handles cannot duplicate host-language reserved words, and cannot be InterBase
reserved words.

The following statement illustrates a simple database declaration:

EXEC SQL

SET DATABASE DB1 = "employee.gdb";

This database declaration identifies the database file, employee.gdb, as a database the
program uses, and assigns the database a handle, or alias, DB1.

If a program runs in a directory different from the directory that contains the database
file, then the file name specification in SET DATABASE must include a full path name, too.
For example, the following SET DATABASE declaration specifies the full path to
employee.gdb:

EXEC SQL

SET DATABASE DB1 = "/interbase/examples/employee.gdb";

If a program and a database file it uses reside on different hosts, then the file name
specification must also include a host name. The following declaration illustrates how a
Unix host name is included as part of the database file specification on a TCP/IP network:

EXEC SQL

SET DATABASE DB1 = "jupiter:/usr/interbase/examples/employee.gdb";

On a Windows network that uses the Netbeui protocol, specify the path as follows:

EXEC SQL

SET DATABASE DB1 = "//venus/C:/Interbase/examples/employee.gdb";

Declaring multiple databases
An SQL program, but not a DSQL program, can access multiple databases at the same
time. In multi-database programs, database handles are required. A handle is used to:

DECLARING A DATABASE

PROGRAMMER’S GUIDE 33

g Reference individual databases in a multi-database transaction.

g Qualify table names.

g Specify databases to open in CONNECT statements.

g Indicate databases to close with DISCONNECT, COMMIT RELEASE, and ROLLBACK RELEASE.

DSQL programs can access only a single database at a time, so database handle use is
restricted to connecting to and disconnecting from a database.

In multi-database programs, each database must be declared in a separate SET DATABASE
statement. For example, the following code contains two SET DATABASE statements:

. . .

EXEC SQL

SET DATABASE DB2 = "employee2.gdb";

EXEC SQL

SET DATABASE DB1 = "employee.gdb";

. . .

4 Using handles for table names
When the same table name occurs in more than one simultaneously accessed database,
a database handle must be used to differentiate one table name from another. The
database handle is used as a prefix to table names, and takes the form handle.table.

For example, in the following code, the database handles, TEST and EMP, are used to
distinguish between two tables, each named EMPLOYEE:

. . .

EXEC SQL

DECLARE IDMATCH CURSOR FOR

SELECT TESTNO INTO :matchid FROM TEST.EMPLOYEE

WHERE TESTNO > 100;

EXEC SQL

DECLARE EIDMATCH CURSOR FOR

SELECT EMPNO INTO :empid FROM EMP.EMPLOYEE

WHERE EMPNO = :matchid;

. . .

IMPORTANT This use of database handles applies only to embedded SQL applications. DSQL
applications cannot access multiple databases simultaneously.

CHAPTER 3 WORKING WITH DATABASES

34 INTERBASE 5

4 Using handles with operations
In multi-database programs, database handles must be specified in CONNECT statements
to identify which databases among several to open and prepare for use in subsequent
transactions.

Database handles can also be used with DISCONNECT, COMMIT RELEASE, and ROLLBACK
RELEASE to specify a subset of open databases to close.

To open and prepare a database with CONNECT, see “Opening a database” on page 37.
To close a database with DISCONNECT, COMMIT RELEASE, or ROLLBACK RELEASE, see
“Closing a database” on page 45. To learn more about using database handles in
transactions, see “Accessing an open database” on page 44.

Preprocessing and run time databases
Normally, each SET DATABASE statement specifies a single database file to associate with a
handle. When a program is preprocessed, gpre uses the specified file to validate the
program’s table and column references. Later, when a user runs the program, the same
database file is accessed. Different databases can be specified for preprocessing and run
time when necessary.

4 Using the COMPILETIME clause
A program can be designed to run against any one of several identically structured
databases. In other cases, the actual database that a program will use at runtime is not
available when a program is preprocessed and compiled. In such cases, SET DATABASE can
include a COMPILETIME clause to specify a database for gpre to test against during
preprocessing. For example, the following SET DATABASE statement declares that
employee.gdb is to be used by gpre during preprocessing:

EXEC SQL

SET DATABASE EMP = COMPILETIME "employee.gdb";

IMPORTANT The file specification that follows the COMPILETIME keyword must always be a
hard-coded, quoted string.

When SET DATABASE uses the COMPILETIME clause, but no RUNTIME clause, and does not
specify a different database file specification in a subsequent CONNECT statement, the
same database file is used both for preprocessing and run time. To specify different
preprocessing and runtime databases with SET DATABASE, use both the COMPILETIME and
RUNTIME clauses.

DECLARING A DATABASE

PROGRAMMER’S GUIDE 35

4 Using the RUNTIME clause
When a database file is specified for use during preprocessing, SET DATABASE can specify
a different database to use at run time by including the RUNTIME keyword and a runtime
file specification:

EXEC SQL

SET DATABASE EMP = COMPILETIME "employee.gdb"

RUNTIME "employee2.gdb";

The file specification that follows the RUNTIME keyword can be either a hard-coded,
quoted string, or a host-language variable. For example, the following C code fragment
prompts the user for a database name, and stores the name in a variable that is used later
in SET DATABASE:

. . .

char db_name[125];

. . .

printf("Enter the desired database name, including node and

path):\n");

gets(db_name);

EXEC SQL

SET DATABASE EMP = COMPILETIME "employee.gdb" RUNTIME :db_name;

. . .

Note Host-language variables in SET DATABASE must be preceded, as always, by a colon.

Controlling SET DATABASE scope
By default, SET DATABASE creates a handle that is global to all modules in an application.
A global handle is one that may be referenced in all host-language modules comprising
the program. SET DATABASE provides two optional keywords to change the scope of a
declaration:

g STATIC limits declaration scope to the module containing the SET DATABASE statement. No
other program modules can see or use a database handle declared STATIC.

g EXTERN notifies gpre that a SET DATABASE statement in a module duplicates a
globally-declared database in another module. If the EXTERN keyword is used, then
another module must contain the actual SET DATABASE statement, or an error occurs
during compilation.

The STATIC keyword is used in a multi-module program to restrict database handle access
to the single module where it is declared. The following example illustrates the use of the
STATIC keyword:

CHAPTER 3 WORKING WITH DATABASES

36 INTERBASE 5

EXEC SQL

SET DATABASE EMP = STATIC "employee.gdb";

The EXTERN keyword is used in a multi-module program to signal that SET DATABASE in
one module is not an actual declaration, but refers to a declaration made in a different
module. gpre uses this information during preprocessing. The following example
illustrates the use of the EXTERN keyword:

EXEC SQL

SET DATABASE EMP = EXTERN "employee.gdb";

If an application contains an EXTERN reference, then when it is used at run time, the
actual SET DATABASE declaration must be processed first, and the database connected
before other modules can access it.

A single SET DATABASE statement can contain either the STATIC or EXTERN keyword, but not
both. A scope declaration in SET DATABASE applies to both
COMPILETIME and RUNTIME databases.

Specifying a connection character set
When a client application connects to a database, it may have its own character set
requirements. The server providing database access to the client does not know about
these requirements unless the client specifies them. The client application specifies its
character set requirement using the SET NAMES statement before it connects to the
database.

SET NAMES specifies the character set the server should use when translating data from
the database to the client application. Similarly, when the client sends data to the
database, the server translates the data from the client’s character set to the database’s
default character set (or the character set for an individual column if it differs from the
database’s default character set).

For example, the following statements specify that the client is using the DOS437
character set, then connect to the database:

EXEC SQL

SET NAMES DOS437;

EXEC SQL

CONNECT "europe.gdb" USER "JAMES" PASSWORD "U4EEAH";

For more information about character sets, see the Data Definition Guide. For the
complete syntax of SET NAMES and CONNECT, see the Language Reference.

OPENING A DATABASE

PROGRAMMER’S GUIDE 37

Opening a database
After a database is declared, it must be attached with a CONNECT statement before it can
be used. CONNECT:

g Allocates system resources for the database.

g Determines if the database file is local, residing on the same host where the application
itself is running, or remote, residing on a different host.

g Opens the database and examines it to make sure it is valid.

InterBase provides transparent access to all databases, whether local or remote. If the
database structure is invalid, the on-disk structure (ODS) number does not correspond to
the one required by InterBase, or if the database is corrupt, InterBase reports an error,
and permits no further access.

Optionally, CONNECT can be used to specify:

g A user name and password combination that is checked against the server’s security
database before allowing the connect to succeed. User names can be up to 31 characters.
Passwords are restricted to 8 characters.

g An SQL role name that the user adopts on connection to the database, provided that the
user has previously been granted membership in the role. Regardless of role
memberships granted, the user belongs to no role unless specified with this ROLE clause.
The client can specify at most one role per connection, and cannot switch roles except
by reconnecting.

g The size of the database buffer cache to allocate to the application when the default cache
size is inappropriate.

Using simple CONNECT statements
In its simplest form, CONNECT requires one or more database parameters, each specifying
the name of a database to open. The name of the database can be a:

g Database handle declared in a previous SET DATABASE statement.

g Host-language variable.

g Hard-coded file name.

4 Using a database handle
If a program uses SET DATABASE to provide database handles, those handles should be
used in subsequent CONNECT statements instead of hard-coded names. For example,

CHAPTER 3 WORKING WITH DATABASES

38 INTERBASE 5

. . .

EXEC SQL

SET DATABASE DB1 = "employee.gdb";

EXEC SQL

SET DATABASE DB2 = "employee2.gdb";

EXEC SQL

CONNECT DB1;

EXEC SQL

CONNECT DB2;

. . .

There are several advantages to using a database handle with CONNECT:

g Long file specifications can be replaced by shorter, mnemonic handles.

g Handles can be used to qualify table names in multi-database transactions. DSQL
applications do not support multi-database transactions.

g Handles can be reassigned to other databases as needed.

g The number of database cache buffers can be specified as an additional CONNECT
parameter.

For more information about setting the number of database cache buffers, see “Setting
database cache buffers” on page 43.

4 Using strings or host-language variables
Instead of using a database handle, CONNECT can use a database name supplied at run
time. The database name can be supplied as either a host-language variable or a
hard-coded, quoted string.

The following C code demonstrates how a program accessing only a single database
might implement CONNECT using a file name solicited from a user at run time:

. . .

char fname[125];

. . .

printf("Enter the desired database name, including node and

path):\n");

gets(fname);

. . .

EXEC SQL

CONNECT :fname;

. . .

OPENING A DATABASE

PROGRAMMER’S GUIDE 39

TIP This technique is especially useful for programs that are designed to work with many
identically structured databases, one at a time, such as CAD/CAM or architectural
databases.

MULTIPLE DATABASE IMPLEMENTATION

To use a database specified by the user as a host-language variable in a CONNECT
statement in multi-database programs, follow these steps:

1. Declare a database handle using the following SET DATABASE syntax:

EXEC SQL

SET DATABASE handle = COMPILETIME "dbname";

Here, handle is a hard-coded database handle supplied by the programmer, dbname
is a quoted, hard-coded database name used by gpre during preprocessing.

2. Prompt the user for a database to open.

3. Store the database name entered by the user in a host-language variable.

4. Use the handle to open the database, associating the host-language variable
with the handle using the following CONNECT syntax:

EXEC SQL

CONNECT :variable AS handle;

The following C code illustrates these steps:

. . .

char fname[125];

. . .

EXEC SQL

SET DATABASE DB1 = "employee.gdb";

printf("Enter the desired database name, including node and

path):\n");

gets(fname);

EXEC SQL

CONNECT :fname AS DB1;

. . .

In this example, SET DATABASE provides a hard-coded database file name for
preprocessing with gpre. When a user runs the program, the database specified in the
variable, fname, is used instead.

CHAPTER 3 WORKING WITH DATABASES

40 INTERBASE 5

4 Using a hard-coded database names

IN SINGE-DATABASE PROGRAMS

In a single-database program that omits SET DATABASE, CONNECT must contain a
hard-coded, quoted file name in the following format:

EXEC SQL

CONNECT "[host[path]]filename";

host is only required if a program and a database file it uses reside on different nodes.
Similarly, path is only required if the database file does not reside in the current working
directory. For example, the following CONNECT statement contains a hard-coded file name
that includes both a Unix host name and a path name:

EXEC SQL

CONNECT "valdez:usr/interbase/examples/employee.gdb";

Note Host syntax is specific to each server platform.

IMPORTANT A program that accesses multiple databases cannot use this form of CONNECT.

IN MULTI-DATABASE PROGRAMS

A program that accesses multiple databases must declare handles for each of them in
separate SET DATABASE statements. These handles must be used in subsequent CONNECT
statements to identify specific databases to open:

. . .

EXEC SQL

SET DATABASE DB1 = "employee.gdb";

EXEC SQL

SET DATABASE DB2 = "employee2.gdb";

EXEC SQL

CONNECT DB1;

EXEC SQL

CONNECT DB2;

. . .

Later, when the program closes these databases, the database handles are no longer in
use. These handles can be reassigned to other databases by hard-coding a file name in a
subsequent CONNECT statement. For example,

. . .

EXEC SQL

DISCONNECT DB1, DB2;

EXEC SQL

OPENING A DATABASE

PROGRAMMER’S GUIDE 41

CONNECT "project.gdb" AS DB1;

. . .

Additional CONNECT syntax
CONNECT supports several formats for opening databases to provide programming
flexibility. The following table outlines each possible syntax, provides descriptions and
examples, and indicates whether CONNECT can be used in programs that access single or
multiple databases:

For a complete discussion of CONNECT syntax and its uses, see the Language Reference.

Attaching to multiple databases
CONNECT can attach to multiple databases. To open all databases specified in previous SET
DATABASE statements, use either of the following CONNECT syntax options:

EXEC SQL

CONNECT ALL;

Syntax Description Example
Single
access

Multiple
access

CONNECT “dbfile”; Opens a single, hard-coded database file,
dbfile.

EXEC SQL

CONNECT
“employee.gdb”;

Yes No

CONNECT handle; Opens the database file associated with a
previously declared database handle. This is
the preferred CONNECT syntax.

EXEC SQL
CONNECT EMP;

Yes Yes

CONNECT “dbfile” AS
handle;

Opens a hard-coded database file, dbfile, and
assigns a previously declared database handle
to it.

EXEC SQL

CONNECT
“employee.gdb”
AS EMP;

Yes Yes

CONNECT :varname AS
handle;

Opens the database file stored in the
host-language variable, varname, and assigns a
previously declared database handle to it.

EXEC SQL

CONNECT :fname AS

EMP;

Yes Yes

TABLE 3.1 CONNECT syntax summary

CHAPTER 3 WORKING WITH DATABASES

42 INTERBASE 5

EXEC SQL

CONNECT DEFAULT;

CONNECT can also attach to a specified list of databases. Separate each database request
from others with commas. For example, the following statement opens two databases
specified by their handles:

EXEC SQL

CONNECT DB1, DB2;

The next statement opens two hard-coded database files and also assigns them to
previously declared handles:

EXEC SQL

CONNECT "employee.gdb" AS DB1, "employee2.gdb" AS DB2;

TIP Opening multiple databases with a single CONNECT is most effective when a program’s
database access is simple and clear. In complex programs that open and close several
databases, that substitute database names with host-language variables, or that assign
multiple handles to the same database, use separate CONNECT statements to make
program code easier to read, debug, and modify.

Handling CONNECT errors
The WHENEVER statement should be used to trap and handle runtime errors that occur
during database declaration. The following C code fragment illustrates an error-handling
routine that displays error messages and ends the program in an orderly fashion:

. . .

EXEC SQL

WHENEVER SQLERROR

GOTO error_exit;

. . .

:error_exit

isc_print_sqlerr(sqlcode, status_vector);

EXEC SQL

DISCONNECT ALL;

exit(1);

. . .

For a complete discussion of SQL error handling, see Chapter 13, “Error Handling and
Recovery.”

OPENING A DATABASE

PROGRAMMER’S GUIDE 43

Setting database cache buffers
Besides opening a database, CONNECT can set the number of cache buffers assigned to a
database for that connection. When a program establishes a connection to a database,
InterBase allocates system memory to use as a private buffer. The buffers are used to store
accessed database pages to speed performance. The number of buffers assigned for a
program determine how many simultaneous database pages it can have access to in the
memory pool. Buffers remain assigned until a program finishes with a database.

The default number of database cache buffers assigned to a database is 256. This default
can be changed either for a specific database or for an entire server.

g Use the gfix utility to set a new default cache buffer size for a database. See the
Operations Guide for more information about setting database buffer size with gfix.

g Change the value of DATABASE_CACHE_PAGES in the InterBase configuration file to change
the default cache buffer size on a server-wide basis. Use this option with care, since it
makes it easy to overuse memory or create unusably small caches.

4 Setting individual database buffers
For programs that access or change many rows in many databases, performance can
sometimes be improved by increasing the number of buffers. The maximum number of
buffers allowed is system dependent.

g Use the CACHE n parameter with CONNECT to change the number of buffers assigned to a
database for the duration of the connection, where n is the number of buffers to reserve.
To set the number of buffers for an individual database, place CACHE n after the database
name. The following CONNECT specifies 500 buffers for the database pointed to by the
EMP handle:

EXEC SQL

CONNECT EMP CACHE 500;

Note If you specify a buffer size that is less than the smallest one currently in use for the
database, the request is ignored.

The next statement opens two databases, TEST and EMP. Because CACHE is not specified
for TEST, its buffers default to 256. EMP is opened with the CACHE clause specifying 400
buffers:

EXEC SQL

CONNECT TEST, EMP CACHE 400;

CHAPTER 3 WORKING WITH DATABASES

44 INTERBASE 5

4 Specifying buffers for all databases
To specify the same number of buffers for all databases, use CONNECT ALL with the CACHE
n parameter. For example, the following statements connect to two databases, EMP, and
EMP2, and allot 400 buffers to each of them:

. . .

EXEC SQL

SET DATABASE EMP = "employee.gdb";

EXEC SQL

SET DATABASE EMP2 = "test.gdb";

EXEC SQL

CONNECT ALL CACHE 400;

. . .

The same effect can be achieved by specifying the same amount of cache for individual
databases:

. . .

EXEC SQL

CONNECT EMP CACHE 400, TEST CACHE 400;

. . .

Accessing an open database
Once a database is connected, its tables can be accessed as follows:

g One database can be accessed in a single transaction.

g One database can be accessed in multiple transactions.

g Multiple databases can be accessed in a single transaction.

g Multiple databases can be accessed in multiple transactions.

For general information about using transactions, see Chapter 4, “Working with
Transactions.”

Differentiating table names
In SQL, using multiple databases in transactions sometimes requires extra precautions to
ensure intended behavior. When two or more databases have tables that share the same
name, a database handle must be prefixed to those table names to differentiate them from
one another in transactions.

CLOSING A DATABASE

PROGRAMMER’S GUIDE 45

A table name differentiated by a database handle takes the form:

handle.table

For example, the following cursor declaration accesses an EMPLOYEE table in TEST, and
another EMPLOYEE table in EMP. TEST and EMP are used as prefixes to indicate which
EMPLOYEE table should be referenced:

. . .

EXEC SQL

DECLARE IDMATCH CURSOR FOR

SELECT TESTNO INTO :matchid FROM TEST.EMPLOYEE

WHERE (SELECT EMPNO FROM EMP.EMPLOYEE WHERE EMPNO = TESTNO);

. . .

Note DSQL does not support access to multiple databases in a single statement.

Closing a database
When a program is finished with a database, the database should be closed. In SQL, a
database can be closed in either of the following ways:

g Issue a DISCONNECT to detach a database and close files.

g Append a RELEASE option to a COMMIT or ROLLBACK to disconnect from a database and
close files.

DISCONNECT, COMMIT RELEASE, and ROLLBACK RELEASE perform the following tasks:

g Close open database files.

g Disconnect from remote database connections.

g Release the memory that holds database metadata descriptions and InterBase
engine-compiled requests.

Note Closing databases with DISCONNECT is preferred for compatibility with the SQL-92
standard. Do not close a database until it is no longer needed. Once closed, a database
must be reopened, and its resources reallocated, before it can be used again.

With DISCONNECT

To close all open databases by disconnecting from them, use the following DISCONNECT
syntax:

CHAPTER 3 WORKING WITH DATABASES

46 INTERBASE 5

EXEC SQL

DISCONNECT {ALL | DEFAULT};

For example, each of the following statements closes all open databases in a
program:

EXEC SQL

DISCONNECT ALL;

EXEC SQL

DISCONNECT DEFAULT;

To close specific databases, specify their handles as comma-delimited parameters, using
the following syntax:

EXEC SQL

DISCONNECT handle [, handle ...];

For example, the following statement disconnects from two databases:

EXEC SQL

DISCONNECT DB1, DB2;

Note A database should not be closed until all transactions are finished with it, or it must
be reopened and its resources reallocated.

With COMMIT and ROLLBACK

To close all open databases when you COMMIT or ROLLBACK, use the following syntax:

EXEC SQL

{COMMIT | ROLLBACK} RELEASE;

For example, the following COMMIT closes all open databases:

EXEC SQL

COMMIT RELEASE;

To close specific databases, provide their handles as parameters following the RELEASE
option with COMMIT or ROLLBACK, using the following syntax:

EXEC SQL

COMMIT | ROLLBACK RELEASE handle [, handle ...];

In the following example, the ROLLBACK statement closes two databases:

EXEC SQL

ROLLBACK RELEASE DB1, DB2;

CLOSING A DATABASE

PROGRAMMER’S GUIDE 47

CHAPTER 3 WORKING WITH DATABASES

48 INTERBASE 5

PROGRAMMER’S GUIDE 49

CHAPTER

4
Chapter 4Working with Transactions

All SQL data definition and data manipulation statements take place within the context
of a transaction, a set of SQL statements that works to carry out a single task. This chapter
explains how to open, control, and close transactions using the following SQL transaction
management statements:

CHAPTER 4 WORKING WITH TRANSACTIONS

50 INTERBASE 5

Transaction management statements define the beginning and end of a transaction.
They also control its behavior and interaction with other simultaneously running
transactions that share access to the same data within and across applications.

There are two types of transactions in InterBase:

g gds__trans is a default transaction that InterBase uses when it encounters a statement
requiring a transaction without first finding a SET TRANSACTION statement. A default
behavior is defined for gds__trans, but it can be changed by starting the default
transaction with SET TRANSACTION and specifying alternative behavior as parameters.
Treat gds__trans as a global variable of type isc_tr_handle.

Note When using the default transaction without explicitly starting it with SET
TRANSACTION, applications must be preprocessed without the gpre -m switch.

g Named transactions are always started with SET TRANSACTION statements. These
statements provide unique names for each transaction, and usually include parameters
that specify a transaction’s behavior.

Except for naming conventions and use in multi-transaction programs, both the default
and named transactions offer the same control over transactions. SET TRANSACTION has
optional parameters for specifying access mode, lock resolution, and isolation level.

Statement Purpose

SET TRANSACTION Starts a transaction, assigns it a name, and specifies its behavior. The following
behaviors can be specified:

Access mode describes the actions a transaction’s statements can perform.

Lock resolution describes how a transaction should react if a lock conflict occurs.

Isolation level describes the view of the database given a transaction as it relates to
actions performed by other simultaneously occurring transactions.

Table reservation, an optional list of tables to lock for access at the start of the
transaction rather than at the time of explicit reads or writes.

Database specification, an optional list limiting the open databases to which a
transaction may have access.

COMMIT Saves a transaction’s changes to the database and ends the transaction.

ROLLBACK Undoes a transaction’s changes before they have been committed to the database,
and ends the transaction.

TABLE 4.1 SQL transaction management statements

STARTING THE DEFAULT TRANSACTION

PROGRAMMER’S GUIDE 51

For more information about gpre, see Chapter 15, “Preprocessing, Compiling,
and Linking.” For more information about transaction behavior, see “Specifying SET
TRANSACTION behavior” on page 56.

Starting the default transaction
If a transaction is started without a specified behavior, the following default behavior is
used:

READ WRITE WAIT ISOLATION LEVEL SNAPSHOT

The default transaction is especially useful for programs that use only a single
transaction. It is automatically started in programs that require a transaction context
where none is explicitly provided. It can also be explicitly started in a program with SET
TRANSACTION.

To learn more about transaction behavior, see “Starting the default transaction” on
page 51.

Starting without SET TRANSACTION

Simple, single transaction programs can omit SET TRANSACTION. The following program
fragment issues a SELECT statement without starting a transaction:

. . .

EXEC SQL

SELECT * FROM CITIES

WHERE POPULATION > 4000000

ORDER BY POPULATION, CITY;

. . .

A programmer need only start the default transaction explicitly in a single transaction
program to modify its operating characteristics or when writing a DSQL application that
is preprocessed with the gpre -m switch.

During preprocessing, when gpre encounters a statement, such as SELECT, that requires a
transaction context without first finding a SET TRANSACTION statement, it automatically
generates a default transaction as long as the -m switch is not specified. A default
transaction started by gpre uses a predefined, or default, behavior that dictates how the
transaction interacts with other simultaneous transactions attempting to access the same
data.

CHAPTER 4 WORKING WITH TRANSACTIONS

52 INTERBASE 5

IMPORTANT DSQL programs should be preprocessed with the gpre -m switch if they start a transaction
through DSQL. In this mode, gpre does not generate the default transaction as needed,
but instead reports an error if there is no transaction.

 For more information about transaction behaviors that can be modified, see “Specifying
SET TRANSACTION behavior” on page 56. For more information about using the gpre
-m switch, see Chapter 15, “Preprocessing, Compiling, and Linking.”

Starting with SET TRANSACTION

SET TRANSACTION issued without parameters starts the default transaction, gds__trans,
with the following default behavior:

READ WRITE WAIT ISOLATION LEVEL SNAPSHOT

The following table summarizes these settings:

Note Explicitly starting the default transaction is good programming practice. It makes
a program’s source code easier to understand.

The following statements are equivalent. They both start the default transaction with the
default behavior.

EXEC SQL

SET TRANSACTION;

EXEC SQL

SET TRANSACTION NAME gds__trans READ WRITE WAIT ISOLATION LEVEL

SNAPSHOT;

Parameter Setting Purpose

Access mode READ WRITE Access mode. This transaction can select, insert, update, and
delete data.

Lock resolution WAIT Lock resolution. This transaction waits for locked tables and rows
to be released to see if it can then update them before reporting
a lock conflict.

Isolation level ISOLATION LEVEL SNAPSHOT This transaction receives a stable, unchanging view of the
database as it is at the moment the transaction starts; it never
sees changes made to the database by other active transactions.

TABLE 4.2 Default transaction default behavior

STARTING A NAMED TRANSACTION

PROGRAMMER’S GUIDE 53

To start the default transaction, but change its characteristics, SET TRANSACTION must be
used to specify those characteristics that differ from the default. Characteristics that do
not differ from the default can be omitted. For example, the following statement starts
the default transaction for READ ONLY access, WAIT lock resolution, and ISOLATION LEVEL
SNAPSHOT:

EXEC SQL

SET TRANSACTION READ ONLY;

As this example illustrates, the NAME clause can be omitted when starting the default
transaction.

IMPORTANT In DSQL, changing the characteristics of the default transaction is accomplished as with
PREPARE and EXECUTE in a manner similar to the one described, but the program must
be preprocessed using the gpre -m switch.

For more information about preprocessing programs with the -m switch, see Chapter 15,
“Preprocessing, Compiling, and Linking.” For more information about transaction
behavior and modification, see “Specifying SET TRANSACTION behavior” on page 56.

Starting a named transaction
A single application can start simultaneous transactions. InterBase extends transaction
management and data manipulation statements to support transaction names, unique
identifiers that specify which transaction controls a given statement among those
transactions that are active.

Transaction names must be used to distinguish one transaction from another in programs
that use two or more transactions at a time. Each transaction started while other
transactions are active requires a unique name and its own SET TRANSACTION statement.
SET TRANSACTION can include optional parameters that modify a transaction’s behavior.

There are four steps for using transaction names in a program:

1. Declare a unique host-language variable for each transaction name. In C and
C++, transaction names should be declared as long pointers.

2. Initialize each transaction name to zero.

3. Use SET TRANSACTION to start each transaction using an available transaction
name.

4. Include the transaction name in subsequent transaction management and
data manipulation statements that should be controlled by a specified
transaction.

CHAPTER 4 WORKING WITH TRANSACTIONS

54 INTERBASE 5

IMPORTANT Using named transactions in dynamic SQL statements is somewhat different. For
information about named transactions in DSQL, see “Working with multiple
transactions in DSQL” on page 79.

For additional information about creating multiple transaction programs, see “Working
with multiple transactions” on page 76.

Naming transactions
A transaction name is a programmer-supplied variable that distinguishes one transaction
from another in SQL statements. If transaction names are not used in SQL statements that
control transactions and manipulate data, then those statements operate only on the
default transaction, gds__trans.

The following C code declares and initializes two transaction names using the
isc_tr_handle datatype. It then starts those transactions in SET TRANSACTION statements.

. . .

EXEC SQL

BEGIN DECLARE SECTION;

isc_tr_handle t1, t2; /* declare transaction names */

EXEC SQL

END DECLARE SECTION;

. . .

t1 = t2 = (isc_tr_handle) NULL; /* initialize names to zero */

. . .

EXEC SQL

SET TRANSACTION NAME t1; /* start trans. w. default behavior */

EXEC SQL

SET TRANSACTION NAME t2; /* start trans2. w. default behavior */

. . .

Each of these steps is fully described in the following sections.

A transaction name can be included as an optional parameter in any data manipulation
and transaction management statement. In multi-transaction programs, omitting a
transaction name causes a statement to be executed for the default transaction,
gds__trans.

For more information about using transaction names with data manipulation statements,
see Chapter 6, “Working with Data.”

STARTING A NAMED TRANSACTION

PROGRAMMER’S GUIDE 55

4 Declaring transaction names
Transaction names must be declared before they can be used. A name is declared as a
host-language pointer. In C and C++, transaction names should be declared as long
pointers.

The following code illustrates how to declare two transaction names:

EXEC SQL

BEGIN DECLARE SECTION;

isc_tr_handle t1;

isc_tr_handle t2;

EXEC SQL

END DECLARE SECTION;

Note In this example, the transaction declaration occurs within an SQL section
declaration. While InterBase does not require that host-language variables occur within
a section declaration, putting them there guarantees compatibility with other SQL
implementations that do require section declarations.

Transaction names are usually declared globally at the module level. If a transaction
name is declared locally, ensure that:

g The transaction using the name is completely contained within the function where the
name is declared. Include an error-handling routine to roll back transactions when errors
occur. ROLLBACK releases a transaction name, and sets its value to NULL.

g The transaction name is not used outside the function where it is declared.

To reference a transaction name declared in another module, provide an external
declaration for it. For example, in C, the external declaration for t1 and t2 might be as
follows:

EXEC SQL

BEGIN DECLARE SECTION;

extern isc_tr_handle t1, t2;

EXEC SQL

END DECLARE SECTION;

4 Initializing transaction names
Once transaction names are declared, they should be initialized to zero before being used
for the first time. The following C code illustrates how to set a starting value for two
declared transaction names:

t1 = t2 = (isc_tr_handle) NULL; /* initialize transaction names to zero

*/

CHAPTER 4 WORKING WITH TRANSACTIONS

56 INTERBASE 5

Once a transaction name is declared and initialized, it can be used to:

g Start and name a transaction. Using a transaction name for all transactions except for the
default transaction is required if a program runs multiple, simultaneous transactions.

g Specify which transactions control data manipulation statements. Transaction names are
required in multi-transaction programs, unless a statement affects only the default
transaction.

g Commit or roll back specific transactions in a multi-transaction program.

Specifying SET TRANSACTION behavior
Use SET TRANSACTION to start a named transaction, and optionally specify its behavior.
The syntax for starting a named transaction using default behavior is:

SET TRANSACTION NAME name;

For a summary of the default behavior for a transaction started without specifying
behavior parameters, see table 4.2 on page 52. The following statements are equivalent:
they both start the transaction named t1, using default transaction behavior.

EXEC SQL

SET TRANSACTION NAME t1;

EXEC SQL

SET TRANSACTION NAME t1 READ WRITE WAIT ISOLATION LEVEL SNAPSHOT;

The following table lists the optional SET TRANSACTION parameters for specifying the
behavior of the default transaction:

Parameter Setting Purpose

Access Mode READ ONLY or READ WRITE Describes the type of access this transaction is
permitted for a table. For more information about
access mode, see “Access mode” on page 58.

Lock
Resolution

WAIT or NO WAIT Specifies what happens when this transaction
encounters a locked row during an update or delete. It
either waits for the lock to be released so it can
attempt to complete its actions, or it returns an
immediate lock conflict error message. For more
information about lock resolution, see “Lock
resolution” on page 65.

TABLE 4.3 SET TRANSACTION parameters

STARTING A NAMED TRANSACTION

PROGRAMMER’S GUIDE 57

The complete syntax of SET TRANSACTION is:

EXEC SQL

SET TRANSACTION [NAME name]
[READ WRITE| READ ONLY]

[WAIT | NO WAIT]

[[ISOLATION LEVEL] {SNAPSHOT [TABLE STABILITY]

| READ COMMITTED [[NO] RECORD_VERSION]}]

[RESERVING <reserving_clause>
| USING dbhandle [, dbhandle ...]];

<reserving_clause> = table [, table ...]
[FOR [SHARED | PROTECTED] {READ | WRITE}] [, <reserving_clause>]

Isolation Level SNAPSHOT provides a view of the database at
the moment this transaction starts, but
prevents viewing changes made by other
active transactions.

SNAPSHOT TABLE STABILITY prevents other
transactions from making changes to tables
that this transaction is reading and updating,
but permits them to read rows in the table.

READ COMMITTED reads the most recently
committed version of a row during updates
and deletions, and allows this transaction to
make changes if there is no update conflict
with other transactions.

Determines this transaction’s interaction with other
simultaneous transactions attempting to access the
same tables.

READ COMMITTED isolation level also enables a user to
specify which version of a row it can read. There are
two options:

• RECORD_VERSION: the transaction immediately reads
the latest committed version of a requested row,
even if a more recent uncommitted version also
resides on disk.

• NO RECORD_VERSION: if an uncommitted version of the
requested row is present and WAIT lock resolution is
specified, the transaction waits until the committed
version of the row is also the latest version; if NO WAIT
is specified, the transaction immediately returns an
error (“deadlock”) if the committed version is not the
most recent version.

Table
Reservation

RESERVING Specifies a subset of available tables to lock
immediately for this transaction to access.

Database
Specification

USING Specifies a subset of available databases that this
transaction can access; it cannot access any other
databases. The purpose of this option is to reduce the
amount of system resources used by this transaction.

Note: USING is not available in DSQL.

Parameter Setting Purpose

TABLE 4.3 SET TRANSACTION parameters (continued)

CHAPTER 4 WORKING WITH TRANSACTIONS

58 INTERBASE 5

Transaction options are fully described in the following sections.

4 Access mode
The access mode parameter specifies the type of access a transaction has for the tables it
uses. There are two possible settings:

g READ ONLY specifies that a transaction can select data from a table, but cannot insert,
update, or delete table data.

g READ WRITE specifies that a transaction can select, insert, update, and delete table data.
This is the default setting if none is specified.

InterBase assumes that most transactions both read and write data. When starting a
transaction for reading and writing, READ WRITE can be omitted from SET TRANSACTION
statement. For example, the following statements start a transaction, t1, for READ WRITE
access:

EXEC SQL

SET TRANSACTION NAME t1;

EXEC SQL

SET TRANSACTION NAME t1 READ WRITE;

TIP It is good programming practice to specify a transaction’s access mode, even when it is
READ WRITE. It makes an application’s source code easier to read and debug because the
program’s intentions are clearly spelled out.

Start a transaction for READ ONLY access when you only need to read data. READ ONLY
must be specified. For example, the following statement starts a transaction, t1, for
read-only access:

EXEC SQL

SET TRANSACTION NAME t1 READ ONLY;

4 Isolation level
The isolation level parameter specifies the control a transaction exercises over table
access. It determines the:

g View of a database the transaction can see.

g Table access allowed to this and other simultaneous transactions.

STARTING A NAMED TRANSACTION

PROGRAMMER’S GUIDE 59

The following table describes the three isolation levels supported by InterBase:

The isolation level for most transactions should be either SNAPSHOT or READ COMMITTED.
These levels enable simultaneous transactions to select, insert, update, and delete data in
shared databases, and they minimize the chance for lock conflicts. Lock conflicts occur
in two situations:

g When a transaction attempts to update a row already updated or deleted by another
transaction. A row updated by a transaction is effectively locked for update to all other
transactions until the controlling transaction commits or rolls back. READ COMMITTED
transactions can read and update rows updated by simultaneous transactions after they
commit.

g When a transaction attempts to insert, update, or delete a row in a table locked by another
transaction with an isolation level of SNAPSHOT TABLE STABILITY. SNAPSHOT TABLE STABILITY
locks entire tables for write access, although concurrent reads by other SNAPSHOT and
READ COMMITTED transactions are permitted.

Using SNAPSHOT TABLE STABILITY guarantees that only a single transaction can make
changes to tables, but increases the chance of lock conflicts where there are simultaneous
transactions attempting to access the same tables. For more information about the
likelihood of lock conflicts, see “Isolation level interactions” on page 64.

COMPARING SNAPSHOT, READ COMMITTED,
AND SNAPSHOT TABLE STABILITY

There are five classic problems all transaction management statements must address:

Isolation level Purpose

SNAPSHOT Provides a stable, committed view of the database at the time the transaction starts; this
is the default isolation level. Other simultaneous transactions can UPDATE and INSERT rows,
but this transaction cannot see those changes. For updated rows, this transaction sees
versions of those rows as they existed at the start of the transaction. If this transaction
attempts to update or delete rows changed by another transaction, an update conflict is
reported.

SNAPSHOT TABLE STABILITY Provides a transaction sole insert, update, and delete access to the tables it uses. Other
simultaneous transactions may still be able to select rows from those tables.

READ COMMITTED Enables the transaction to see all committed data in the database, and to update rows
updated and committed by other simultaneous transactions without causing lost update
problems.

TABLE 4.4 ISOLATION LEVEL options

CHAPTER 4 WORKING WITH TRANSACTIONS

60 INTERBASE 5

g Lost updates, which can occur if an update is overwritten by a simultaneous transaction
unaware of the last updates made by another transaction.

g Dirty reads, which can occur if the system allows one transaction to select uncommitted
changes made by another transaction.

g Non-reproducible reads, which can occur if one transaction is allowed to update or
delete rows that are repeatedly selected by another transaction. READ COMMITTED
transactions permit non-reproducible reads by design, since they can see committed
deletes made by other transactions.

g Phantom rows, which can occur if one transaction is allowed to select some, but not all,
new rows written by another transaction. READ COMMITTED transactions do not prevent
phantom rows.

g Update side effects, which can occur when row values are interdependent, and their
dependencies are not adequately protected or enforced by locking, triggers, or integrity
constraints. These conflicts occur when two or more simultaneous transactions randomly
and repeatedly access and update the same data; such transactions are called interleaved
transactions.

Except as noted, all three InterBase isolation levels control these problems. The following
table summarizes how a transaction with a particular isolation level controls access to its
data for other simultaneous transactions:

Problem SNAPSHOT, READ COMMITTED SNAPSHOT TABLE STABILITY

Lost updates Other transactions cannot update rows
already updated by this transaction.

Other transactions cannot update tables
controlled by this transaction.

Dirty reads Other SNAPSHOT transactions can only read a
previous version of a row updated by this
transaction.

Other READ COMMITTED transactions can only
read a previous version, or committed
updates.

Other transactions cannot access tables
updated by this transaction.

TABLE 4.5 InterBase management of classic transaction conflicts

STARTING A NAMED TRANSACTION

PROGRAMMER’S GUIDE 61

CHOOSING BETWEEN SNAPSHOT AND READ COMMITTED

The choice between SNAPSHOT and READ COMMITTED isolation levels depends on an
application’s needs. SNAPSHOT is the default InterBase isolation level. READ COMMITTED
duplicates SNAPSHOT behavior, but can read subsequent changes committed by other
transactions. In many cases, using READ COMMITTED reduces data contention.

SNAPSHOT transactions receive a stable view of a database as it exists the moment the
transactions start. READ COMMITTED transactions can see the latest committed versions of
rows. Both types of transactions can use SELECT statements unless they encounter the
following conditions:

g Table locked by SNAPSHOT TABLE STABILITY transaction for UPDATE.

g Uncommitted inserts made by other simultaneous transactions. In this case, a SELECT is
allowed, but changes cannot be seen.

READ COMMITTED transactions can read the latest committed version of rows. A SNAPSHOT
transaction can read only a prior version of the row as it existed before the update
occurred.

Non-reproducible
reads

SNAPSHOT and SNAPSHOT TABLE STABILITY
transactions can only read versions of rows
committed when they started.

READ COMMITTED transactions must expect that
reads cannot be reproduced.

SNAPSHOT and SNAPSHOT TABLE STABILITY
transactions can only read versions of rows
committed when they started.

Other transactions cannot access tables
updated by this transaction.

Phantom rows READ COMMITTED transactions may encounter
phantom rows.

Other transactions cannot access tables
controlled by this transaction.

Update side effects Other SNAPSHOT transactions can only read a
previous version of a row updated by this
transaction.

Other READ COMMITTED transactions can only
read a previous version, or committed
updates.

Use triggers and integrity constraints to try to
avoid any problems with interleaved
transactions.

Other transactions cannot update tables
controlled by this transaction.

Use triggers and integrity constraints to avoid
any problems with interleaved transactions.

Problem SNAPSHOT, READ COMMITTED SNAPSHOT TABLE STABILITY

TABLE 4.5 InterBase management of classic transaction conflicts (continued)

CHAPTER 4 WORKING WITH TRANSACTIONS

62 INTERBASE 5

SNAPHOT and READ COMMITTED transactions with READ WRITE access can use INSERT,
UPDATE, and DELETE unless they encounter tables locked by SNAPSHOT TABLE STABILITY
transactions.

SNAPSHOT transactions cannot update or delete rows previously updated or deleted and
then committed by other simultaneous transactions. Attempting to update a row
previously updated or deleted by another transaction results in an update conflict error.

A READ COMMITTED READ WRITE transaction can read changes committed by other
transactions, and subsequently update those changed rows.

Occasional update conflicts may occur when simultaneous SNAPSHOT and READ
COMMITTED transactions attempt to update the same row at the same time. When update
conflicts occur, expect the following behavior:

g For mass or searched updates, updates where a single UPDATE modifies multiple rows in
a table, all updates are undone on conflict. The UPDATE can be retried. For READ
COMMITTED transactions, the NO RECORD_VERSION option can be used to narrow the
window between reads and updates or deletes. For more information, see “Starting a
transaction with READ COMMITTED isolation level” on page 63.

g For cursor or positioned updates, where rows are retrieved and updated from an active
set one row at a time, only a single update is undone. To retry the update, the cursor must
be closed, then reopened, and updates resumed at the point of previous conflict.

For more information about UPDATE through cursors, see Chapter 6, “Working with
Data.”

STARTING A TRANSACTION WITH SNAPSHOT ISOLATION LEVEL

InterBase assumes that the default isolation level for transactions is SNAPSHOT. Therefore,
SNAPSHOT need not be specified in SET TRANSACTION to set the isolation level. For
example, the following statements are equivalent. They both start a transaction, t1, for
READ WRITE access and set isolation level to SNAPSHOT.

EXEC SQL

SET TRANSACTION NAME t1;

EXEC SQL

SET TRANSACTION NAME t1 READ WRITE SNAPSHOT;

When an isolation level is specified, it must follow the access and lock resolution modes.

TIP It is good programming practice to specify a transaction’s isolation level, even when it is
SNAPSHOT. It makes an application’s source code easier to read and debug because the
program’s intentions are clearly spelled out.

STARTING A NAMED TRANSACTION

PROGRAMMER’S GUIDE 63

STARTING A TRANSACTION WITH READ COMMITTED ISOLATION LEVEL

To start a READ COMMITTED transaction, the isolation level must be specified. For example,
the following statement starts a named transaction, t1, for READ WRITE access and sets
isolation level to READ COMMITTED:

EXEC SQL

SET TRANSACTION NAME t1 READ WRITE READ COMMITTED;

Isolation level always follows access mode. If the access mode is omitted, isolation level
is the first parameter to follow the transaction name.

READ COMMITTED supports mutually exclusive optional parameters, RECORD_VERSION and
NO RECORD_VERSION, which determine the READ COMMITTED behavior when it encounters
a row where the latest version of that row is uncommitted:

g RECORD_VERSION specifies that the transaction immediately reads the latest committed
version of a row, even if a more recent uncommitted version also resides on disk.

g NO RECORD_VERSION, the default, specifies that the transaction can only read the latest
version of a requested row. If the WAIT lock resolution option is also specified, then the
transaction waits until the latest version of a row is committed or rolled back, and retries
its read. If the NO WAIT option is specified, the transaction returns an immediate
deadlock error.

Because NO RECORD_VERSION is the default behavior, it need not be specified with READ
COMITTED. For example, the following statements are equivalent. They start a named
transaction, t1, for READ WRITE access and set isolation level to READ COMMITTED NO
RECORD_VERSION.

EXEC SQL

SET TRANSACTION NAME t1 READ WRITE READ COMMITTED;

EXEC SQL

SET TRANSACTION NAME t1 READ WRITE READ COMMITTED

NO RECORD_VERSION;

RECORD_VERSION must always be specified when it is used. For example, the following
statement starts a named transaction, t1, for READ WRITE access and sets isolation level to
READ COMMITTED RECORD_VERSION:

EXEC SQL

SET TRANSACTION NAME t1 READ WRITE READ COMMITTED

RECORD_VERSION;

CHAPTER 4 WORKING WITH TRANSACTIONS

64 INTERBASE 5

STARTING A TRANSACTION WITH
SNAPSHOT TABLE STABILITY ISOLATION LEVEL

To start a SNAPSHOT TABLE STABILITY transaction, the isolation level must be specified. For
example, the following statement starts a named transaction, t1, for READ WRITE access
and sets isolation level to SNAPSHOT TABLE STABILITY:

EXEC SQL

SET TRANSACTION NAME t1 READ WRITE SNAPSHOT TABLE STABILITY;

Isolation level always follows the optional access mode and lock resolution parameters,
if they are present.

IMPORTANT Use SNAPSHOT TABLE STABILITY with care. In an environment where multiple transactions
share database access, SNAPSHOT TABLE STABILITY greatly increases the likelihood of lock
conflicts.

ISOLATION LEVEL INTERACTIONS

To determine the possibility for lock conflicts between two transactions accessing the
same database, each transaction’s isolation level and access mode must be considered.
The following table summarizes possible combinations.

As this table illustrates, SNAPSHOT and READ COMMITTED transactions offer the least
chance for conflicts. For example, if t1 is a SNAPSHOT transaction with READ WRITE
access, and t2 is a READ COMMITTED transaction with READ WRITE access, t1 and t2 only
conflict when they attempt to update the same rows. If t1 and t2 have READ ONLY access,
they never conflict with any other transaction.

SNAPSHOT or READ COMMITTED SNAPSHOT TABLE STABILITY

UPDATE SELECT UPDATE SELECT

SNAPSHOT or
READ COMMITTED

UPDATE Some simultaneous
updates may conflict

— Always conflicts Always conflicts

SELECT — — — —

SNAPSHOT TABLE
STABILITY

UPDATE Always conflicts — Always conflicts Always conflicts

SELECT Always conflicts — Always conflicts —

TABLE 4.6 Isolation level Interaction with SELECT and UPDATE

STARTING A NAMED TRANSACTION

PROGRAMMER’S GUIDE 65

A SNAPSHOT TABLE STABILITY transaction with READ WRITE access is guaranteed that it
alone can update tables, but it conflicts with all other simultaneous transactions except
for SNAPSHOT and READ COMMITTED transactions running in READ ONLY mode. A SNAPSHOT
TABLE STABILITY transaction with READ ONLY access is compatible with any other read-only
transaction, but conflicts with any transaction that attempts to insert, update, or delete
data.

4 Lock resolution
The lock resolution parameter determines what happens when a transaction encounters
a lock conflict. There are two options:

g WAIT, the default, causes the transaction to wait until locked resources are released. Once
the locks are released, the transaction retries its operation.

g NO WAIT returns a lock conflict error without waiting for locks to be released.

Because WAIT is the default lock resolution, you don’t need to specify it in a SET
TRANSACTION statement. For example, the following statements are equivalent. They both
start a transaction, t1, for READ WRITE access, WAIT lock resolution, and READ COMMITTED
isolation level:

EXEC SQL

SET TRANSACTION NAME t1 READ WRITE READ COMMITTED;

EXEC SQL

SET TRANSACTION NAME t1 READ WRITE WAIT READ COMMITTED;

To use NO WAIT, the lock resolution parameter must be specified. For example, the
following statement starts the named transaction, t1, for READ WRITE access, NO WAIT lock
resolution, and SNAPSHOT isolation level:

EXEC SQL

SET TRANSACTION NAME t1 READ WRITE NO WAIT READ SNAPSHOT;

When lock resolution is specified, it follows the optional access mode, and precedes the
optional isolation level parameter.

TIP It is good programming practice to specify a transaction’s lock resolution, even when it
is WAIT. It makes an application’s source code easier to read and debug because the
program’s intentions are clearly spelled out.

CHAPTER 4 WORKING WITH TRANSACTIONS

66 INTERBASE 5

4 RESERVING clause
The optional RESERVING clause enables transactions to guarantee themselves specific
levels of access to a subset of available tables at the expense of other simultaneous
transactions. Reservation takes place at the start of the transaction instead of only when
data manipulation statements require a particular level of access. RESERVING is only useful
in an environment where simultaneous transactions share database access. It has three
main purposes:

g To prevent possible deadlocks and update conflicts that can occur if locks are taken only
when actually needed (the default behavior).

g To provide for dependency locking, the locking of tables that may be affected by triggers
and integrity constraints. While explicit dependency locking is not required, it can assure
that update conflicts do not occur because of indirect table conflicts.

g To change the level of shared access for one or more individual tables in a transaction.
For example, a READ WRITE SNAPSHOT transaction may need exclusive update rights for a
single table, and could use the RESERVING clause to guarantee itself sole write access to
the table.

IMPORTANT A single SET TRANSACTION statement can contain either a RESERVING or a USING clause,
but not both. Use the SET TRANSACTION syntax to reserve tables for a transaction:

EXEC SQL

SET TRANSACTION [NAME name]
[READ WRITE| READ ONLY]

[WAIT | NO WAIT]

[[ISOLATION LEVEL] {SNAPSHOT [TABLE STABILITY]

| READ COMMITTED [[NO] RECORD_VERSION]}]

RESERVING <reserving_clause>;
<reserving_clause> = table [, table ...]

[FOR [SHARED | PROTECTED] {READ | WRITE}] [, <reserving_clause>]

STARTING A NAMED TRANSACTION

PROGRAMMER’S GUIDE 67

Each table should only appear once in the RESERVING clause. Each table, or a list of tables
separated by commas, must be followed by a clause describing the type of reservation
requested. The following table lists these reservation options:

The following statement starts a SNAPSHOT transaction, t1, for READ WRITE access, and
reserves a single table for PROTECTED WRITE access:

EXEC SQL

SET TRANSACTION NAME t1 READ WRITE WAIT SNAPSHOT

RESERVING EMPLOYEE FOR PROTECTED WRITE;

The next statement starts a READ COMMITTED transaction, t1, for READ WRITE access, and
reserves two tables, one for SHARED WRITE, and another for PROTECTED READ:

EXEC SQL

SET TRANSACTION NAME t1 READ WRITE WAIT READ COMMITTED

RESERVING EMPLOYEES FOR SHARED WRITE, EMP_PROJ

FOR PROTECTED READ;

SNAPSHOT and READ COMMITTED transactions use RESERVING to implement more restrictive
access to tables for other simultaneous transactions. SNAPSHOT TABLE STABILITY
transactions use RESERVING to reduce the likelihood of deadlock in critical situations.

Reservation
option Purpose

PROTECTED READ Prevents other transactions from updating rows. All transactions can select
from the table.

PROTECTED WRITE Prevents other transactions from updating rows.
SNAPSHOT and READ COMMITTED transactions can select from the table, but only
this transaction can update rows.

SHARED READ Any transaction can select from this table. Any READ WRITE transaction can
update this table. This is the most liberal reservation mode.

SHARED WRITE Any SNAPSHOT or READ COMMITTED READ WRITE transaction can update this table.
Other SNAPSHOT and READ COMMITTED transactions can also select from this
table.

TABLE 4.7 Table reservation options for the RESERVING clause

CHAPTER 4 WORKING WITH TRANSACTIONS

68 INTERBASE 5

4 USING clause
Every time a transaction is started, InterBase reserves system resources for each database
currently attached for program access. In a multi-transaction, multi-database program,
the USING clause can be used to preserve system resources by restricting the number of
open databases to which a transaction has access. USING restricts a transaction’s access
to tables to a listed subset of all open databases using the following syntax:

EXEC SQL

SET TRANSACTION [NAME name]
[READ WRITE | READ ONLY]

[WAIT | NO WAIT]

[[ISOLATION LEVEL] {SNAPSHOT [TABLE STABILITY]

| READ COMMITTED [[NO] RECORD_VERSION]}]

USING dbhandle> [, dbhandle ...];

IMPORTANT A single SET TRANSACTION statement can contain either a USING or a RESERVING clause,
but not both.

The following C program fragment opens three databases, test.gdb, research.gdb, and
employee.gdb, assigning them to the database handles TEST, RESEARCH, and EMP,
respectively. Then it starts the default transaction and restricts its access to TEST and EMP:

. . .

EXEC SQL

SET DATABASE ATLAS = "test.gdb";

EXEC SQL

SET DATABASE RESEARCH = "research.gdb";

EXEC SQL

SET DATABASE EMP = "employee.gdb";

EXEC SQL

CONNECT TEST, RESEARCH, EMP; /* Open all databases */

EXEC SQL

SET TRANSACTION USING TEST, EMP;

. . .

Using transaction names in data statements
Once named transactions are started, use their names in INSERT, UPDATE, DELETE, and
OPEN statements to specify which transaction controls the statement. For example, the
following C code fragment declares two transaction handles, mytrans1, and mytrans2,
initializes them to zero, starts the transactions, and then uses the transaction names to
qualify the data manipulation statements that follow:

USING TRANSACTION NAMES IN DATA STATEMENTS

PROGRAMMER’S GUIDE 69

. . .

EXEC SQL

BEGIN DECLARE SECTION;

long *mytrans1, *mytrans2;

char city[26];

EXEC SQL

END DECLARE SECTION;

mytrans1 = 0L;

mytrans2 = 0L;

. . .

EXEC SQL

SET DATABASE ATLAS = "atlas.gdb";

EXEC SQL

CONNECT;

EXEC SQL

DECLARE CITYLIST CURSOR FOR

SELECT CITY FROM CITIES

WHERE COUNTRY = "Mexico";

EXEC SQL

SET TRANSACTION NAME mytrans1;

EXEC SQL

SET TRANSACTION mytrans2 READ ONLY READ COMMITTED;

. . .

printf("Mexican city to add to database: ");

gets(city);

EXEC SQL

INSERT TRANSACTION mytrans1 INTO CITIES (CITY, COUNTRY)

VALUES :city, "Mexico";

EXEC SQL

COMMIT mytrans1;

EXEC SQL

OPEN TRANSACTION mytrans2 CITYLIST;

EXEC SQL

FETCH CITYLIST INTO :city;

while (!SQLCODE)

{

printf("%s\n", city);

EXEC SQL

FETCH CITYLIST INTO :city;

}

EXEC SQL

CLOSE CITYLIST;

CHAPTER 4 WORKING WITH TRANSACTIONS

70 INTERBASE 5

EXEC SQL

COMMIT;

EXEC SQL

DISCONNECT;

. . .

As this example illustrates, a transaction name cannot appear in a DECLARE CURSOR
statement. To use a name with a cursor declaration, include the transaction name in the
cursor’s OPEN statement. The transaction name is not required in subsequent FETCH and
CLOSE statements for that cursor.

Note The DSQL EXECUTE and EXECUTE IMMEDIATE statements also support transaction
names.

For more information about using transaction names with data manipulation statements,
see Chapter 6, “Working with Data.” For more information about transaction names
and the COMMIT statement, see “Using COMMIT” on page 71. For more information
about using transaction names with DSQL statements, see “Working with multiple
transactions in DSQL” on page 79.

Ending a transaction
When a transaction’s tasks are complete, or an error prevents a transaction from
completing, the transaction must be ended to set the database to a consistent state. There
are two statements that end transactions:

g COMMIT makes a transaction’s changes permanent in the database. It signals that a
transaction completed all its actions successfully.

g ROLLBACK undoes a transaction’s changes, returning the database to its previous state,
before the transaction started. ROLLBACK is typically used when one or more errors occur
that prevent a transaction from completing successfully.

Both COMMIT and ROLLBACK close the record streams associated with the transaction,
reinitialize the transaction name to zero, and release system resources allocated for the
transaction. Freed system resources are available for subsequent use by any application
or program.

COMMIT and ROLLBACK have additional benefits. They clearly indicate program logic and
intention, make a program easier to understand, and most importantly, assure that a
transaction’s changes are handled as intended by the programmer.

ENDING A TRANSACTION

PROGRAMMER’S GUIDE 71

ROLLBACK is frequently used inside error-handling routines to clean up transactions when
errors occur. It can also be used to roll back a partially completed transaction prior to
retrying it, and it can be used to restore a database to its prior state if a program
encounters an unrecoverable error.

IMPORTANT If the program ends before a transaction ends, a transaction is automatically rolled back,
but databases are not closed. If a program ends without closing the database, data loss
or corruption is possible. Therefore, open databases should always be closed by issuing
explicit DISCONNECT, COMMIT RELEASE, or ROLLBACK RELEASE statements.

For more information about DISCONNECT, COMMIT RELEASE, and ROLLBACK RELEASE, see
Chapter 3, “Working with Databases.”

Using COMMIT

Use COMMIT to write transaction changes permanently to a database.
COMMIT closes the record streams associated with the transaction, resets the transaction
name to zero, and frees system resources assigned to the transaction for other uses. The
complete syntax for COMMIT is:

EXEC SQL

COMMIT [TRANSACTION name] [RETAIN [SNAPSHOT] | RELEASE dbhandle
[, dbhandle ...]]

For example, the following C code fragment contains a complete transaction. It gives all
employees who have worked since December 31, 1992, a 4.3% cost-of-living salary
increase. If all qualified employee records are successfully updated, the transaction is
committed, and the changes are actually applied to the database.

. . .

EXEC SQL

SET TRANSACTION SNAPSHOT TABLE STABILITY;

EXEC SQL

UPDATE EMPLOYEE

SET SALARY = SALARY * 1.043

WHERE HIRE_DATE < "1-JAN-1993";

EXEC SQL

COMMIT;

. . .

By default, COMMIT affects only the default transaction, gds__trans. To commit another
transaction, use its transaction name as a parameter to COMMIT.

CHAPTER 4 WORKING WITH TRANSACTIONS

72 INTERBASE 5

TIP Even READ ONLY transactions that do not change a database should be ended with a
COMMIT rather than ROLLBACK. The database is not changed, but the overhead required
to start subsequent transactions is greatly reduced.

4 Specifying transaction names
To commit changes for transactions other than the default transaction, specify a
transaction name as a COMMIT parameter. For example, the following C code fragment
starts two transactions using names, and commits them:

. . .

EXEC SQL

BEGIN DECLARE SECTION;

isc_tr_handle TR1, TR2;

EXEC SQL

END DECLARE SECTION;

TR1 = (isc_tr_handle) NULL;

TR2 = (isc_tr_handle) NULL;

. . .

EXEC SQL

SET TRANSACTION NAME TR1;

EXEC SQL

SET TRANSACTION NAME TR2;

. . .

/* do actual processsing here */

. . .

EXEC SQL

COMMIT TRANSACTION TR1;

EXEC SQL

COMMIT TRANSACTION TR2;

. . .

IMPORTANT In multi-transaction programs, transaction names must always be specified for COMMIT
except when committing the default transaction.

4 Committing without freeing a transaction
To write transaction changes to the database without releasing the current transaction
snapshot, use the RETAIN option with COMMIT. The COMMIT RETAIN statement commits
your work and opens a new transaction, preserving the old transaction’s snapshot. In a
busy multi-user environment, retaining the snapshot speeds up processing and uses
fewer system resources than closing and starting a new transaction for each action. The
disadvantage of using COMMIT RETAIN is that you do not see the pending transactions of
other users.

ENDING A TRANSACTION

PROGRAMMER’S GUIDE 73

The syntax for the RETAIN option is as follows:

EXEC SQL

COMMIT [TRANSACTION name] RETAIN [SNAPSHOT];

TIP Developers who use Borland tools such as Delphi use this feature by specifying “soft
commits” in the BDE configuration.

For example, the following C code fragment updates the POPULATION column by
user-specified amounts for cities in the CITIES table that are in a country also specified by
the user. Each time a qualified row is updated, a COMMIT with the RETAIN option is issued,
preserving the current cursor status and system resources.

. . .

EXEC SQL

BEGIN DECLARE SECTION;

char country[26], city[26], asciimult[10];

int multiplier;

long pop;

EXEC SQL

END DECLARE SECTION;

. . .

main ()

{

EXEC SQL

DECLARE CHANGEPOP CURSOR FOR

SELECT CITY, POPULATION

FROM CITIES

WHERE COUNTRY = :country;

printf("Enter country with city populations needing adjustment: ");

gets(country);

EXEC SQL

SET TRANSACTION;

EXEC SQL

OPEN CHANGEPOP;

EXEC SQL

FETCH CHANGEPOP INTO :city, :pop;

while(!SQLCODE)

{

printf("City: %s Population: %ld\n", city, pop);

printf("\nPercent change (100%% to -100%%:");

gets(asciimult);

multiplier = atoi(asciimult);

EXEC SQL

CHAPTER 4 WORKING WITH TRANSACTIONS

74 INTERBASE 5

UPDATE CITIES

SET POPULATION = POPULATION * (1 + :multiplier / 100)

WHERE CURRENT OF CHANGEPOP;

EXEC SQL

COMMIT RETAIN; /* commit changes, save current state */

EXEC SQL

FETCH CHANGEPOP INTO :city, :pop;

if (SQLCODE && (SQLCODE != 100))

{

isc_print_sqlerror(SQLCODE, isc_$status);

EXEC SQL

ROLLBACK;

EXEC SQL

DISCONNECT;

exit(1);

}

}

EXEC SQL

COMMIT;

EXEC SQL

DISCONNECT;

}

Note If you execute a ROLLBACK after a COMMIT RETAIN, it rolls back only updates and
writes that occurred after the COMMIT RETAIN.

IMPORTANT In multi-transaction programs, a transaction name must be specified for COMMIT RETAIN,
except when retaining the state of the default transaction. For more information about
transaction names, see “Naming transactions” on page 54.

Using ROLLBACK

Use ROLLBACK to restore the database to its condition prior to the start of the transaction.
ROLLBACK also closes the record streams associated with the transaction, resets the
transaction name to zero, and frees system resources assigned to the transaction for other
uses. ROLLBACK typically appears in error-handling routines. The syntax for ROLLBACK is:

EXEC SQL

ROLLBACK [TRANSACTION name] [RELEASE [dbhandle [, dbhandle ...]]];

ENDING A TRANSACTION

PROGRAMMER’S GUIDE 75

For example, the following C code fragment contains a complete transaction that gives
all employees who have worked since December 31, 1992, a 4.3% cost-of-living salary
adjustment. If all qualified employee records are successfully updated, the transaction is
committed, and the changes are actually applied to the database. If an error occurs, all
changes made by the transaction are undone, and the database is restored to its condition
prior to the start of the transaction.

. . .

EXEC SQL

SET TRANSACTION SNAPSHOT TABLE STABILITY;

EXEC SQL

UPDATE EMPLOYEES

SET SALARY = SALARY * 1.043

WHERE HIRE_DATE < "1-JAN-1993";

if (SQLCODE && (SQLCODE != 100))

{

isc_print_sqlerror(SQLCODE, isc_$status);

EXEC SQL

ROLLBACK;

EXEC SQL

DISCONNECT;

exit(1);

}

EXEC SQL

COMMIT;

EXEC SQL

DISCONNECT;

. . .

By default, ROLLBACK affects only the default transaction, gds__trans. To roll back other
transactions, use their transaction names as parameters to
ROLLBACK.

CHAPTER 4 WORKING WITH TRANSACTIONS

76 INTERBASE 5

Working with multiple transactions
Because InterBase provides support for transaction names, a program can use as many
transactions at once as necessary to carry out its work. Each simultaneous transaction in
a program requires its own name. A transaction’s name distinguishes it from other active
transactions. The name can also be used in data manipulation and transaction
management statements to specify which transaction controls the statement. For more
information about declaring and using transaction names, see “Starting a named
transaction” on page 53.

There are four steps for using named transactions in a program:

1. Declare a unique host-language variable for each transaction name.

2. Initialize each transaction variable to zero.

3. Use SET TRANSACTION to start each transaction using an available transaction
name.

4. Use the transaction names as parameters in subsequent transaction
management and data manipulation statements that should be controlled by
a specified transaction.

The default transaction
In multi-transaction programs, it is good programming practice to supply a transaction
name for every transaction a program defines. One transaction in a multi-transaction
program can be the default transaction, gds__trans. When the default transaction is used
in multi-transaction programs, it, too, should be started explicitly and referenced by
name in data manipulation statements.

If the transaction name is omitted from a transaction management or data manipulation
statement, InterBase assumes the statement affects the default transaction. If the default
transaction has not been explicitly started with a SET TRANSACTION statement, gpre inserts
a statement during preprocessing to start it.

IMPORTANT DSQL programs must be preprocessed with the gpre -m switch. In this mode, gpre does
not generate the default transaction automatically, but instead reports an error. DSQL
programs require that all transactions be explicitly started.

WORKING WITH MULTIPLE TRANSACTIONS

PROGRAMMER’S GUIDE 77

Using cursors
DECLARE CURSOR does not support transaction names. Instead, to associate a named
transaction with a cursor, include the transaction name as an optional parameter in the
cursor’s OPEN statement. A cursor can only be associated with a single transaction. For
example, the following statements declare a cursor, and open it, associating it with the
transaction, T1:

. . .

EXEC SQL

DECLARE S CURSOR FOR

SELECT COUNTRY, CUST_NO, SUM(QTY_ORDERED)

FROM SALES

GROUP BY CUST_NO

WHERE COUNTRY = "Mexico";

EXEC SQL

SET TRANSACTION T1 READ ONLY READ COMMITTED;

. . .

EXEC SQL

OPEN TRANSACTION T1 S;

. . .

An OPEN statement without the optional transaction name parameter operates under
control of the default transaction, gds__trans.

Once a named transaction is associated with a cursor, subsequent cursor statements
automatically operate under control of that transaction. Therefore, it does not support a
transaction name parameter. For example, the following statements illustrate a FETCH and
CLOSE for the S cursor after it is associated with the named transaction, t2:

. . .

EXEC SQL

OPEN TRANSACTION t2 S;

EXEC SQL

FETCH S INTO :country, :cust_no, :qty;

while (!SQLCODE)

{

printf("%s %d %d\n", country, cust_no, qty);

EXEC SQL

FETCH S INTO :country, :cust_no, :qty;

}

EXEC SQL

CLOSE S;

CHAPTER 4 WORKING WITH TRANSACTIONS

78 INTERBASE 5

. . .

Multiple cursors can be controlled by a single transaction, or each transaction can control
a single cursor according to a program’s needs.

A multi-transaction example
The following C code illustrates the steps required to create a simple multi-transaction
program. It declares two transaction handles, mytrans1, and mytrans2, initializes them
to zero, starts the transactions, and then uses the transaction names to qualify the data
manipulation statements that follow. It also illustrates the use of a cursor with a named
transaction.

. . .

EXEC SQL

BEGIN DECLARE SECTION;

long *mytrans1 = 0L, *mytrans2 = 0L;

char city[26];

EXEC SQL

END DECLARE SECTION;

. . .

EXEC SQL

DECLARE CITYLIST CURSOR FOR

SELECT CITY FROM CITIES

WHERE COUNTRY = "Mexico";

EXEC SQL

SET TRANSACTION NAME mytrans1;

EXEC SQL

SET TRANSACTION mytrans2 READ ONLY READ COMMITTED;

. . .

printf("Mexican city to add to database: ");

gets(city);

EXEC SQL

INSERT TRANSACTION mytrans1 INTO CITIES

VALUES :city, "Mexico", NULL, NULL, NULL, NULL;

EXEC SQL

COMMIT mytrans1;

EXEC SQL

OPEN TRANSACTION mytrans2 CITYLIST;

EXEC SQL

FETCH CITYLIST INTO :city;

while (!SQLCODE)

WORKING WITH MULTIPLE TRANSACTIONS IN DSQL

PROGRAMMER’S GUIDE 79

{

printf("%s\n", city);

EXEC SQL

FETCH CITYLIST INTO :city;

}

EXEC SQL

CLOSE CITYLIST;

EXEC SQL

COMMIT mytrans2;

EXEC SQL

DISCONNECT

. . .

Working with multiple transactions in DSQL
In InterBase, DSQL applications can also use multiple transactions, but with the following
limitations:

g Programs must be preprocessed with the gpre -m switch.

g Transaction names must be declared statically. They cannot be defined through
user-modified host variables at run time.

g Transaction names must be initialized to zero before appearing in DSQL statements.

g All transactions must be started with explicit SET TRANSACTION
statements.

g No data definition language (DDL) can be used in the context of a named transaction in
an embedded program; DDL must always occur in the context of the default transaction,
gds__trans.

g As long as a transaction name parameter is not specified with a SET TRANSACTION
statement, it can follow a PREPARE statement to modify the behavior of a subsequently
named transaction in an EXECUTE or EXECUTE IMMEDIATE statement. This enables a user
to modify transaction behaviors at run time.

Transaction names are fixed for all InterBase programs during preprocessing, and cannot
be dynamically assigned. A user can still modify DSQL transaction behavior at run time.
It is up to the programmer to anticipate possible transaction behavior modification and
plan for it. The following section describes how users can modify transaction behavior.

CHAPTER 4 WORKING WITH TRANSACTIONS

80 INTERBASE 5

Modifying transaction behavior with “?”

The number and name of transactions available to a DSQL program is fixed when the
program is preprocessed with gpre, the InterBase preprocessor. The programmer
determines both the named transactions that control each DSQL statement in a program,
and the default behavior of those transactions. A user can change a named transaction’s
behavior at run time.

In DSQL programs, a user enters an SQL statement into a host-language string variable,
and then the host variable is processed in a PREPARE statement or EXECUTE IMMEDIATE
statement.

PREPARE

g Checks the statement in the variable for errors

g Loads the statement into an XSQLDA for a subsequent EXECUTE statement

EXECUTE IMMEDIATE

g Checks the statement for errors

g Loads the statement into the XSQLDA

g Executes the statement

Both EXECUTE and EXECUTE IMMEDIATE operate within the context of a
programmer-specified transaction, which can be a named transaction. If the transaction
name is omitted, these statements are controlled by the default transaction, gds__trans.

You can modify the transaction behavior for an EXECUTE and EXECUTE IMMEDIATE
statement by:

g Enabling a user to enter a SET TRANSACTION statement into a host variable

g Executing the SET TRANSACTION statement before the EXECUTE or EXECUTE IMMEDIATE
whose transaction context should be modified

In this context, a SET TRANSACTION statement changes the behavior of the next named or
default transaction until another SET TRANSACTION occurs.

The following C code fragment provides the user the option of specifying a new
transaction behavior, applies the behavior change, executes the next user statement in
the context of that changed transaction, then restores the transaction’s original behavior.

. . .

EXEC SQL

BEGIN DECLARE SECTION;

WORKING WITH MULTIPLE TRANSACTIONS IN DSQL

PROGRAMMER’S GUIDE 81

char usertrans[512], query[1024];

char deftrans[] = {"SET TRANSACTION READ WRITE WAIT SNAPSHOT"};

EXEC SQL

END DECLARE SECTION;

. . .

printf("\nEnter SQL statement: ");

gets(query);

printf("\nChange transaction behavior (Y/N)? ");

gets(usertrans);

if (usertrans[0] == "Y" || usertrans[0] == "y")

{

printf("\nEnter \"SET TRANSACTION\" and desired behavior: ");

gets(usertrans);

EXEC SQL

COMMIT usertrans;

EXEC SQL

EXECUTE IMMEDIATE usertrans;

}

else

{

EXEC SQL

EXECUTE IMMEDIATE deftrans;

}

EXEC SQL

EXECUTE IMMEDIATE query;

EXEC SQL

EXECUTE IMMEDIATE deftrans;

. . .

IMPORTANT As this example illustrates, you must commit or roll back any previous transactions
before you can execute SET TRANSACTION.

CHAPTER 4 WORKING WITH TRANSACTIONS

82 INTERBASE 5

PROGRAMMER’S GUIDE 83

CHAPTER

5
Chapter 5Working with Data

Definition Statements

This chapter discusses how to create, modify, and delete databases, tables, views, and
indexes in SQL applications. A database’s tables, views, and indexes make up most of its
underlying structure, or metadata.

IMPORTANT The discussion in this chapter applies equally to dynamic SQL (DSQL) applications,
except that users enter DSQL data definition statements at run time, and do not preface
those statements with EXEC SQL.

CHAPTER 5 WORKING WITH DATA DEFINITION STATEMENTS

84 INTERBASE 5

The preferred method for creating, modifying, and deleting metadata is through the
InterBase interactive SQL tool, isql, but in some instances, it may be necessary or desirable
to embed some data definition capabilities in an SQL application. Both SQL and DSQL
applications can use the following subset of data definition statements:

DSQL also supports creating, altering, and dropping stored procedures, triggers, and
exceptions. DSQL is especially powerful for data definition because it enables users to
enter any supported data definition statement at run time. For example, isql itself is a
DSQL application. For more information about using isql to define stored procedures,
triggers, and exceptions, see the Data Definition Guide. For a complete discussion of
DSQL programming, see Chapter 14, “Using Dynamic SQL.”

Creating metadata
SQL data definition statements are used in applications the sole purpose of which is to
create or modify databases or tables. Typically the expectation is that these applications
will be used only once by any given user, then discarded, or saved for later modification
by a database designer who can read the program code as a record of a database’s
structure. If data definition changes must be made, editing a copy of existing code is
easier than starting over.

Note Use the InterBase interactive SQL tool, isql, to create and alter data definitions
whenever possible. For more information about isql, see the Operations Guide.

CREATE statement ALTER statement DROP statement

CREATE DATABASE ALTER DATABASE —

CREATE DOMAIN ALTER DOMAIN DROP DOMAIN

CREATE GENERATOR SET GENERATOR —

CREATE INDEX ALTER INDEX DROP INDEX

CREATE SHADOW ALTER SHADOW DROP SHADOW

CREATE TABLE ALTER TABLE DROP TABLE

CREATE VIEW — DROP VIEW

DECLARE EXTERNAL — DROP EXTERNAL

DECLARE FILTER — DROP FILTER

TABLE 5.1 Data definition statements supported for embedded applications

CREATING METADATA

PROGRAMMER’S GUIDE 85

The SQL CREATE statement is used to make new databases, domains, tables, views, or
indexes. A COMMIT statement must follow every CREATE so that subsequent CREATE
statements can use previously defined metadata upon which they may rely. For example,
domain definitions must be committed before the domain can be referenced in
subsequent table definitions.

IMPORTANT Applications that mix data definition and data manipulation must be preprocessed using
the gpre -m switch. Such applications must explicitly start every transaction with SET
TRANSACTION.

Creating a database
CREATE DATABASE establishes a new database and its system tables, tables that describe the
internal structure of the database. InterBase uses the system tables whenever an
application accesses a database. SQL programs can read the data in most of these tables
just like any user-created table.

 In its most elementary form, the syntax for CREATE DATABASE is:

EXEC SQL

CREATE DATABASE "<filespec>";

CREATE DATABASE must appear before any other CREATE statements. It requires one
parameter, the name of a database to create. For example, the following statement creates
a database named employee.gdb:

EXEC SQL

CREATE DATABASE "employee.gdb";

Note The database name can include a full file specification, including both host or node
names, and a directory path to the location where the database file should be created.
For information about file specifications for a particular operating system, see the
operating system manuals.

IMPORTANT Although InterBase enables access to remote databases, when a database is created, it
should only be created directly on the machine where it is to reside.

4 Optional parameters
There are optional parameters for CREATE DATABASE. For example, when an application
running on a client attempts to connect to an InterBase server in order to create a
database, it may be expected to provide USER and PASSWORD parameters before the
connection is established. Other parameters specify the database page size, the number
and size of multi-file databases, and the default character set for the database.

CHAPTER 5 WORKING WITH DATA DEFINITION STATEMENTS

86 INTERBASE 5

For a complete discussion of all CREATE DATABASE parameters, see the Data Definition
Guide. For the complete syntax of CREATE DATABASE, see the Language Reference.

IMPORTANT An application that creates a database must be preprocessed with the gpre -m switch. It
must also create at least one table. If a database is created without a table, it cannot be
successfully opened by another program. Applications that perform both data definition
and data manipulation must declare tables with DECLARE TABLE before creating and
populating them. For more information about table creation, see “Creating a table” on
page 87.

4 Specifying a default character set
A database’s default character set designation specifies the character set the server uses
to transliterate and store CHAR, VARCHAR, and text Blob data in the database when no
other character set information is provided. A default character set should always be
specified for a database when it is created with CREATE DATABASE.

To specify a default character set, use the DEFAULT CHARACTER SET clause of CREATE
DATABASE. For example, the following statement creates a database that uses the
ISO8859_1 character set:

EXEC SQL

CREATE DATABASE "europe.gdb" DEFAULT CHARACTER SET ISO8859_1;

If you do not specify a character set, the character set defaults to NONE. Using character
set NONE means that there is no character set assumption for columns; data is stored and
retrieved just as you originally entered it. You can load any character set into a column
defined with NONE, but you cannot later move that data into another column that has
been defined with a different character set. In this case, no transliteration is performed
between the source and destination character sets, and errors may occur during
assignment.

For a complete description of the DEFAULT CHARACTER SET clause and a list of the character
sets supported by InterBase, see the Data Definition Guide.

Creating a domain
CREATE DOMAIN creates a column definition that is global to the database, and that can
be used to define columns in subsequent CREATE TABLE statements. CREATE DOMAIN is
especially useful when many tables in a database contain identical column definitions.
For example, in an employee database, several tables might define columns for
employees’ first and last names.

At its simplest, the syntax for CREATE DOMAIN is:

CREATING METADATA

PROGRAMMER’S GUIDE 87

EXEC SQL

CREATE DOMAIN name AS <datatype>;

The following statements create two domains, FIRSTNAME, and LASTNAME.

EXEC SQL

CREATE DOMAIN FIRSTNAME AS VARCHAR(15);

EXEC SQL

CREATE DOMAIN LASTNAME AS VARCHAR(20);

EXEC SQL

COMMIT;

Once a domain is defined and committed, it can be used in CREATE TABLE statements to
define columns. For example, the following CREATE TABLE fragment illustrates how the
FIRSTNAME and LASTNAME domains can be used in place of column definitions in the
EMPLOYEE table definition.

EXEC SQL

CREATE TABLE EMPLOYEE

(

. . .

FIRST_NAME FIRSTNAME NOT NULL,

LAST_NAME LASTNAME NOT NULL;

. . .

);

A domain definition can also specify a default value, a NOT NULL attribute, a CHECK
constraint that limits inserts and updates to a range of values, a character set, and a
collation order.

For more information about creating domains and using them during table creation, see
the Data Definition Guide. For the complete syntax of CREATE DOMAIN, see the Language
Reference.

Creating a table
The CREATE TABLE statement defines a new database table and the columns and integrity
constraints within that table. Each column can include a character set specification and
a collation order specification. CREATE TABLE also automatically imposes a default SQL
security scheme on the table. The person who creates a table becomes its owner. A table’s
owner is assigned all privileges for it, including the right to grant privileges to other users.

A table can be created only for a database that already exists. At its simplest, the syntax
for CREATE TABLE is as follows:

CHAPTER 5 WORKING WITH DATA DEFINITION STATEMENTS

88 INTERBASE 5

EXEC SQL

CREATE TABLE name (<col_def> | <table_constraint>
[, <col_def> | <table_constraint> ...]);

<col_def> defines a column using the following syntax:

col {<datatype> | COMPUTED [BY] (<expr>) | domain}
<col_constraint> COLLATE collation

<col> must be a column name unique within the table definition.

<datatype> specifies the SQL datatype to use for column entries. COMPUTED BY can be
used to define a column whose value is computed from an expression when the column
is accessed at run time.

<col_constraint> is an optional integrity constraint to apply to a column. tableconstraint
is an optional integrity constraint to apply to an entire table. Integrity constraints are used
to ensure data entered in a table meets specific requirements, to specify that data entered
in a table or column is unique, or to enforce referential integrity with other tables in the
database.

The following code fragment contains SQL statements that create a database,
employee.gdb, and create a table, EMPLOYEE_PROJECT, with three columns, EMP_NO,
PROJ_ID, and DUTIES:

EXEC SQL

CREATE DATABASE "employee.gdb";

EXEC SQL

CREATE TABLE EMPLOYEE_PROJECT

(

EMP_NO SMALLINT NOT NULL,

PROJ_ID CHAR(5) NOT NULL,

DUTIES Blob SUBTYPE 1 SEGMENT SIZE 240

);

EXEC SQL

COMMIT;

An application can create multiple tables, but duplicating an existing table name is not
permitted.

For more information about SQL datatypes and integrity constraints, see the Data
Definition Guide. For more information about CREATE TABLE syntax, see the Language
Reference. For more information about changing or assigning table privileges, see the
security chapter in the Data Definition Guide.

CREATING METADATA

PROGRAMMER’S GUIDE 89

4 Creating a computed column
A computed column is one whose value is calculated when the column is accessed at run
time. The value can be derived from any valid SQL expression that results in a single,
non-array value.

To create a computed column, use the following column declaration syntax in CREATE
TABLE:

col COMPUTED [BY] (<expr>)

The expression can reference previously defined columns in the table. For example, the
following statement creates a computed column, FULL_NAME, by concatenating two other
columns, LAST_NAME, and FIRST_NAME:

EXEC SQL

CREATE TABLE EMPLOYEE

(

. . .

FIRST_NAME VARCHAR(10) NOT NULL,

LAST_NAME VARCHAR(15) NOT NULL,

. . .

FULL_NAME COMPUTED BY (LAST_NAME || ", " || FIRST_NAME)

);

For more information about COMPUTED BY, see the Data Definition Guide.

4 Declaring and creating a table
In programs that mix data definition and data manipulation, the DECLARE TABLE statement
must be used to describe a table’s structure to the InterBase preprocessor, gpre, before that
table can be created. During preprocessing, if gpre encounters a DECLARE TABLE statement,
it stores the table’s description for later reference. When gpre encounters a CREATE TABLE
statement for the previously declared table, it verifies that the column descriptions in the
CREATE statement match those in the DECLARE statement. If they do not match, gpre reports
the errors and cancels preprocessing so that the error can be fixed.

When used, DECLARE TABLE must come before the CREATE TABLE statement it describes.
For example, the following code fragment declares a table,
EMPLOYEE_PROJ, then creates it:

EXEC SQL

DECLARE EMPLOYEE_PROJECT TABLE

(

EMP_NO SMALLINT,

PROJ_ID CHAR(5),

DUTIES Blob(240, 1)

CHAPTER 5 WORKING WITH DATA DEFINITION STATEMENTS

90 INTERBASE 5

);

EXEC SQL

CREATE TABLE EMPLOYEE_PROJECT

(

EMP_NO SMALLINT,

PROJ_ID CHAR(5),

DUTIES Blob(240, 1)

);

EXEC SQL

COMMIT;

For more information about DECLARE TABLE, see the Language Reference.

Creating a view
A view is a virtual table that is based on a subset of one or more actual tables in a
database. Views are used to:

g Restrict user access to data by presenting only a subset of available data.

g Rearrange and present data from two or more tables in a manner especially useful to the
program.

Unlike a table, a view is not stored in the database as raw data. Instead, when a view is
created, the definition of the view is stored in the database. When a program uses the
view, InterBase reads the view definition and quickly generates the output as if it were a
table.

To make a view, use the following CREATE VIEW syntax:

EXEC SQL

CREATE VIEW name [(view_col [, view_col ...)] AS
<select> [WITH CHECK OPTION];

The name of the view, name, must be unique within the database.

To give each column displayed in the view its own name, independent of its column
name in an underlying table, enclose a list of view_col parameters in parentheses. Each
column of data returned by the view’s SELECT statement is assigned sequentially to a
corresponding view column name. If a list of view column names is omitted, column
names are assigned directly from the underlying table.

Listing independent names for columns in a view ensures that the appearance of a view
does not change if its underlying table structures are modified.

CREATING METADATA

PROGRAMMER’S GUIDE 91

Note A view column name must be provided for each column of data returned by the
view’s SELECT statement, or else no view column names should be specified.

The select clause is a standard SELECT statement that specifies the selection criteria for
rows to include in the view. A SELECT in a view cannot include an ORDER BY clause. In
DSQL, it cannot include a UNION clause.

The optional WITH CHECK OPTION restricts inserts, updates, and deletes in a view that can
be updated.

To create a read-only view, a view’s creator must have SELECT privilege for the table or
tables underlying the view. To create a view for update requires ALL privilege for the table
or tables underlying the view. For more information about SQL privileges, see the security
chapter in the Data Definition Guide.

4 Creating a view for SELECT

Many views combine data from multiple tables or other views. A view based on multiple
tables or other views can be read, but not updated. For example, the following statement
creates a read-only view, PHONE_LIST, because it joins two tables, EMPLOYEE, and
DEPARTMENT:

EXEC SQL

CREATE VIEW PHONE_LIST AS

SELECT EMP_NO, FIRST_NAME, LAST_NAME, LOCATION, PHONE_NO

FROM EMPLOYEE, DEPARTMENT

WHERE EMPLOYEE.DEPT_NO = DEPARTMENT.DEPT_NO;

EXEC SQL

COMMIT;

IMPORTANT Only a view’s creator initially has access to it. To assign read access to others, use GRANT.
For more information about GRANT, see the security chapter of the Data Definition
Guide.

4 Creating a view for update
An updatable view is one that enables privileged users to insert, update, and delete
information in the view’s base table. To be updatable, a view must meet the following
conditions:

g It derives its columns from a single table or updatable view.

g It does not define a self-join of the base table.

g It does not reference columns derived from arithmetic expressions.

g The view’s SELECT statement does not contain:

CHAPTER 5 WORKING WITH DATA DEFINITION STATEMENTS

92 INTERBASE 5

· A WHERE clause that uses the DISTINCT predicate

· A HAVING clause

· Functions

· Nested queries

· Stored procedures

In the following view, HIGH_CITIES is an updatable view. It selects all cities in the CITIES
table with altitudes greater than or equal to a half mile.

EXEC SQL

CREATE VIEW HIGH_CITIES AS

SELECT CITY, COUNTRY_NAME, ALTITUDE FROM CITIES

WHERE ALTITUDE >= 2640;

EXEC SQL

COMMIT;

Users who have INSERT and UPDATE privileges for this view can change rows in or add
new rows to the view’s underlying table, CITIES. They can even insert or update rows that
cannot be displayed by the HIGH_CITIES view. The following INSERT adds a record for
Santa Cruz, California, altitude 23 feet, to the CITIES table:

EXEC SQL

INSERT INTO HIGH_CITIES (CITY, COUNTRY_NAME, ALTITUDE)

VALUES ("Santa Cruz", "United States", "23");

To restrict inserts and updates through a view to only those rows that can be selected by
the view, use the WITH CHECK OPTION in the view definition. For example, the following
statement defines the view, HIGH_CITIES, to use the WITH CHECK OPTION. Users with INSERT
and UPDATE privileges will be able to enter rows only for cities with altitudes greater than
or equal to a half mile.

EXEC SQL

CREATE VIEW HIGH_CITIES AS

SELECT CITY, COUNTRY_NAME, ALTITUDE FROM CITIES

WHERE ALTITUDE > 2640 WITH CHECK OPTION;

Creating an index
SQL provides CREATE INDEX for establishing user-defined database indexes. An index,
based on one or more columns in a table, is used to speed data retrieval for queries that
access those columns. The syntax for CREATE INDEX is:

CREATING METADATA

PROGRAMMER’S GUIDE 93

EXEC SQL

CREATE [UNIQUE] [ASC[ENDING] | DESC[ENDING]] INDEX <index> ON
table (col [, col ...]);

For example, the following statement defines an index, NAMEX, for the LAST_NAME and
FIRST_NAME columns in the EMPLOYEE table:

EXEC SQL

CREATE INDEX NAMEX ON EMPLOYEE (LAST_NAME, FIRST_NAME);

Note InterBase automatically generates system-level indexes when tables are defined
using UNIQUE and PRIMARY KEY constraints. For more information about constraints, see
the Data Definition Guide.

See the Language Reference for more information about CREATE INDEX syntax.

4 Preventing duplicate index entries
To define an index that eliminates duplicate entries, include the UNIQUE keyword in
CREATE INDEX. The following statement creates a unique index, PRODTYPEX, on the
PROJECT table:

EXEC SQL

CREATE UNIQUE INDEX PRODTYPEX ON PROJECT (PRODUCT, PROJ_NAME);

IMPORTANT After a unique index is defined, users cannot insert or update values in indexed columns
if those values already exist there. For unique indexes defined on multiple columns, like
PRODTYPEX in the previous example, the same value can be entered within individual
columns, but the combination of values entered in all columns defined for the index
must be unique.

4 Specifying index sort order
By default, SQL stores an index in ascending order. To make a descending sort on a
column or group of columns more efficient, use the DESCENDING keyword to define the
index. For example, the following statement creates an index, CHANGEX, based on the
CHANGE_DATE column in the SALARY_HISTORY table:

EXEC SQL

CREATE DESCENDING INDEX CHANGEX ON SALARY_HISTORY (CHANGE_DATE);

Note To retrieve indexed data in descending order, use ORDER BY in the SELECT statement
to specify retrieval order.

CHAPTER 5 WORKING WITH DATA DEFINITION STATEMENTS

94 INTERBASE 5

Creating generators
A generator is a monotonically increasing or decreasing numeric value that is inserted in
a field either directly by an SQL statement in an application or through a trigger.
Generators are often used to produce unique values to insert into a column used as a
primary key.

To create a generator for use in an application, use the following CREATE GENERATOR
syntax:

EXEC SQL

CREATE GENERATOR name;

The following statement creates a generator, EMP_NO_GEN, to specify a unique employee
number:

EXEC SQL

CREATE GENERATOR EMP_NO_GEN;

EXEC SQL

COMMIT;

Once a generator is created, the starting value for a generated number can be specified
with SET GENERATOR. To insert a generated number in a field, use the InterBase library
GEN_ID() function in an assignment statement. For more information about GEN_ID(),
CREATE GENERATOR, and SET GENERATOR, see the Data Definition Guide.

Dropping metadata
SQL supports several statements for deleting existing metadata:

g DROP TABLE, to delete a table from a database

g DROP VIEW, to delete a view definition from a database

g DROP INDEX, to delete a database index

g ALTER TABLE, to delete columns from a table

For more information about deleting columns with ALTER TABLE, see “Altering a table”
on page 97.

DROPPING METADATA

PROGRAMMER’S GUIDE 95

Dropping an index
To delete an index, use DROP INDEX. An index can only be dropped by its creator, the
SYSDBA, or a user with root privileges. If an index is in use when the drop is attempted,
the drop is postponed until the index is no longer in use. The syntax of DROP INDEX is:

EXEC SQL

DROP INDEX name;

name is the name of the index to delete. For example, the following statement drops the
index, NEEDX:

EXEC SQL

DROP INDEX NEEDX;

EXEC SQL

COMMIT;

Deletion fails if the index is on a UNIQUE, PRIMARY KEY, or FOREIGN KEY integrity
constraint. To drop an index on a UNIQUE, PRIMARY KEY, or FOREIGN KEY integrity
constraint, first drop the constraints, the constrained columns, or the table.

For more information about DROP INDEX and dropping integrity constraints, see the Data
Definition Guide.

Dropping a view
To delete a view, use DROP VIEW. A view can only be dropped by its owner, the SYSDBA,
or a user with root privileges. If a view is in use when a drop is attempted, the drop is
postponed until the view is no longer in use. The syntax of DROP VIEW is:

EXEC SQL

DROP VIEW name;

The following statement drops the EMPLOYEE_SALARY view:

EXEC SQL

DROP VIEW EMPLOYEE_SALARY;

EXEC SQL

COMMIT;

Deleting a view fails if a view is used in another view, a trigger, or a computed column.
To delete a view that meets any of these conditions:

1. Delete the other view, trigger, or computed column.

2. Delete the view.

CHAPTER 5 WORKING WITH DATA DEFINITION STATEMENTS

96 INTERBASE 5

For more information about DROP VIEW, see the Data Definition Guide.

Dropping a table
Use DROP TABLE to remove a table from a database. A table can only be dropped by its
owner, the SYSDBA, or a user with root privileges. If a table is in use when a drop is
attempted, the drop is postponed until the table is no longer in use. The syntax of DROP
TABLE is:

EXEC SQL

DROP TABLE name;

name is the name of the table to drop. For example, the following statement drops the
EMPLOYEE table:

EXEC SQL

DROP TABLE EMPLOYEE;

EXEC SQL

COMMIT;

Deleting a table fails if a table is used in a view, a trigger, or a computed column. A table
cannot be deleted if a UNIQUE or PRIMARY KEY integrity constraint is defined for it, and
the constraint is also referenced by a FOREIGN KEY in another table. To drop the table, first
drop the FOREIGN KEY constraints in the other table, then drop the table.

Note Columns within a table can be dropped without dropping the rest of the table. For
more information, see “Dropping an existing column” on page 98.

For more information about DROP TABLE, see the Data Definition Guide.

Altering metadata
Most changes to data definitions are made at the table level, and involve adding new
columns to a table, or dropping obsolete columns from it. SQL provides ALTER TABLE to
add new columns to a table and to drop existing columns. A single ALTER TABLE can carry
out a single operation, or both operations.

Making changes to views and indexes always requires two separate statements:

1. Drop the existing definition.

2. Create a new definition.

ALTERING METADATA

PROGRAMMER’S GUIDE 97

If current metadata cannot be dropped, replacement definitions cannot be added.
Dropping metadata can fail for the following reasons:

g The person attempting to drop metadata is not the metadata’s creator.

g SQL integrity constraints are defined for the metadata and referenced in other metadata.

g The metadata is used in another view, trigger, or computed column.

For more information about dropping metadata, see “Dropping metadata” on page 94.

Altering a table
ALTER TABLE enables the following changes to an existing table:

g Adding new column definitions

g Adding new table constraints

g Dropping existing column definitions

g Dropping existing table constraints

g Changing column definitions by dropping existing definitions, and adding new ones

g Changing existing table constraints by dropping existing definitions, and adding new
ones

The simple syntax of ALTER TABLE is as follows:

EXEC SQL

ALTER TABLE name {ADD colname <datatype> [NOT NULL]
| DROP colname | ADD CONSTRAINT constraintname tableconstraint
| DROP CONSTRAINT constraintname};

Note For information about adding, dropping, and modifying constraints at the table
level, see the Data Definition Guide.

For the complete syntax of ALTER TABLE, see the Language Reference.

4 Adding a new column to a table
To add another column to an existing table, use ALTER TABLE. A table can only be modified
by its creator. The syntax for adding a column with ALTER TABLE is:

EXEC SQL

ALTER TABLE name ADD colname <datatype> colconstraint
[, ADD colname datatype colconstraint ...];

For example, the following statement adds a column, EMP_NO, to the EMPLOYEE table:

CHAPTER 5 WORKING WITH DATA DEFINITION STATEMENTS

98 INTERBASE 5

EXEC SQL

ALTER TABLE EMPLOYEE ADD EMP_NO EMPNO NOT NULL;

EXEC SQL

COMMIT;

This example makes use of a domain, EMPNO, to define a column. For more information
about domains, see the Data Definition Guide.

Multiple columns can be added to a table at the same time. Separate column definitions
with commas. For example, the following statement adds two columns, EMP_NO, and
FULL_NAME, to the EMPLOYEE table. FULL_NAME is a computed column, a column that
derives it values from calculations based on other columns:

EXEC SQL

ALTER TABLE EMPLOYEE

ADD EMP_NO EMPNO NOT NULL,

ADD FULL_NAME COMPUTED BY (LAST_NAME || ’, ’ || FIRST_NAME);

EXEC SQL

COMMIT;

This example creates a column using a value computed from two other columns already
defined for the EMPLOYEE table. For more information about creating computed columns,
see the Data Definition Guide.

New columns added to a table can be defined with integrity constraints. For more
information about adding columns with integrity constraints to a table, see the Data
Definition Guide.

4 Dropping an existing column
To delete a column definition and its data from a table, use ALTER TABLE. A column can
only be dropped by the owner of the table, the SYSDBA, or a user with root privileges. If
a table is in use when a column is dropped, the drop is postponed until the table is no
longer in use. The syntax for dropping a column with ALTER TABLE is:

EXEC SQL

ALTER TABLE name DROP colname [, colname ...];

For example, the following statement drops the EMP_NO column from the EMPLOYEE table:

EXEC SQL

ALTER TABLE EMPLOYEE DROP EMP_NO;

EXEC SQL

COMMIT;

Multiple columns can be dropped with a single ALTER TABLE. The following statement
drops the EMP_NO and FULL_NAME columns from the EMPLOYEE table:

ALTERING METADATA

PROGRAMMER’S GUIDE 99

EXEC SQL

ALTER TABLE EMPLOYEE

DROP EMP_NO,

DROP FULL_NAME;

EXEC SQL

COMMIT;

Deleting a column fails if the column is part of a UNIQUE, PRIMARY KEY, or FOREIGN KEY
constraint. To drop the column, first drop the constraint, then the column.

Deleting a column also fails if the column is used by a CHECK constraint for another
column. To drop the column, first drop the CHECK constraint, then drop the column.

For more information about integrity constraints, see the Data Definition Guide.

4 Modifying a column
An existing column definition can be modified using ALTER TABLE, but if data already
stored in that column is not preserved before making changes, it will be lost.

Preserving data entered in a column and modifying the definition for a column, is a
six-step process:

1. Adding a new, temporary column to the table that mirrors the current
metadata of the column to be changed.

2. Copying the data from the column to be changed to the newly created
temporary column.

3. Dropping the column to change.

4. Adding a new column definition, giving it the same name that the previously
dropped column had.

5. Copying data from the temporary column to the redefined column.

6. Dropping the temporary column.

For example, suppose the EMPLOYEE table contains a column, OFFICE_NO, defined to hold
a datatype of CHAR(3), and suppose that the size of the column needs to be increased by
one. The following numbered sequence describes each step and provides sample code:

1. First, create a temporary column to hold the data in OFFICE_NO during the
modification process:

EXEC SQL

ALTER TABLE EMPLOYEE ADD TEMP_NO CHAR(3);

EXEC SQL

COMMIT;

2. Move existing data from OFFICE_NO to TEMP_NO to preserve it:

CHAPTER 5 WORKING WITH DATA DEFINITION STATEMENTS

100 INTERBASE 5

EXEC SQL

UPDATE EMPLOYEE

SET TEMP_NO = OFFICE_NO;

3. After the data is moved, drop the OFFICE_NO column:

EXEC SQL

ALTER TABLE DROP OFFICE_NO;

EXEC SQL

COMMIT;

4. Add a new column definition for OFFICE_NO, specifying the datatype and
new size:

EXEC SQL

ALTER TABLE ADD OFFICE_NO CHAR (4);

EXEC SQL

COMMIT;

5. Move the data from TEMP_NO to OFFICE_NO:

EXEC SQL

UPDATE EMPLOYEE

SET OFFICE_NO = TEMP_NO;

6. Finally, drop the TEMP_NO column:

EXEC SQL

ALTER TABLE DROP TEMP_NO;

EXEC SQL

COMMIT;

For more information about dropping column definitions, see “Dropping an existing
column” on page 98. For more information about adding column definitions, see
“Adding a new column to a table” on page 97.

Altering a view
To change the information provided by a view, follow these steps:

1. Drop the current view definition.

2. Create a new view definition and give it the same name as the dropped view.

For example, the following view is defined to select employee salary information:

EXEC SQL

CREATE VIEW EMPLOYEE_SALARY AS

SELECT EMP_NO, LAST_NAME, CURRENCY, SALARY

ALTERING METADATA

PROGRAMMER’S GUIDE 101

FROM EMPLOYEE, COUNTRY

WHERE EMPLOYEE.COUNTRY_CODE = COUNTRY.CODE;

Suppose the full name of each employee should be displayed instead of the last name.
First, drop the current view definition:

EXEC SQL

DROP EMPLOYEE_SALARY;

EXEC SQL

COMMIT;

Then create a new view definition that displays each employee’s full name:

EXEC SQL

CREATE VIEW EMPLOYEE_SALARY AS

SELECT EMP_NO, FULL_NAME, CURRENCY, SALARY

FROM EMPLOYEE, COUNTRY

WHERE EMPLOYEE.COUNTRY_CODE = COUNTRY.CODE;

EXEC SQL

COMMIT;

Altering an index
To change the definition of an index, follow these steps:

1. Use ALTER INDEX to make the current index inactive.

2. Drop the current index.

3. Create a new index and give it the same name as the dropped index.

An index is usually modified to change the combination of columns that are indexed, to
prevent or allow insertion of duplicate entries, or to specify index sort order. For example,
given the following definition of the NAMEX index:

EXEC SQL

CREATE INDEX NAMEX ON EMPLOYEE (LAST_NAME, FIRST_NAME);

Suppose there is an additional need to prevent duplicate entries with the UNIQUE
keyword. First, make the current index inactive, then drop it:

EXEC SQL

ALTER INDEX NAMEX INACTIVE;

EXEC SQL

DROP INDEX NAMEX;

EXEC SQL

COMMIT;

CHAPTER 5 WORKING WITH DATA DEFINITION STATEMENTS

102 INTERBASE 5

Then create a new index, NAMEX, based on the previous definition, that also includes the
UNIQUE keyword:

EXEC SQL

CREATE UNIQUE INDEX NAMEX ON EMPLOYEE (LAST_NAME, FIRST_NAME);

EXEC SQL

COMMIT

ALTER INDEX can be used directly to change an index’s sort order, or to add the ability to
handle unique or duplicate entries. For example, the following statement changes the
NAMEX index to permit duplicate entries:

EXEC SQL

ALTER INDEX NAMEX DUPLICATE;

IMPORTANT Be careful when altering an index directly. For example, changing an index from
supporting duplicate entries to one that requires unique entries without disabling the
index and recreating it can reduce index performance.

For more information about dropping an index, see “Dropping an index” on page 95.
For more information about creating an index, see “Creating an index” on page 92.

PROGRAMMER’S GUIDE 103

CHAPTER

6
Chapter 6Working with Data

The majority of SQL statements in an embedded program are devoted to reading or
modifying existing data, or adding new data to a database. This chapter describes the
types of data recognized by InterBase, and how to retrieve, modify, add, or delete data in
a database using SQL expressions and the following statements.

g SELECT statements query a database, that is, read or retrieve existing data from a database.
Variations of the SELECT statement make it possible to retrieve:

· A single row, or part of a row, from a table. This operation is referred to as a singleton
select.

· Multiple rows, or parts of rows, from a table using a SELECT within a DECLARE CURSOR
statement.

· Related rows, or parts of rows, from two or more tables into a virtual table, or results
table. This operation is referred to as a join.

· All rows, or parts of rows, from two or more tables into a virtual table. This operation
is referred to as a union.

g INSERT statements write new rows of data to a table.

g UPDATE statements modify existing rows of data in a table.

g DELETE statements remove existing rows of data from a table.

CHAPTER 6 WORKING WITH DATA

104 INTERBASE 5

To learn how to use the SELECT statement to retrieve data, see “Understanding data
retrieval with SELECT” on page 122. For information about retrieving a single row with
SELECT, see “Selecting a single row” on page 139. For information about retrieving
multiple rows, see “Selecting multiple rows” on page 140.

For information about using INSERT to write new data to a table, see “Inserting data” on
page 160. To modify data with UPDATE, see “Updating data” on page 166. To remove
data from a table with DELETE, see “Deleting data” on page 172.

Supported datatypes
To query or write to a table, it is necessary to know the structure of the table, what
columns it contains, and what datatypes are defined for those columns. InterBase
supports ten fundamental datatypes, described in the following table:

Name Size Range/Precision Description

BLOB Variable None. Blob segment size is limited to
64K.

Dynamically sizable dataype for storing
large data, such as graphics, text, and
digitized voice. Basic structural unit is
the segment. Blob subtype describes
Blob contents.

CHAR(n) n characters 1 to 32,767 bytes.

Character set character size determines
the maximum number of characters
that can fit in 32K.

Fixed length CHAR or text string type.

Alternate keyword: CHARACTER.

DATE 64 bits 1 Jan 100 to 11 Dec 5941. Also includes time information.

DECIMAL (precision,
scale)

Variable precision = 1 to 15. Specifies at least
precision digits of precision to store.

scale = 1 to 15. Specifies number of
decimal places for storage. Must be less
than or equal to precision.

Number with a decimal point scale
digits from the right. For example,
DECIMAL(10, 3) holds numbers
accurately in the following format:

ppppppp.sss

DOUBLE PRECISION 64 bitsa 1.7 x 10–308 to 1.7 x 10308. Scientific: 15 digits of precision.

FLOAT 32 bits 3.4 x 10–38 to 3.4 x 1038. Single precision: 7 digits of precision.

INTEGER 32 bits –2,147,483,648 to 2,147,483,647. Signed long (longword).

TABLE 6.1 Datatypes supported by InterBase

SUPPORTED DATATYPES

PROGRAMMER’S GUIDE 105

The BLOB datatype can store large data objects of indeterminate and variable size, such
as bitmapped graphics images, vector drawings, sound files, chapter or book-length
documents, or any other kind of multimedia information. Because a Blob can hold
different kinds of information, it requires special processing for reading and writing. For
more information about Blob handling, see Chapter 8, “Working with Blob Data.”

The DATE datatype may require conversion to and from InterBase when entered or
manipulated in a host-language program. For more information about retrieving and
writing dates, see Chapter 7, “Working with Dates.”

InterBase also supports arrays of most datatypes. An array is a matrix of individual items,
all of any single InterBase datatype, except Blob, that can be handled either as a single
entity, or manipulated item by item. To learn more about the flexible data access provided
by arrays, see Chapter 9, “Using Arrays.”

For a complete discussion of InterBase datatypes, see the Data Definition Guide.

NUMERIC (precision,
scale)

Variable precision = 1 to 15. Specifies exactly
precision digits of precision to store.

scale = 1 to 15. Specifies number of
decimal places for storage. Must be less
than or equal to precision.

Number with a decimal point scale
digits from the right. For example,
NUMERIC(10,3) holds numbers accurately
in the following format:

ppppppp.sss

SMALLINT 16 bits –32,768 to 32,767. Signed short (word).

VARCHAR (n) n characters 1 to 32,765 bytes.

Character set character size determines
the maximum number of characters
that can fit in 32K.

Variable length CHAR or text string
type.

Alternate keywords: CHAR VARYING,
CHARACTER VARYING.

a. Actual size of DOUBLE is platform-dependent. Most platforms support the 64-bit size.

Name Size Range/Precision Description

TABLE 6.1 Datatypes supported by InterBase (continued)

CHAPTER 6 WORKING WITH DATA

106 INTERBASE 5

Understanding SQL expressions
All SQL data manipulation statements support SQL expressions, SQL syntax for comparing
and evaluating columns, constants, and host-language variables to produce a single
value.

In the SELECT statement, for example, the WHERE clause is used to specify a search
condition that determines if a row qualifies for retrieval. That search condition is an SQL
expression. DELETE and UPDATE also support search condition expressions. Typically,
when an expression is used as a search condition, the expression evaluates to a Boolean
value that is True, False, or Unknown.

SQL expressions can also appear in the INSERT statement VALUE clause and the UPDATE
statement SET clause to specify or calculate values to insert into a column. When inserting
or updating a numeric value via an expression, the expression is usually arithmetic, such
as multiplying one number by another to produce a new number which is then inserted
or updated in a column. When inserting or updating a string value, the expression may
concatenate, or combine, two strings to produce a single string for insertion or updating.

The following table describes the elements that can be used in expressions:

Element Description

Column names Columns from specified tables, against which to search or compare values,
or from which to calculate values.

Host-language variables Program variables containing changeable values. Host-language
variables must be preceded by a colon (:).

Constants Hard-coded numbers or quoted strings, like 507 or “Tokyo”.

Concatenation operator ||, used to combine character strings.

Arithmetic operators +, –, *, and /, used to calculate and evaluate values.

Logical operators Keywords, NOT, AND, and OR, used within simple search conditions, or to
combine simple search conditions to make complex searches. A logical
operation evaluates to true or false. Usually used only in search conditions.

TABLE 6.2 Elements of SQL expressions

UNDERSTANDING SQL EXPRESSIONS

PROGRAMMER’S GUIDE 107

Complex expressions can be constructed by combining simple expressions in different
ways. For example the following WHERE clause uses a column name, three constants,
three comparison operators, and a set of grouping parentheses to retrieve only those rows
for employees with salaries between $60,000 and $120,000:

WHERE DEPARTMENT = "Publications" AND

(SALARY > 60000 AND SALARY < 120000)

Comparison operators <, >, <=, >=, =, and <>, used to compare a value on the left side of the
operator to another on the right. A comparative operation evaluates to
true or false.

Other, more specialized comparison operators include ALL, ANY, BETWEEN,
CONTAINING, EXISTS, IN, IS, LIKE, NULL, SINGULAR, SOME, and STARTING WITH. These
operators can evaluate to True, False, or Unknown. They are usually used
only in search conditions.

COLLATE clause Comparisons of CHAR and VARCHAR values can sometimes take advantage of
a COLLATE clause to force the way text values are compared.

Stored procedures Reusable SQL statement blocks that can receive and return parameters,
and that are stored as part of a database’s metadata.

Subqueries SELECT statements, typically nested in WHERE clauses, that return values to
be compared with the result set of the main SELECT statement.

Parentheses Used to group expressions into hierarchies; operations inside parentheses
are performed before operations outside them. When parentheses are
nested, the contents of the innermost set is evaluated first and evaluation
proceeds outward.

Date literals String values that can be entered in quotes and be interpreted as date
values in SELECT, INSERT, and UPDATE operations. Possible strings are ‘TODAY’,
‘NOW’, ‘YESTERDAY’, and ‘TOMORROW’.

The USER pseudocolumn References the name of the user who is currently logged in. For example,
USER can be used as a default in a column definition or to enter the current
user’s name in an INSERT. When a user name is present in a table, it can be
referenced with USER in SELECT and DELETE statements.

Element Description

TABLE 6.2 Elements of SQL expressions (continued)

CHAPTER 6 WORKING WITH DATA

108 INTERBASE 5

As another example, search conditions in WHERE clauses often contain nested SELECT
statements, or subqueries. In the following query, the WHERE clause contains a subquery
that uses the aggregate function, AVG(), to retrieve a list of all departments with bigger
than average salaries:

EXEC SQL

DECLARE WELL_PAID CURSOR FOR

SELECT DEPT_NO

INTO :wellpaid

FROM DEPARTMENT

WHERE SALARY > (SELECT AVG(SALARY) FROM DEPARTMENT);

For more information about using subqueries to specify search conditions, see “Using
subqueries” on page 157. For more information about aggregate functions, see
“Retrieving aggregate column information” on page 125.

Using the string operator in expressions
The string operator, ||, also referred to as a concatenation operator, enables a single
character string to be built from two or more character strings. Character strings can be
constants or values retrieved from a column. For example,

char strbuf[80];

. . .

EXEC SQL

SELECT LAST_NAME || " is the manager of publications."

INTO :strbuf

FROM DEPARTMENT, EMPLOYEE

WHERE DEPT_NO = 5900 AND MNGR_NO = EMP_NO;

The string operator can also be used in INSERT or UPDATE statements:

EXEC SQL

INSERT INTO DEPARTMENT (MANAGER_NAME)

VALUES(:fname || :lname);

UNDERSTANDING SQL EXPRESSIONS

PROGRAMMER’S GUIDE 109

Using arithmetic operators in expressions
To calculate numeric values in expressions, InterBase recognizes four arithmetic
operators listed in the following table:

Arithmetic operators are evaluated from left to right, except when ambiguities arise. In
these cases, InterBase evaluates operations according to the precedence specified in the
table (for example, multiplications are performed before divisions, and divisions are
performed before subtractions).

Arithmetic operations are always calculated before comparison and logical operations. To
change or force the order of evaluation, group operations in parentheses. InterBase
calculates operations within parentheses first. If parentheses are nested, the equation in
the innermost set is the first evaluated, and the outermost set is evaluated last. For more
information about precedence and using parentheses for grouping, see “Determining
precedence of operators” on page 118.

The following example illustrates a WHERE clause search condition that uses an arithmetic
operator to combine the values from two columns, then uses a comparison operator to
determine if that value is greater than 10:

DECLARE RAINCITIES CURSOR FOR

SELECT CITYNAME, COUNTRYNAME

INTO :cityname, :countryname

FROM CITIES

WHERE JANUARY_RAIN + FEBRUARY_RAIN > 10;

Using logical operators in expressions
Logical operators calculate a Boolean value, True, False, or Unknown, based on
comparing previously calculated simple search conditions immediately to the left and
right of the operator. InterBase recognizes three logical operators, NOT, AND, and OR.

Operator Purpose Precedence Operator Purpose Precedence

* Multiplication 1 + Addition 3

/ Division 2 – Subtraction 4

TABLE 6.3 Arithmetic operators

CHAPTER 6 WORKING WITH DATA

110 INTERBASE 5

NOT reverses the search condition in which it appears, while AND and OR are used to
combine simple search conditions. For example, the following query returns any
employee whose last name is not “Smith”:

DECLARE NOSMITH CURSOR FOR

SELECT LAST_NAME

INTO :lname

FROM EMPLOYEE

WHERE NOT LNAME = "Smith";

When AND appears between search conditions, both search conditions must be true if a
row is to be retrieved. The following query returns any employee whose last name is
neither “Smith” nor “Jones”:

DECLARE NO_SMITH_OR_JONES CURSOR FOR

SELECT LAST_NAME

INTO :lname

FROM EMPLOYEE

WHERE NOT LNAME = "Smith" AND NOT LNAME = "Jones";

OR stipulates that one search condition or the other must be true. For example, the
following query returns any employee named “Smith” or “Jones”:

DECLARE ALL_SMITH_JONES CURSOR FOR

SELECT LAST_NAME, FIRST_NAME

INTO :lname, :fname

FROM EMPLOYEE

WHERE LNAME = "Smith" OR LNAME = "Jones";

The order in which combined search conditions are evaluated is dictated by the
precedence of the operators that connect them. A NOT condition is evaluated before AND,
and AND is evaluated before OR. Parentheses can be used to change the order of
evaluation. For more information about precedence and using parentheses for grouping,
see “Determining precedence of operators” on page 118.

Using comparison operators in expressions
Comparison operators evaluate to a Boolean value: True, False, or Unknown, based on a
test for a specific relationship between a value to the left of the operator, and a value or
range of values to the right of the operator. Values compared must evaluate to the same
datatype, unless the CAST() function is used to translate one datatype to a different one
for comparison. Values can be columns, constants, or calculated values.

UNDERSTANDING SQL EXPRESSIONS

PROGRAMMER’S GUIDE 111

The following table lists operators that can be used in statements, describes how they are
used, and provides samples of their use:

Note Comparisons evaluate to Unknown if a NULL value is encountered.

For more information about CAST(), see “Using CAST() for datatype conversions” on
page 121.

InterBase also supports comparison operators that compare a value on the left of the
operator to the results of a subquery to the right of the operator. The following table lists
these operators, and describes how they are used:

For more information about using subqueries, see “Using subqueries” on page 157.

4 Using BETWEEN

BETWEEN tests whether a value falls within a range of values. The complete syntax for the
BETWEEN operator is:

<value> [NOT] BETWEEN <value> AND <value>

For example, the following cursor declaration retrieves LAST_NAME and FIRST_NAME
columns for employees with salaries between $100,000 and $250,000, inclusive:

EXEC SQL

DECLARE LARGE_SALARIES CURSOR FOR

SELECT LAST_NAME, FIRST_NAME

FROM EMPLOYEE

WHERE SALARY BETWEEN 100000 AND 250000;

Use NOT BETWEEN to test whether a value falls outside a range of values. For example, the
following cursor declaration retrieves the names of employees with salaries less than
$30,000 and greater than $150,000:

EXEC SQL

DECLARE EXTREME_SALARIES CURSOR FOR

Operator Purpose

ALL Determines if a value is equal to all values returned by a subquery

ANY and SOME Determines if a value is equal to any values returned by a subquery

EXISTS Determines if a value exists in at least one value returned by a subquery

SINGULAR Determines if a value exists in exactly one value returned by a subquery

TABLE 6.4 InterBase comparison operators requiring subqueries

CHAPTER 6 WORKING WITH DATA

112 INTERBASE 5

SELECT LAST_NAME, FIRST_NAME

FROM EMPLOYEE

WHERE SALARY NOT BETWEEN 30000 AND 150000;

4 Using CONTAINING

CONTAINING tests to see if an ASCII string value contains a quoted ASCII string supplied
by the program. String comparisons are case-insensitive; “String”, “STRING”, and “string”
are equivalent values for CONTAINING. The complete syntax for CONTAINING is:

<value> [NOT] CONTAINING "<string>"

For example, the following cursor declaration retrieves the names of all employees whose
last names contain the three-letter combination, “las” (and “LAS” or “Las”):

EXEC SQL

DECLARE LAS_EMP CURSOR FOR

SELECT LAST_NAME, FIRST_NAME

FROM EMPLOYEE

WHERE LAST_NAME CONTAINING "las";

Use NOT CONTAINING to test for strings that exclude a specified value. For example, the
following cursor declaration retrieves the names of all employees whose last names do
not contain “las” (also “LAS” or “Las”):

EXEC SQL

DECLARE NOT_LAS_EMP CURSOR FOR

SELECT LAST_NAME, FIRST_NAME

FROM EMPLOYEE

WHERE LAST_NAME NOT CONTAINING "las";

TIP CONTAINING can be used to search a Blob segment by segment for an occurrence of a
quoted string.

4 Using IN
IN tests that a known value equals at least one value in a list of values. A list is a set of
values separated by commas and enclosed by parentheses. The values in the list must be
parenthesized and separated by commas. If the value being compared to a list of values
is NULL, IN returns Unknown.

The syntax for IN is:

<value> [NOT] IN (<value> [, <value> ...])

For example, the following cursor declaration retrieves the names of all employees in the
accounting, payroll, and human resources departments:

UNDERSTANDING SQL EXPRESSIONS

PROGRAMMER’S GUIDE 113

EXEC SQL

DECLARE ACCT_PAY_HR CURSOR FOR

SELECT DEPARTMENT, LAST_NAME, FIRST_NAME, EMP_NO

FROM EMPLOYEE EMP, DEPTARTMENT DEP

WHERE EMP.DEPT_NO = DEP.DEPT_NO AND

DEPARTMENT IN ("Accounting", "Payroll", "Human

Resources")

GROUP BY DEPARTMENT;

Use NOT IN to test that a value does not occur in a set of specified values. For example,
the following cursor declaration retrieves the names of all employees not in the
accounting, payroll, and human resources departments:

EXEC SQL

DECLARE NOT_ACCT_PAY_HR CURSOR FOR

SELECT DEPARTMENT, LAST_NAME, FIRST_NAME, EMP_NO

FROM EMPLOYEE EMP, DEPTARTMENT DEP

WHERE EMP.DEPT_NO = DEP.DEPT_NO AND

DEPARTMENT NOT IN ("Accounting", "Payroll",

 "Human Resources")

GROUP BY DEPARTMENT;

IN can also be used to compare a value against the results of a subquery. For example,
the following cursor declaration retrieves all cities in Europe:

EXEC SQL

DECLARE NON_JFG_CITIES CURSOR FOR

SELECT C.COUNTRY, C.CITY, C.POPULATION

FROM CITIES C

WHERE C.COUNTRY NOT IN (SELECT O.COUNTRY FROM COUNTRIES O

WHERE O.CONTINENT <> "Europe")

GROUP BY C.COUNTRY;

For more information about subqueries, see “Using subqueries” on page 157.

4 Using LIKE

LIKE is a case-sensitive operator that tests a string value against a string containing
wildcards, symbols that substitute for a single, variable character, or a string of variable
characters. LIKE recognizes two wildcard symbols:

g % (percent) substitutes for a string of zero or more characters.

g _ (underscore) substitutes for a single character.

CHAPTER 6 WORKING WITH DATA

114 INTERBASE 5

The syntax for LIKE is:

<value> [NOT] LIKE <value> [ESCAPE "symbol"]

For example, this cursor retrieves information about any employee whose last names
contain the three letter combination “ton” (but not “Ton”):

EXEC SQL

DECLARE TON_EMP CURSOR FOR

SELECT LAST_NAME, FIRST_NAME, EMP_NO

FROM EMPLOYEE

WHERE LAST_NAME LIKE "%ton%";

To test for a string that contains a percent or underscore character:

1. Precede the % or _ with another symbol (for example, @), in the quoted
comparison string.

2. Use the ESCAPE clause to identify the symbol (@, in this case) preceding % or
_ as a literal symbol. A literal symbol tells InterBase that the next character
should be included as is in the search string.

For example, this cursor retrieves all table names in RDB$RELATIONS that have underscores
in their names:

EXEC SQL

DECLARE UNDER_TABLE CURSOR FOR

SELECT RDB$RELATION_NAME

FROM RDB$RELATIONS

WHERE RDB$RELATION_NAME LIKE "%@_%" ESCAPE "@";

Use NOT LIKE to retrieve rows that do not contain strings matching those described. For
example, the following cursor retrieves all table names in RDB$RELATIONS that do not have
underscores in their names:

EXEC SQL

DECLARE NOT_UNDER_TABLE CURSOR FOR

SELECT RDB$RELATION_NAME

FROM RDB$RELATIONS

WHERE RDB$RELATION_NAME NOT LIKE "%@_%" ESCAPE "@";

4 Using IS NULL

IS NULL tests for the absence of a value in a column. The complete syntax of the IS NULL
clause is:

<value> IS [NOT] NULL

UNDERSTANDING SQL EXPRESSIONS

PROGRAMMER’S GUIDE 115

For example, the following cursor retrieves the names of employees who do not have
phone extensions:

EXEC SQL

DECLARE MISSING_PHONE CURSOR FOR

SELECT LAST_NAME, FIRST_NAME

FROM EMPLOYEE

WHERE PHONE_EXT IS NULL;

Use IS NOT NULL to test that a column contains a value. For example, the following cursor
retrieves the phone numbers of all employees that have phone extensions:

EXEC SQL

DECLARE PHONE_LIST CURSOR FOR

SELECT LAST_NAME, FIRST_NAME, PHONE_EXT

FROM EMPLOYEE

WHERE PHONE_EXT IS NOT NULL

ORDER BY LAST_NAME, FIRST_NAME;

4 Using STARTING WITH

STARTING WITH is a case-sensitive operator that tests a string value to see if it begins with
a stipulated string of characters. To support international character set conversions,
STARTING WITH follows byte-matching rules for the specified collation order. The
complete syntax for STARTING WITH is:

<value> [NOT] STARTING WITH <value>

For example, the following cursor retrieves employee last names that start with “To”:

EXEC SQL

DECLARE TO_EMP CURSOR FOR

SELECT LAST_NAME, FIRST_NAME

FROM EMPLOYEE

WHERE LAST_NAME STARTING WITH "To";

Use NOT STARTING WITH to retrieve information for columns that do not begin with the
stipulated string. For example, the following cursor retrieves all employees except those
whose last names start with “To”:

EXEC SQL

DECLARE NOT_TO_EMP CURSOR FOR

SELECT LAST_NAME, FIRST_NAME

FROM EMPLOYEE

WHERE LAST_NAME NOT STARTING WITH "To";

For more information about collation order and byte-matching rules, see the Data
Definition Guide.

CHAPTER 6 WORKING WITH DATA

116 INTERBASE 5

4 Using ALL

ALL tests that a value is true when compared to every value in a list returned by a
subquery. The complete syntax for ALL is:

<value> <comparison_operator> ALL (<subquery>)

For example, the following cursor retrieves information about employees whose salaries
are larger than that of the vice president of channel marketing:

EXEC SQL

DECLARE MORE_THAN_VP CURSOR FOR

SELECT LAST_NAME, FIRST_NAME, SALARY

FROM EMPLOYEE

WHERE SALARY > ALL (SELECT SALARY FROM EMPLOYEE

WHERE DEPT_NO = 7734);

ALL returns Unknown if the subquery returns a NULL value. It can also return Unknown
if the value to be compared is NULL and the subquery returns any non-NULL data. If the
value is NULL and the subquery returns an empty set, ALL evaluates to True.

For more information about subqueries, see “Using subqueries” on page 157.

4 Using ANY and SOME

ANY and SOME test that a value is true if it matches any value in a list returned by a
subquery. The complete syntax for ANY is:

<value> <comparison_operator> ANY | SOME (<subquery>)

For example, the following cursor retrieves information about salaries that are larger than
at least one salary in the channel marketing department:

EXEC SQL

DECLARE MORE_CHANNEL CURSOR FOR

SELECT LAST_NAME, FIRST_NAME, SALARY

FROM EMPLOYEE

WHERE SALARY > ANY (SELECT SALARY FROM EMPLOYEE

WHERE DEPT_NO = 7734);

ANY and SOME return Unknown if the subquery returns a NULL value. They can also return
Unknown if the value to be compared is NULL and the subquery returns any non-NULL
data. If the value is NULL and the subquery returns an empty set, ANY and SOME evaluate
to False.

For more information about subqueries, see “Using subqueries” on page 157.

UNDERSTANDING SQL EXPRESSIONS

PROGRAMMER’S GUIDE 117

4 Using EXISTS

EXISTS tests that for a given value there is at least one qualifying row meeting the search
condition specified in a subquery. The SELECT clause in the subquery must use the *
(asterisk) to select all columns. The complete syntax for EXISTS is:

[NOT] EXISTS (SELECT * FROM <tablelist> WHERE <search_condition>)

The following cursor retrieves all countries with rivers:

EXEC SQL

DECLARE RIVER_COUNTRIES CURSOR FOR

SELECT COUNTRY

FROM COUNTRIES C

WHERE EXISTS (SELECT * FROM RIVERS R

WHERE R.COUNTRY = C.COUNTRY);

Use NOT EXISTS to retrieve rows that do not meet the qualifying condition specified in the
subquery. The following cursor retrieves all countries without rivers:

EXEC SQL

DECLARE NON_RIVER_COUNTRIES COUNTRIES FOR

SELECT COUNTRY

FROM COUNTRIES C

WHERE NOT EXISTS (SELECT * FROM RIVERS R

WHERE R.COUNTRY = C.COUNTRY);

EXISTS always returns either True or False, even when handling NULL values.

For more information about subqueries, see “Using subqueries” on page 157.

4 Using SINGULAR

SINGULAR tests that for a given value there is exactly one qualifying row meeting the
search condition specified in a subquery. The SELECT clause in the subquery must use the
* (asterisk) to select all columns. The complete syntax for SINGULAR is:

[NOT] SINGULAR (SELECT * FROM <tablelist> WHERE <search_condition>)

The following cursor retrieves all countries with a single capital:

EXEC SQL

DECLARE SINGLE_CAPITAL CURSOR FOR

SELECT COUNTRY

FROM COUNTRIES COU

WHERE SINGULAR (SELECT * FROM CITIES CIT

WHERE CIT.CITY = COU.CAPITAL);

CHAPTER 6 WORKING WITH DATA

118 INTERBASE 5

Use NOT SINGULAR to retrieve rows that do not meet the qualifying condition specified in
the subquery. For example, the following cursor retrieves all countries with more than
one capital:

EXEC SQL

DECLARE MULTI_CAPITAL CURSOR FOR

SELECT COUNTRY

FROM COUNTRIES COU

WHERE NOT SINGULAR (SELECT * FROM CITIES CIT

WHERE CIT.CITY = COU.CAPITAL);

For more information about subqueries, see “Using subqueries” on page 157.

Determining precedence of operators
The order in which operators and the values they affect are evaluated in a statement is
called precedence. There are two levels of precedence for SQL operators:

g Precedence among operators of different types.

g Precedence among operators of the same type.

4 Precedence among operators

AMONG OPERATORS OF DIFFERENT TYPES

The following table lists the evaluation order of different InterBase operator types, from
first evaluated (highest precedence) to last evaluated (lowest precedence):

Operator type Precedence Explanation

String Highest Strings are always concatenated before all other operations
take place.

Mathematical ? Math is performed after string concatenation, but before
comparison and logical operations.

Comparison ? Comparison operations are evaluated after string
concatenation and math, but before logical operations.

Logical Lowest Logical operations are evaluated after all other operations.

TABLE 6.5 Operator precedence by operator type

UNDERSTANDING SQL EXPRESSIONS

PROGRAMMER’S GUIDE 119

AMONG OPERATORS OF THE SAME TYPE

When an expression contains several operators of the same type, those operators are
evaluated from left to right unless there is a conflict where two operators of the same type
affect the same values.

For example, in the mathematical equation, 3 + 2 * 6, both the addition and
multiplication operators work with the same value, 2. Evaluated from left to right, the
equation evaluates to 30: 3+ 2 = 5; 5 * 6 = 30. InterBase follows standard mathematical
rules for evaluating mathematical expressions, that stipulate multiplication is performed
before addition: 2 *6 = 12; 3 + 12 = 15.

The following table lists the evaluation order for all mathematical operators, from highest
to lowest:

InterBase also follows rules for determining the order in which comparison operators are
evaluated when conflicts arise during normal left to right evaluation. The next table
describes the evaluation order for comparison operators, from highest to lowest:

Operator Precedence Explanation

* Highest Multiplication is performed before all other mathematical operations.

/ ? Division is performed before addition and subtraction.

+ ? Addition is performed before subtraction.

– Lowest Subtraction is performed after all other mathematical operations.

TABLE 6.6 Mathematical operator precedence

Operator Precedence Explanation

=, == Highest Equality operations are evaluated before all other
comparison operations.

<>, !=, ~=, ^= ?

> ?

TABLE 6.7 Comparison operator precedence

CHAPTER 6 WORKING WITH DATA

120 INTERBASE 5

ALL, ANY, BETWEEN, CONTAINING, EXISTS, IN, LIKE, NULL, SINGULAR, SOME, and STARTING
WITH are evaluated after all listed comparison operators when they conflict with other
comparison operators during normal left to right evaluation. When they conflict with one
another they are evaluated strictly from left to right.

When logical operators conflict during normal left to right processing, they, too, are
evaluated according to a hierarchy, detailed in the following table:

4 Changing evaluation order of operators
To change the evaluation order of operations in an expression, use parentheses to group
operations that should be evaluated as a unit, or that should derive a single value for use
in other operations. For example, without parenthetical grouping, 3 + 2 * 6 evaluates to
15. To cause the addition to be performed before the multiplication, use parentheses:

(3 + 2) * 6 = 30

TIP Always use parentheses to group operations in complex expressions, even when default
order of evaluation is desired. Explicitly grouped expressions are easier to understand
and debug.

< ?

>= ?

<= ?

!>, ~>, ^> ?

!<, ~<, ^< Lowest Not less than operations are evaluated after all other
comparison operations.

Operator Precedence Explanation

NOT Highest NOT operations are evaluated before all other logical operations.

AND ? AND operations are evaluated after NOT operations, and before OR
operations.

OR Lowest OR operations are evaluated after all other logical operations.

TABLE 6.8 Logical operator precedence

Operator Precedence Explanation

TABLE 6.7 Comparison operator precedence (continued)

UNDERSTANDING SQL EXPRESSIONS

PROGRAMMER’S GUIDE 121

Using CAST() for datatype conversions
Normally, only similar datatypes can be compared or evaluated in expressions. The CAST()
function can be used in expressions to translate one datatype into another for comparison
purposes. The syntax for CAST() is:

CAST (<value> | NULL AS datatype)

For example, in the following WHERE clause, CAST() is used to translate a CHAR datatype,
INTERVIEW_DATE, to a DATE datatype to compare against a DATE datatype, HIRE_DATE:

WHERE HIRE_DATE = CAST(INTERVIEW_DATE AS DATE);

CAST() can be used to compare columns with different datatypes in the same table, or
across tables. You can convert one datatype to another as shown in the following table:

An error results if a given datatype cannot be converted into the datatype specified in
CAST().

Using UPPER() on text data
The UPPER() function can be used in SELECT, INSERT, UPDATE, or DELETE operations to force
character and Blob text data to uppercase. For example, an application that prompts a
user for a department name might want to ensure that all department names are stored
in uppercase to simplify data retrieval later. The following code illustrates how UPPER()
would be used in the INSERT statement to guarantee a user’s entry is uppercase:

EXEC SQL

BEGIN DECLARE SECTION;

char response[26];

EXEC SQL

END DECLARE SECTION;

. . .

printf("Enter new department name: ");

response[0] = ’\0’;

From datatype To datatype

NUMERIC CHARACTER, DATE

CHARACTER NUMERIC, DATE

DATE CHARACTER, NUMERIC

TABLE 6.9 Compatible datatypes for CAST()

CHAPTER 6 WORKING WITH DATA

122 INTERBASE 5

gets(response);

if (response)

EXEC SQL

INSERT INTO DEPARTMENT(DEPT_NO, DEPARTMENT)

VALUES(GEN_ID(GDEPT_NO, 1), UPPER(:response));

. . .

The next statement illustrates how UPPER() can be used in a SELECT statement to affect
both the appearance of values retrieved, and to affect its search condition:

EXEC SQL

SELECT DEPT_NO, UPPER(DEPARTMENT)

FROM DEPARTMENT

WHERE UPPER(DEPARTMENT) STARTING WITH ’A’;

Understanding data retrieval with SELECT
The SELECT statement handles all queries in SQL. SELECT can retrieve one or more rows
from a table, and can return entire rows, or a subset of columns from each row, often
referred to as a projection. Optional SELECT syntax can be used to specify search criteria
that restrict the number of rows returned, to select rows with unknown values, to select
rows through a view, and to combine rows from two or more tables.

At a minimum, every SELECT statement must:

g List which columns to retrieve from a table. The column list immediately follows the
SELECT keyword.

g Name the table to search in a FROM clause.

Singleton selects must also include both an INTO clause to specify the host variables into
which retrieved values should be stored, and a WHERE clause to specify the search
conditions that cause only a single row to be returned.

The following SELECT retrieves three columns from a table and stores the values in three
host-language variables:

EXEC SQL

SELECT EMP_NO, FIRSTNAME, LASTNAME

INTO :emp_no, :fname, :lname

FROM EMPLOYEE WHERE EMP_NO = 1888;

TIP Host variables must be declared in a program before they can be used in SQL
statements. For more information about declaring host variables, see Chapter 2,
“Application Requirements.”

UNDERSTANDING DATA RETRIEVAL WITH SELECT

PROGRAMMER’S GUIDE 123

The following table lists all SELECT statement clauses, in the order that they are used, and
prescribes their use in singleton and multi-row selects:

Using each of these clauses with SELECT is described in the following sections, after which
using SELECT directly to return a single row, and using SELECT within a DECLARE CURSOR

statement to return multiple rows are described in detail. For a complete overview of
SELECT syntax, see the Language Reference.

Clause Purpose
Singleton
SELECT

Multi-row
SELECT

SELECT Lists columns to retrieve. Required Required

INTO Lists host variables for storing retrieved columns. Required Not allowed

FROM Identifies the tables to search for values. Required Required

WHERE Specifies the search conditions used to restrict retrieved
rows to a subset of all available rows. A WHERE clause can
contain its own SELECT statement, referred to as a subquery.

Optional Optional

GROUP BY Groups related rows based on common column values.
Used in conjunction with HAVING.

Optional Optional

HAVING Restricts rows generated by GROUP BY to a subset of those
rows.

Optional Optional

UNION Combines the results of two or more SELECT statements to
produce a single, dynamic table without duplicate rows.

Optional Optional

PLAN Specifies the query plan that should be used by the query
optimizer instead of one it would normally choose.

Optional Optional

ORDER BY Specifies the sort order of rows returned by a SELECT, either
ascending (ASC), the default, or descending (DESC).

Optional Optional

FOR UPDATE Specifies columns listed after the SELECT clause of a DECLARE

CURSOR statement that can be updated using a WHERE

CURRENT OF clause.

Not allowed Optional

TABLE 6.10 SELECT statement clauses

CHAPTER 6 WORKING WITH DATA

124 INTERBASE 5

Listing columns to retrieve with SELECT

A list of columns to retrieve must always follow the SELECT keyword in a SELECT statement.
The SELECT keyword and its column list is called a SELECT clause.

4 Retrieving a list of columns
To retrieve a subset of columns for a row of data, list each column by name, in the order
of desired retrieval, and separate each column name from the next by a comma.
Operations that retrieve a subset of columns are often called projections.

For example, the following SELECT retrieves three columns:

EXEC SQL

SELECT EMP_NO, FIRSTNAME, LASTNAME

INTO :emp_no, :fname, :lname

FROM EMPLOYEE WHERE EMP_NO = 2220;

4 Retrieving all columns
To retrieve all columns of data, use an asterisk (*) instead of listing any columns by name.
For example, the following SELECT retrieves every column of data for a single row in the
EMPLOYEE table:

EXEC SQL

SELECT *

INTO :emp_no, :fname, :lname, :phone_ext, :hire, :dept_no,

:job_code, :job_grade, :job_country, :salary, :full_name

FROM EMPLOEE WHERE EMP_NO = 1888;

IMPORTANT You must provide one host variable for each column returned by a query.

ELIMINATING DUPLICATE COLUMNS WITH DISTINCT

In a query returning multiple rows, it may be desirable to eliminate duplicate columns.
For example, the following query, meant to determine if the EMPLOYEE table contains
employees with the last name, SMITH, might locate many such rows:

EXEC SQL

DECLARE SMITH CURSOR FOR

SELECT LAST_NAME

FROM EMPLOYEE

WHERE LAST_NAME = "Smith";

To eliminate duplicate columns in such a query, use the DISTINCT keyword with SELECT.
For example, the following SELECT yields only a single instance of “Smith”:

UNDERSTANDING DATA RETRIEVAL WITH SELECT

PROGRAMMER’S GUIDE 125

EXEC SQL

DECLARE SMITH CURSOR FOR

SELECT DISTINCT LAST_NAME

FROM EMPLOYEE

WHERE LAST_NAME = "Smith";

DISTINCT affects all columns listed in a SELECT statement.

4 Retrieving aggregate column information
SELECT can include aggregate functions, functions that calculate or retrieve a single,
collective numeric value for a column or expression based on each qualifying row in a
query rather than retrieving each value separately. The following table lists the aggregate
functions supported by InterBase:

For example, the following query returns the average salary for all employees in the
EMPLOYEE table:

EXEC SQL

SELECT AVG(SALARY)

INTO :avg_sal

FROM EMPLOYEE;

The following SELECT returns the number of qualifying rows it encounters in the
EMPLOYEE table, both the maximum and minimum employee number of employees in the
table, and the total salary of all employees in the table:

EXEC SQL

SELECT COUNT(*), MAX(EMP_NO), MIN(EMP_NO), SUM(SALARY)

INTO :counter, :maxno, :minno, :total_salary

FROM EMPLOYEE;

Function Purpose

AVG() Calculates the average numeric value for a set of values.

MIN() Retrieves the minimum value in a set of values.

MAX() Retrieves the maximum value in a set of values.

SUM() Calculates the total of numeric values in a set of values.

COUNT() Calculates the number of rows that satisfy the query’s search condition
(specified in the WHERE clause).

TABLE 6.11 Aggregate functions in SQL

CHAPTER 6 WORKING WITH DATA

126 INTERBASE 5

If a field value involved in an aggregate calculation is NULL or unknown, the entire row
is automatically excluded from the calculation. Automatic exclusion prevents averages
from being skewed by meaningless data.

Note Aggregate functions can also be used to calculate values for groups of rows. The
resulting value is called a group aggregate. For more information about using group
aggregates, see “Grouping rows with GROUP BY” on page 135.

4 Multi-table SELECT statements
When data is retrieved from multiple tables, views, and select procedures, the same
column name may appear in more than one table. In these cases, the SELECT statement
must contain enough information to distinguish like-named columns from one another.

To distinguish column names in multiple tables, precede those columns with one of the
following qualifiers in the SELECT clause:

g The name of the table, followed by a period. For example,
EMPLOYEE.EMP_NO identifies a column named EMP_NO in the EMPLOYEE table.

g A table correlation name (alias) followed by a period. For example, if the correlation
name for the EMPLOYEE table is EMP, then EMP.EMP_NO identifies a column named EMP_NO
in the EMPLOYEES table.

Correlation names can be declared for tables, views, and select procedures in the FROM
clause of the SELECT statement. For more information about declaring correlation names,
and for examples of their use, see “Declaring and using correlation names” on
page 130.

4 Specifying transaction names
InterBase enables an SQL application to run many simultaneous transactions if:

g Each transaction is first named with a SET TRANSACTION statement.

g Each data manipulation statement (SELECT, INSERT, UPDATE, DELETE) specifies a
TRANSACTION clause that identifies the name of the transaction under which it operates.

g SQL statements are not dynamic.

In SELECT, the TRANSACTION clause intervenes between the SELECT keyword and the
column list, as in the following syntax fragment:

SELECT TRANSACTION name <col> [, <col> ...]

The TRANSACTION clause is optional in single-transaction programs or in programs where
only one transaction is open at a time. It must be used in a multi-transaction program.
For example, the following SELECT is controlled by the transaction, T1:

EXEC SQL

UNDERSTANDING DATA RETRIEVAL WITH SELECT

PROGRAMMER’S GUIDE 127

SELECT TRANSACTION T1:

COUNT(*), MAX(EMP_NO), MIN(EMP_NO), SUM(SALARY)

INTO :counter, :maxno, :minno, :total_salary

FROM EMPLOYEE;

For a complete discussion of transaction handling and naming, see Chapter 4, “Working
with Transactions.”

Specifying host variables with INTO

A singleton select returns data to a list of host-language variables specified by an INTO
clause in the SELECT statement. The INTO clause immediately follows the list of table
columns from which data is to be extracted. Each host variable in the list must be
preceded by a colon (:) and separated from the next by a comma.

The host-language variables in the INTO clause must already have been declared before
they can be used. The number, order, and datatype of host-language variables must
correspond to the number, order, and datatype of the columns retrieved. Otherwise,
overflow or data conversion errors may occur.

For example, the following C program fragment declares three host variables, lname,
fname, and salary. Two, lname, and fname, are declared as character arrays; salary is
declared as a long integer. The SELECT statement specifies that three columns of data are
to be retrieved, while the INTO clause specifies the host variables into which the data
should be read.

. . .

EXEC SQL

BEGIN DECLARE SECTION;

long salary;

char lname[20], fname[15];

EXEC SQL

END DECLARE SECTION;

. . .

EXEC SQL

SELECT LAST_NAME, FIRST_NAME, SALARY

INTO :lanem, :fname, :salary

FROM EMPLOYEE

WHERE LNAME = "Smith";

. . .

CHAPTER 6 WORKING WITH DATA

128 INTERBASE 5

Note In a multi-row select, the INTO clause is part of the FETCH statement, not the SELECT
statement. For more information about the INTO clause in FETCH, see “Fetching rows
with a cursor” on page 143.

Listing tables to search with FROM

The FROM clause is required in a SELECT statement. It identifies the tables, views, or select
procedures from which data is to be retrieved. The complete syntax of the FROM clause is:

FROM table | view | procedure [alias] [, table | view | procedure
[alias] ...]

There must be at least one table, view, or select procedure name following the FROM
keyword. When retrieving data from multiple sources, each source must be listed,
assigned an alias, and separated from the next with a comma. For more information
about select procedures, see Chapter 11, “Working with Stored Procedures.”

4 Listing a single table or view
The FROM clause in the following SELECT specifies a single table, EMPLOYEE, from which
to retrieve data:

EXEC SQL

SELECT LAST_NAME, FIRST_NAME, SALARY

INTO :lanem, :fname, :salary

FROM EMPLOYEE

WHERE LNAME = "Smith";

Use the same INTO clause syntax to specify a view or select procedure as the source for
data retrieval instead of a table. For example, the following SELECT specifies a select
procedure, MVIEW, from which to retrieve data. MVIEW returns information for all
managers whose last names begin with the letter “M,” and the WHERE clause narrows the
rows returned to a single row where the DEPT_NO column is 430:

EXEC SQL

SELECT DEPT_NO, LAST_NAME, FIRST_NAME, SALARY

INTO :lname, :fname, :salary

FROM MVIEW

WHERE DEPT_NO = 430;

For more information about select procedures, see Chapter 11, “Working with
Stored Procedures.”

UNDERSTANDING DATA RETRIEVAL WITH SELECT

PROGRAMMER’S GUIDE 129

4 Listing multiple tables
To retrieve data from multiple tables, views, or select procedures, include all sources in
the FROM clause, separating sources from one another by commas.

There are two different possibilities to consider when working with multiple data sources:

1. The name of each referenced column is unique across all tables.

2. The names of one or more referenced columns exist in two or more tables.

In the first case, just use the column names themselves to reference the columns. For
example, the following query returns data from two tables, DEPARTMENT, and EMPLOYEE:

EXEC SQL

SELECT DEPARTMENT, DEPT_NO, LAST_NAME, FIRST_NAME, EMP_NO

INTO :dept_name, :dept_no, :lname, :fname, :empno

FROM DEPARTMENT, EMPLOYEE

WHERE DEPT_NO = "Publications" AND MNGR_NO = EMP_NO;

In the second case, column names that occur in two or more tables must be distinguished
from one another by preceding each column name with its table name and a period in
the SELECT clause. For example, if an EMP_NO column exists in both the DEPARTMENT and
EMPLOYEE then the previous query must be recast as follows:

EXEC SQL

SELECT DEPARTMENT, DEPT_NO, LAST_NAME, FIRST_NAME,

EMLOYEE.EMP_NO

INTO :dept_name, :dept_no, :lname, :fname, :empno

FROM DEPARTMENT, EMPLOYEE

WHERE DEPT_NO = "Publications" AND

DEPARTMENT.EMP_NO = EMPLOYEE.EMP_NO;

For more information about the SELECT clause, see “Listing columns to retrieve with
SELECT” on page 124.

IMPORTANT For queries involving joins, column names can be qualified by correlation names, brief
alternate names, or aliases, that are assigned to each table in a FROM clause and
substituted for them in other SELECT statement clauses when qualifying column names.
Even when joins are not involved, assigning and using correlation names can reduce the
length of complex queries.

CHAPTER 6 WORKING WITH DATA

130 INTERBASE 5

4 Declaring and using correlation names
A correlation name, or alias, is a temporary variable that represents a table name. It can
contain up to 31 alphanumeric characters, dollar signs ($), and underscores (_), but must
always start with an alphabetic character. Using brief correlation names reduces typing
of long queries. Correlation names must be substituted for actual table names in joins,
and can be substituted for them in complex queries.

A correlation name is associated with a table in the FROM clause; it replaces table names
to qualify column names everywhere else in the statement. For example, to associate the
correlation name, DEPT with the DEPARTMENT table, and EMP, with the EMPLOYEES table, a
FROM clause might appear as:

FROM DEPARTMENT DEPT, EMPLOYEE EMP

Like an actual table name, a correlation name is used to qualify column names wherever
they appear in a SELECT statement. For example, the following query employs the
correlation names, DEPT, and EMP, previously described:

EXEC SQL

SELECT DEPARTMENT, DEPT_NO, LAST_NAME, FIRST_NAME,

EMLOYEE.EMP_NO

INTO :dept_name, :dept_no, :lname, :fname, :empno

FROM DEPARTMENT DEPT, EMPLOYEE EMP

WHERE DEPT_NO = "Publications" AND DEPT.EMP_NO = EMP.EMP_NO;

For more information about the SELECT clause, see “Listing columns to retrieve with
SELECT” on page 124.

Restricting row retrieval with WHERE

In a query, the WHERE clause specifies the data a row must (or must not) contain to be
retrieved.

In singleton selects, where a query must only return one row, WHERE is mandatory unless
a select procedure specified in the FROM clause returns only one row itself.

In SELECT statements within DECLARE CURSOR statements, the WHERE clause is optional. If
the WHERE clause is omitted, a query returns all rows in the table. To retrieve a subset of
rows in a table, a cursor declaration must include a WHERE clause.

The simple syntax for WHERE is:

WHERE <search_condition>

For example, the following simple WHERE clause tests a row to see if the
DEPARTMENT column is “Publications”:

UNDERSTANDING DATA RETRIEVAL WITH SELECT

PROGRAMMER’S GUIDE 131

WHERE DEPARTMENT = "Publications"

4 What is a search condition?
Because the WHERE clause specifies the type of data a query is searching for it is often
called a search condition. A query examines each row in a table to see if it meets the
criteria specified in the search condition. If it does, the row qualifies for retrieval.

When a row is compared to a search condition, one of three values is returned:

g True: A row meets the conditions specified in the WHERE clause.

g False: A row fails to meet the conditions specified in the WHERE clause.

g Unknown: A column tested in the WHERE clause contains an unknown value that could
not be evaluated because of a NULL comparison.

Most search conditions, no matter how complex, evaluate to True or False. An expression
that evaluates to True or False—like the search condition in the WHERE clause—is called
a Boolean expression.

4 Structure of a search condition
A typical simple search condition compares a value in one column against a constant or
a value in another column. For example, the following WHERE clause tests a row to see if
a field equals a hard-coded constant:

WHERE DEPARTMENT = "Publications"

This search condition has three elements: a column name, a comparison operator (the
equal sign), and a constant. Most search conditions are more complex than this. They
involve additional elements and combinations of simple search conditions. The following
table describes expression elements that can be used in search conditions:

CHAPTER 6 WORKING WITH DATA

132 INTERBASE 5

Element Description

Column names Columns from tables listed in the FROM clause, against which to search or
compare values.

Host-language variables Program variables containing changeable values. When used in a SELECT,
host-language variables must be preceded by a colon (:).

Constants Hard-coded numbers or quoted strings, like 507 or “Tokyo”.

Concatenation operators ||, used to combine character strings.

Arithmetic operators +, –, *, and /, used to calculate and evaluate search condition values.

Logical operators Keywords, NOT, AND, and OR, used within simple search conditions, or to
combine simple search conditions to make complex searches. A logical
operation evaluates to true or false.

Comparison operators <, >, <=, >=, =, and <>, used to compare a value on the left side of the
operator to another on the right. A comparative operation evaluates to
True or False.

Other, more specialized comparison operators include ALL, ANY, BETWEEN,
CONTAINING, EXISTS, IN, IS, LIKE, NULL, SINGULAR, SOME, and STARTING WITH. These
operators can evaluate to True, False, or Unknown.

COLLATE clause Comparisons of CHAR and VARCHAR values can sometimes take advantage
of a COLLATE clause to force the way text values are compared.

Stored procedures Reusable SQL statement blocks that can receive and return parameters,
and that are stored as part of a database’s metadata. For more information
about stored procedures in queries, see Chapter 11, “Working with
Stored Procedures.”

Subqueries A SELECT statement nested within the WHERE clause to return or calculate
values against which rows searched by the main SELECT statement are
compared. For more information about subqueries, see “Using
subqueries” on page 157.

Parentheses Group related parts of search conditions which should be processed
separately to produce a single value which is then used to evaluate the
search condition. Parenthetical expressions can be nested.

TABLE 6.12 Elements of WHERE clause SEARCH conditions

UNDERSTANDING DATA RETRIEVAL WITH SELECT

PROGRAMMER’S GUIDE 133

Complex search conditions can be constructed by combining simple search conditions in
different ways. For example, the following WHERE clause uses a column name, three
constants, three comparison operators, and a set of grouping parentheses to retrieve only
those rows for employees with salaries between $60,000 and $120,000:

WHERE DEPARTMENT = "Publications" AND

(SALARY > 60000 AND SALARY < 120000)

Search conditions in WHERE clauses often contain nested SELECT statements, or
subqueries. For example, in the following query, the WHERE clause contains a subquery
that uses the aggregate function, AVG(), to retrieve a list of all departments with
bigger-than-average salaries:

EXEC SQL

DECLARE WELL_PAID CURSOR FOR

SELECT DEPT_NO

INTO :wellpaid

FROM DEPARTMENT

WHERE SALARY > (SELECT AVG(SALARY) FROM DEPARTMENT);

For a general discussion of building search conditions from SQL expressions, see
“Understanding SQL expressions” on page 106. For more information about using
subqueries to specify search conditions, see “Using subqueries” on page 157. For more
information about aggregate functions, see “Retrieving aggregate column
information” on page 125.

4 Collation order in comparisons
When CHAR or VARCHAR values are compared in a WHERE clause, it can be necessary to
specify a collation order for the comparisons if the values being compared use different
collation orders.

To specify the collation order to use for a value during a comparison, include a COLLATE
clause after the value. For example, in the following WHERE clause fragment from an
embedded application, the value to the left of the comparison operator is forced to be
compared using a specific collation:

WHERE LNAME COLLATE FR_CA = :lname_search;

For more information about collation order and a list of collations available to InterBase,
see the Data Definition Guide.

CHAPTER 6 WORKING WITH DATA

134 INTERBASE 5

Sorting rows with ORDER BY

By default, a query retrieves rows in the exact order it finds them in a table, and because
internal table storage is unordered, retrieval, too, is likely to be unordered. To specify the
order in which rows are returned by a query, use the optional ORDER BY clause at the end
of a SELECT statement.

ORDER BY retrieves rows based on a column list. Every column in the ORDER BY clause
must also appear somewhere in the SELECT clause at the start of the statement. Each
column can optionally be ordered in ascending order (ASC, the default), or descending
order (DESC). The complete syntax of ORDER BY is:

ORDER BY col [COLLATE collation] [ASC | DESC]
[,col [COLLATE collation] [ASC | DESC] ...];

For example, the following cursor declaration orders output based on the LAST_NAME
column. Because DESC is specified in the ORDER BY clause, employees are retrieved from
Z to A:

EXEC SQL

DECLARE PHONE_LIST CURSOR FOR

SELECT LAST_NAME, FIRST_NAME, PHONE_EXT

FROM EMPLOYEE

WHERE PHONE_EXT IS NOT NULL

ORDER BY LAST_NAME DESC, FIRST_NAME;

4 ORDER BY with multiple columns
If more than one column is specified in an ORDER BY clause, rows are first arranged by
the values in the first column. Then rows that contain the same first-column value are
arranged according to the values in the second column, and so on. Each ORDER BY
column can include its own sort order specification.

IMPORTANT In multi-column sorts, after a sort order is specified, it applies to all subsequent columns
until another sort order is specified, as in the previous example. This attribute is
sometimes called sticky sort order. For example, the following cursor declaration orders
retrieval by LAST_NAME in descending order, then refines it alphabetically within
LAST_NAME groups by FIRST_NAME in ascending order:

EXEC SQL

DECLARE PHONE_LIST CURSOR FOR

SELECT LAST_NAME, FIRST_NAME, PHONE_EXT

FROM EMPLOYEE

WHERE PHONE_EXT IS NOT NULL

ORDER BY LAST_NAME DESC, FIRST_NAME ASC;

UNDERSTANDING DATA RETRIEVAL WITH SELECT

PROGRAMMER’S GUIDE 135

4 Collation order in an ORDER BY clause
When CHAR or VARCHAR columns are ordered in a SELECT statement, it can be necessary
to specify a collation order for the ordering, especially if columns used for ordering use
different collation orders.

To specify the collation order to use for ordering a column in the ORDER BY clause,
include a COLLATE clause after the column name. For example, in the following ORDER BY
clause, a different collation order for each of two columns is specified:

. . .

ORDER BY LNAME COLLATE FR_CA, FNAME COLLATE FR_FR;

For more information about collation order and a list of available collations in InterBase,
see the Data Definition Guide.

Grouping rows with GROUP BY

The optional GROUP BY clause enables a query to return summary information about
groups of rows that share column values instead of returning each qualifying row. The
complete syntax of GROUP BY is:

GROUP BY col [COLLATE collation] [, col [COLLATE collation] ...]

For example, consider two cursor declarations. The first declaration returns the names of
all employees each department, and arranges retrieval in ascending alphabetic order by
department and employee name.

EXEC SQL

DECLARE DEPT_EMP CURSOR FOR

SELECT DEPARTMENT, LAST_NAME, FIRST_NAME

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DEPT_NO = E.DEPT_NO"

ORDER BY DEPARTMENT, LAST_NAME, FIRST_NAME;

In contrast, the next cursor illustrates the use of aggregate functions with GROUP BY to
return results known as group aggregates. It returns the average salary of all employees
in each department. The GROUP BY clause assures that average salaries are calculated and
retrieved based on department names, while the ORDER BY clause arranges retrieved rows
alphabetically by department name.

EXEC SQL

DECLARE AVG_DEPT_SAL CURSOR FOR

SELECT DEPARTMENT, AVG(SALARY)

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DEPT_NO = E.DEPT_NO

CHAPTER 6 WORKING WITH DATA

136 INTERBASE 5

GROUP BY DEPARTMENT

ORDER BY DEPARTMENT;

4 Collation order in a GROUP BY clause
When CHAR or VARCHAR columns are grouped in a SELECT statement, it can be necessary
to specify a collation order for the grouping, especially if columns used for grouping use
different collation orders.

To specify the collation order to use for grouping columns in the GROUP BY clause,
include a COLLATE clause after the column name. For example, in the following GROUP
BY clause, the collation order for two columns is specified:

. . .

GROUP BY LNAME COLLATE FR_CA, FNAME COLLATE FR_CA;

For more information about collation order and a list of collation orders available in
InterBase, see the Data Definition Guide.

4 Limitations of GROUP BY

When using GROUP BY, be aware of the following limitations:

g Each column name that appears in a GROUP BY clause must also be specified in the SELECT
clause.

g GROUP BY cannot specify a column whose values are derived from a mathematical,
aggregate, or user-defined function.

g GROUP BY cannot be used in SELECT statements that:

· Contain an INTO clause (singleton selects).

· Use a subquery with a FROM clause which references a view whose definition contains
a GROUP BY or HAVING clause.

g For each SELECT clause in a query, including subqueries, there can only be one GROUP BY
clause.

Restricting grouped rows with HAVING

Just as a WHERE clause reduces the number of rows returned by a SELECT clause, the
HAVING clause can be used to reduce the number of rows returned by a GROUP BY clause.
The syntax of HAVING is:

HAVING <search_condition>

UNDERSTANDING DATA RETRIEVAL WITH SELECT

PROGRAMMER’S GUIDE 137

HAVING uses search conditions that are like the search conditions that can appear in the
WHERE clause, but with the following restrictions:

g Each search condition usually corresponds to an aggregate function used in the SELECT
clause.

g The FROM clause of a subquery appearing in a HAVING clause cannot name any table or
view specified in the main query’s FROM clause.

g A correlated subquery cannot be used in a HAVING clause.

For example, the following cursor declaration returns the average salary for all employees
in each department. The GROUP BY clause assures that average salaries are calculated and
retrieved based on department names. The HAVING clause restricts retrieval to those
groups where the average salary is greater than 60,000, while the ORDER BY clause
arranges retrieved rows alphabetically by department name.

EXEC SQL

DECLARE SIXTY_THOU CURSOR FOR

SELECT DEPARTMENT, AVG(SALARY)

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DEPT_NO = E.DEPT_NO

GROUP BY DEPARTMENT

HAVING AVG(SALARY) > 60000

ORDER BY DEPARTMENT;

Note HAVING can also be used without GROUP BY. In this case, all rows retrieved by a
SELECT are treated as a single group, and each column named in the SELECT clause is
normally operated on by an aggregate function.

For more information about search conditions, see “Restricting row retrieval with
WHERE” on page 130. For more information about subqueries, see “Using subqueries”
on page 157.

Appending tables with UNION

Sometimes two or more tables in a database are identically structured, or have columns
that contain similar data. Where table structures overlap, information from those tables
can be combined to produce a single results table that returns a projection for every
qualifying row in both tables. The UNION clause retrieves all rows from each table,
appends one table to the end of another, and eliminates duplicate rows.

Unions are commonly used to perform aggregate operations on tables.

CHAPTER 6 WORKING WITH DATA

138 INTERBASE 5

The syntax for UNION is:

UNION SELECT col [, col ...] | * FROM <tableref> [, <tableref> ...]

For example, three tables, CITIES, COUNTRIES, and NATIONAL_PARKS, each contain the
names of cities. Assuming triggers have not been created that ensure that a city entered
in one table is also entered in the others to which it also applies, UNION can be used to
retrieve the names of all cities that appear in any of these tables.

EXEC SQL

DECLARE ALLCITIES CURSOR FOR

SELECT CIT.CITY FROM CITIES CIT

UNION SELECT COU.CAPITAL FROM COUNTRIES COU

UNION SELECT N.PARKCITY FROM NATIONAL_PARKS N;

TIP If two or more tables share entirely identical structures—similarly named columns,
identical datatypes, and similar data values in each column—UNION can return all rows
for each table by substituting an asterisk (*) for specific column names in the SELECT
clauses of the UNION.

Specifying a query plan with PLAN

To process a SELECT statement, InterBase uses an internal algorithm, called the query
optimizer, to determine the most efficient plan for retrieving data. The most efficient
retrieval plan also results in the fastest retrieval time. Occasionally the optimizer may
choose a plan that is less efficient. For example, when the number of rows in a table
grows sufficiently large, or when many duplicate rows are inserted or deleted from
indexed columns in a table, but the index’s selectivity is not recomputed, the optimizer
might choose a less efficient plan.

For these occasions, SELECT provided an optional PLAN clause that enables a
knowledgeable programmer to specify a retrieval plan. A query plan is built around the
availability of indexes, the way indexes are joined or merged, and a chosen access
method.

To specify a query plan, use the following PLAN syntax:

PLAN <plan_expr>
<plan_expr> =
[JOIN | [SORT] MERGE] (<plan_item> | <plan_expr>
[, <plan_item> | <plan_expr> ...])
<plan_item> = {table | alias}
NATURAL | INDEX (<index> [, <index> ...]) | ORDER <index>

SELECTING A SINGLE ROW

PROGRAMMER’S GUIDE 139

The PLAN syntax enables specifying a single table, or a join of two or more tables in a
single pass. Plan expressions can be nested in parentheses to specify any combination of
joins.

During retrieval, information from different tables is joined to speed retrieval. If indexes
are defined for the information to be joined, then these indexes are used to perform a
join. The optional JOIN keyword can be used to document this type of operation. When
no indexes exist for the information to join, retrieval speed can be improved by specifying
SORT MERGE instead of JOIN.

A plan_item is the name of a table to search for data. If a table is used more than once
in a query, aliases must be used to distinguish them in the PLAN clause. Part of the
plan_item specification indicates the way that rows should be accessed. The following
choices are possible:

g NATURAL, the default order, specifies that rows are accessed sequentially in no defined
order. For unindexed items, this is the only option.

g INDEX specifies that one or more indexes should be used to access items. All indexes to
be used must be specified. If any Boolean or join terms remain after all indexes are used,
they will be evaluated without benefit of an index. If any indexes are specified that cannot
be used, an error is returned.

g ORDER specifies that items are to be sorted based on a specified index.

Selecting a single row
An operation that retrieves a single row of data is called a singleton select. To retrieve a
single row from a table, to retrieve a column defined with a unique index, or to select an
aggregate value like COUNT() or AVG() from a table, use the following SELECT statement
syntax:

SELECT <col> [, <col> ...]
INTO :variable [, :variable ...]
FROM table
WHERE <search_condition>;

The mandatory INTO clause specifies the host variables where retrieved data is copied for
use in the program. Each host variable’s name must be preceded by a colon (:). For each
column retrieved, there must be one host variable of a corresponding datatype. Columns
are retrieved in the order they are listed in the SELECT clause, and are copied into host
variables in the order the variables are listed in the INTO clause.

CHAPTER 6 WORKING WITH DATA

140 INTERBASE 5

The WHERE clause must specify a search condition that guarantees that only one row is
retrieved. If the WHERE clause does not reduce the number of rows returned to a single
row, the SELECT fails.

IMPORTANT To select data from a table, a user must have SELECT privilege for a table, or a stored
procedure invoked by the user’s application must have SELECT privileges for the table.

For example, the following SELECT retrieves information from the
DEPARTMENT table for the department, Publications:

EXEC SQL

SELECT DEPARTMENT, DEPT_NO, HEAD_DEPT, BUDGET, LOCATION, PHONE_NO

INTO :deptname, :dept_no, :manager, :budget, :location, :phone

FROM DEPARTMENT

WHERE DEPARTMENT = "Publications";

When SQL retrieves the specified row, it copies the value in DEPARTMENT to the host
variable, deptname, copies the value in DEPT_NO to :dept_no, copies the value in
HEAD_DEPT to :manager, and so on.

Selecting multiple rows
Most queries specify search conditions that retrieve more than one row. For example, a
query that asks to see all employees in a company that make more than $60,000 can
retrieve many employees.

Because host variables can only hold a single column value at a time, a query that returns
multiple rows must build a temporary table in memory, called a results table, from which
rows can then be extracted and processed, one at a time, in sequential order. SQL keeps
track of the next row to process in the results table by establishing a pointer to it, called
a cursor.

IMPORTANT In dynamic SQL (DSQL), the process for creating a query and retrieving data is
somewhat different. For more information about multi-row selection in DSQL, see
“Selecting multiple rows in DSQL” on page 148.

To retrieve multiple rows into a results table, establish a cursor into the table, and process
individual rows in the table, SQL provides the following sequence of statements:

1. DECLARE CURSOR establishes a name for the cursor and specifies the query to
perform.

2. OPEN executes the query, builds the results table, and positions the cursor at
the start of the table.

SELECTING MULTIPLE ROWS

PROGRAMMER’S GUIDE 141

3. FETCH retrieves a single row at a time from the results table into host variables
for program processing.

4. CLOSE releases system resources when all rows are retrieved.

IMPORTANT To select data from a table, a user must have SELECT privilege for a table, or a stored
procedure invoked by the user’s application must have SELECT privilege for it.

Declaring a cursor
To declare a cursor and specify rows of data to retrieve, use the DECLARE
CURSOR statement. DECLARE CURSOR is a descriptive, non-executable statement. InterBase
uses the information in the statement to prepare system resources for the cursor when it
is opened, but does not actually perform the query. Because DECLARE CURSOR is
non-executable, SQLCODE is not assigned when this statement is used.

The syntax for DECLARE CURSOR is:

DECLARE cursorname CURSOR FOR
SELECT <col> [, <col> ...]

FROM table [, <table> ...]
WHERE <search_condition>
[GROUP BY col [, col ...]]
[HAVING <search_condition>]
[ORDER BY col [ASC | DESC] [, col ...] [ASC | DESC]

| FOR UPDATE OF col [, col ...]];

The cursorname is used in subsequent OPEN, FETCH, and CLOSE statements to identify the
active cursor.

With the following exceptions, the SELECT statement inside a DECLARE
CURSOR is similar to a stand-alone SELECT:

g A SELECT in a DECLARE CURSOR cannot include an INTO clause.

g A SELECT in a DECLARE CURSOR can optionally include either an ORDER BY clause or a FOR
UPDATE clause.

For example, the following statement declares a cursor:

EXEC SQL

DECLARE TO_BE_HIRED CURSOR FOR

SELECT D.DEPARTMENT, D.LOCATION, P.DEPARTMENT

FROM DEPARTMENT D, DEPARTMENT P

WHERE D.MNGR_NO IS NULL

AND D.HEAD_DEPT = P.DEPT_NO;

CHAPTER 6 WORKING WITH DATA

142 INTERBASE 5

4 Updating through cursors
In many applications, data retrieval and update may be interdependent. DECLARE CURSOR
supports an optional FOR UPDATE clause that optionally lists columns in retrieved rows
that can be modified. For example, the following statement declares such a cursor:

EXEC SQL

DECLARE H CURSOR FOR

SELECT CUST_NO

FROM CUSTOMER

WHERE ON_HOLD = "*"

FOR UPDATE OF ON_HOLD;

If a column list after FOR UPDATE is omitted, all columns retrieved for each row may be
updated. For example, the following query enables updating for two columns:

EXEC SQL

DECLARE H CURSOR FOR

SELECT CUST_NAME CUST_NO

FROM CUSTOMER

WHERE ON_HOLD = "*";

For more information about updating columns through a cursor, see “Updating multiple
rows” on page 167.

Opening a cursor
Before data selected by a cursor can be accessed, the cursor must be opened with the
OPEN statement. OPEN activates the cursor and builds a results table. It builds the results
table based on the selection criteria specified in the DECLARE CURSOR statement. The rows
in the results table comprise the active set of the cursor.

For example, the following statement opens a previously declared cursor called
DEPT_EMP:

EXEC SQL

OPEN DEPT_EMP;

When InterBase executes the OPEN statement, the cursor is positioned at the start of the
first row in the results table.

SELECTING MULTIPLE ROWS

PROGRAMMER’S GUIDE 143

Fetching rows with a cursor
Once a cursor is opened, rows can be retrieved, one at a time, from the results table by
using the FETCH statement. FETCH:

1. Retrieves the next available row from the results table.

2. Copies those rows into the host variables specified in the INTO clause of the
FETCH statement.

3. Advances the cursor to the start of the next available row or sets
SQLCODE to 100, indicating the cursor is at the end of the results table and
there are no more rows to retrieve.

The complete syntax of the FETCH statement in SQL is:

FETCH <cursorname> INTO :variable [[INDICATOR] :variable]
[, :variable [[INDICATOR] :variable>] ...];

IMPORTANT In dynamic SQL (DSQL) multi-row select processing, a different FETCH syntax is used.
For more information about retrieving multiple rows in DSQL, see “Fetching rows with
a DSQL cursor” on page 150.

For example, the following statement retrieves a row from the results table for the
DEPT_EMP cursor, and copies its column values into the host-language variables,
deptname, lname, and fname:

EXEC SQL

FETCH DEPT_EMP

INTO :deptname, :lname, :fname;

To process each row in a results table in the same manner, enclose the FETCH statement
in a host-language looping construct. For example, the following C code fetches and
prints each row defined for the DEPT_EMP cursor:

. . .

EXEC SQL

FETCH DEPT_EMP

INTO :deptname, :lname, :fname;

while (!SQLCODE)

{

printf("%s %s works in the %s department.\n", fname,

lname, deptname);

EXEC SQL

FETCH DEPT_EMP

INTO :deptname, :lname, :fname;

}

CHAPTER 6 WORKING WITH DATA

144 INTERBASE 5

EXEC SQL

CLOSE DEPT_EMP;

. . .

Every FETCH statement should be tested to see if the end of the active set is reached. The
previous example operates in the context of a while loop that continues processing as
long as SQLCODE is zero. If SQLCODE is 100, it indicates that there are no more rows to
retrieve. If SQLCODE is less than zero, it indicates that an error occurred.

4 Retrieving indicator status
Any column can have a NULL value, except those defined with the NOT NULL or UNIQUE
integrity constraints. Rather than store a value for the column, InterBase sets a flag
indicating the column has no assigned value.

To determine if a value returned for a column is NULL, follow each variable named in the
INTO clause with the INDICATOR keyword and the name of a short integer variable, called
an indicator variable, where InterBase should store the status of the NULL value flag for
the column. If the value retrieved is:

g NULL, the indicator variable is set to –1.

g Not NULL, the indicator parameter is set to 0.

For example, the following C code declares three host-language variables, department,
manager, and missing_manager, then retrieves column values into
department, manager, and a status flag for the column retrieved into manager,
missing_manager, with a FETCH from a previously declared cursor, GETCITY:

. . .

char department[26];

char manager[36];

short missing_manager;

. . .

FETCH GETCITY INTO :department, :manager INDICATOR :missing_manager;

The optional INDICATOR keyword can be omitted:

FETCH GETCITY INTO :department, :manager :missing_manager;

Often, the space between the variable that receives the actual contents of a
column and the variable that holds the status of the NULL value flag is also omitted:

FETCH GETCITY INTO :department, :manager:missing_manager;

Note While InterBase enforces the SQL requirement that the number of host variables in
a FETCH must equal the number of columns specified in DECLARE CURSOR, indicator
variables in a FETCH statement are not counted toward the column count.

SELECTING MULTIPLE ROWS

PROGRAMMER’S GUIDE 145

4 Refetching rows with a cursor
The only supported cursor movement is forward in sequential order through the active
set.

To revisit previously fetched rows, close the cursor and then reopen it with another OPEN
statement. For example, the following statements close the DEPT_EMP cursor, then
recreate it, effectively repositioning the cursor at the start of the DEPT_EMP results table:

EXEC SQL

CLOSE DEPT_EMP;

EXEC SQL

OPEN DEPT_EMP;

Closing the cursor
When the end of a cursor’s active set is reached, a cursor should be closed to free up
system resources. To close a cursor, use the CLOSE statement. For example, the following
statement closes the DEPT_EMP cursor:

EXEC SQL

CLOSE DEPT_EMP;

Programs can check for the end of the active set by examining SQLCODE, which is set to
100 to indicate there are no more rows to retrieve.

A complete cursor example
The following program declares a cursor, opens the cursor, and then loops through the
cursor’s active set, fetching and printing values. The program closes the cursor when all
processing is finished or an error occurs.

#include <stdio.h>

EXEC SQL

BEGIN DECLARE SECTION;

char deptname[26];

char lname[16];

char fname[11];

EXEC SQL

END DECLARE SECTION;

main ()

{

CHAPTER 6 WORKING WITH DATA

146 INTERBASE 5

EXEC SQL

WHENEVER SQLERROR GO TO abend;

EXEC SQL

DECLARE DEPT_EMP CURSOR FOR

SELECT DEPARTMENT, LAST_NAME, FIRST_NAME

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.DEPT_NO = E.DEPT_NO"

ORDER BY DEPARTMENT, LAST_NAME, FIRST_NAME;

EXEC SQL

OPEN DEPT_EMP;

EXEC SQL

FETCH DEPT_EMP

INTO :deptname, :lname, :fname;

while (!SQLCODE)

{

printf("%s %s works in the %s department.\n",fname,

lname, deptname);

EXEC SQL

FETCH DEPT_EMP

INTO :deptname, :lname, :fname;

}

EXEC SQL

CLOSE DEPT_EMP;

exit();

abend:

if (SQLCODE)

{

isc_print_sqlerror();

EXEC SQL

ROLLBACK;

EXEC SQL

CLOSE_DEPT_EMP;

EXEC SQL

DISCONNECT ALL;

exit(1)

}

else

{

EXEC SQL

COMMIT;

EXEC SQL

SELECTING MULTIPLE ROWS

PROGRAMMER’S GUIDE 147

DISCONNECT ALL;

exit()

}

}

Selecting rows with NULL values
Any column can have NULL values, except those defined with the NOT NULL or UNIQUE
integrity constraints. Rather than store a value for the column, InterBase sets a flag
indicating the column has no assigned value.

Use IS NULL in a WHERE clause search condition to query for NULL values. For example,
some rows in the DEPARTMENT table do not have a value for the
BUDGET column. Departments with no stored budget have the NULL value flag set for that
column. The following cursor declaration retrieves rows for departments without budgets
for possible update:

EXEC SQL

DECLARE NO_BUDGET CURSOR FOR

SELECT DEPARTMENT, BUDGET

FROM DEPARTMENT

WHERE BUDGET IS NULL

FOR UPDATE OF BUDGET;

Note To determine if a column has a NULL value, use an indicator variable. For more
information about indicator variables, see “Retrieving indicator status” on page 144.

A direct query on a column containing a NULL value returns zero for numbers, blanks for
characters, and 17 November 1858 for dates. For example, the following cursor
declaration retrieves all department budgets, even those with NULL values, which are
reported as zero:

EXEC SQL

DECLARE ALL_BUDGETS CURSOR FOR

SELECT DEPARTMENT, BUDGET

FROM DEPARTMENT

ORDER BY BUDGET DESCENDING;

4 Limitations on NULL values
Because InterBase treats NULL values as non-values, the following limitations on NULL
values in queries should be noted:

g Rows with NULL values are sorted after all other rows.

CHAPTER 6 WORKING WITH DATA

148 INTERBASE 5

g NULL values are skipped by all aggregate operations, except for COUNT(*).

g NULL values cannot be elicited by a negated test in a search condition.

g NULL values cannot satisfy a join condition.

NULL values can be tested in comparisons. If a value on either side of a comparison
operator is NULL, the result of the comparison is Unknown.

For the Boolean operators (NOT, AND, and OR), the following considerations are made:

g NULL values with NOT always returns Unknown.

g NULL values with AND return Unknown unless one operand for AND is false. In this latter
case, False is returned.

g NULL values with OR return Unknown unless one operand for OR is true. In this latter case,
True is returned.

For information about defining alternate NULL values, see the Data Definition Guide.

Selecting rows through a view
To select a subset of rows available through a view, substitute the name of the view for a
table name in the FROM clause of a SELECT. For example, the following cursor produces a
list of employee phone numbers based on the PHONE_VIEW view:

EXEC SQL

DECLARE PHONE_LIST CURSOR FOR

SELECT FIRST_NAME, LAST_NAME, PHONE_EXT

FROM PHONE_VIEW

WHERE EMPLOYEE.DEPT_NO = DEPARTMENT.DEPT_NO;

A view can be a join. Views can also be used in joins, themselves, in place of tables. For
more information about views in joins, see “Joining tables” on page 151.

Selecting multiple rows in DSQL
In DSQL users are usually permitted to specify queries at run time. To accommodate any
type of query the user supplies, DSQL requires the use of extended SQL descriptor areas
(XSQLDAs) where a query’s input and output can be prepared and described. For queries
returning multiple rows, DSQL supports variations of the DECLARE CURSOR, OPEN, and
FETCH statements that make use of the XSQLDA.

SELECTING MULTIPLE ROWS IN DSQL

PROGRAMMER’S GUIDE 149

To retrieve multiple rows into a results table, establish a cursor into the table, and process
individual rows in the table. DSQL provides the following sequence of statements:

1. PREPARE establishes the user-defined query specification in the XSQLDA
structure used for output.

2. DECLARE CURSOR establishes a name for the cursor and specifies the query to
perform.

3. OPEN executes the query, builds the results table, and positions the cursor at
the start of the table.

4. FETCH retrieves a single row at a time from the results table for program
processing.

5. CLOSE releases system resources when all rows are retrieved.

The following three sections describe how to declare a DSQL cursor, how to open it, and
how to fetch rows using the cursor. For more information about creating and filling
XSQLDA structures, and preparing DSQL queries with PREPARE, see Chapter 14, “Using
Dynamic SQL.”For more information about closing a cursor, see “Closing the cursor”
on page 145.

Declaring a DSQL cursor
DSQL must declare a cursor based on a user-defined SELECT statement. Usually, DSQL
programs:

g Prompt the user for a query (SELECT).

g Store the query in a host-language variable.

g Issue a PREPARE statement that uses the host-language variable to describe the query
results in an XSQLDA.

g Declare a cursor using the query alias.

The complete syntax for DECLARE CURSOR in DSQL is:

DECLARE cursorname CURSOR FOR queryname;

For example, the following C code fragment declares a string variable,
querystring, to hold the user-defined query, gets a query from the user and stores it in
querystring, uses querystring to PREPARE a query called QUERY, then declares a cursor, C,
that uses QUERY:

. . .

EXEC SQL

BEGIN DECLARE SECTION;

CHAPTER 6 WORKING WITH DATA

150 INTERBASE 5

char querystring [512];

XSQLDA *InputSqlda, *OutputSqlda;

EXEC SQL

END DECLARE SECTION;

. . .

printf("Enter query: "); /* prompt for query from user */

gets(querystring); /* get the string, store in querystring */

. . .

EXEC SQL

PREPARE QUERY INTO OutputSqlda FROM :querystring;

. . .

EXEC SQL

DECLARE C CURSOR FOR QUERY;

For more information about creating and filling XSQLDA structures, and preparing DSQL
queries with PREPARE, see Chapter 14, “Using Dynamic SQL.”

Opening a DSQL cursor
The OPEN statement in DSQL establishes a results table from the input parameters
specified in a previously declared and populated XSQLDA. A cursor must be opened before
data can be retrieved. The syntax for a DSQL OPEN is:

OPEN cursorname USING DESCRIPTOR sqldaname;

For example, the following statement opens the cursor, C, using the XSQLDA, InputSqlda:

EXEC SQL

OPEN C USING DESCRIPTOR InputSqlda;

Fetching rows with a DSQL cursor
DSQL uses the FETCH statement to retrieve rows from a results table. The rows are
retrieved according to specifications provided in a previously established and populated
extended SQL descriptor area (XSQLDA) that describes the user’s request. The syntax for
the DSQL FETCH statement is:

FETCH cursorname USING DESCRIPTOR descriptorname;

For example, the following C code fragment declares XSQLDA structures for input and
output, and illustrates how the output structure is used in a FETCH statement:

. . .

JOINING TABLES

PROGRAMMER’S GUIDE 151

XSQLDA *InputSqlda, *OutputSqlda;

. . .

EXEC SQL

FETCH C USING DESCRIPTOR OutputSqlda;

. . .

For more information about creating and filling XSQLDA structures, and preparing DSQL
queries with PREPARE, see Chapter 14, “Using Dynamic SQL.”

Joining tables
Joins enable retrieval of data from two or more tables in a database with a single SELECT.
The tables from which data is to be extracted are listed in the FROM clause. Optional
syntax in the FROM clause can reduce the number of rows returned, and additional WHERE
clause syntax can further reduce the number of rows returned.

From the information in a SELECT that describes a join, InterBase builds a table that
contains the results of the join operation, the results table, sometimes also called a
dynamic or virtual table.

InterBase supports two types of joins:

g Inner joins link rows in tables based on specified join conditions, and return only those
rows that match the join conditions. There are three types of inner joins:

· Equi-joins link rows based on common values or equality relationships in the join
columns.

· Joins that link rows based on comparisons other than equality in the join columns.
There is not an officially recognized name for these types of joins, but for simplicity’s
sake they may be categorized as comparative joins, or non-equi-joins.

· Reflexive or self-joins, compare values within a column of a single table.

g Outer joins link rows in tables based on specified join conditions and return both rows
that match the join conditions, and all other rows from one or more tables even if they
do not match the join condition.

The most commonly used joins are inner joins, because they both restrict the data
returned, and show a clear relationship between two or more tables. Outer joins,
however, are useful for viewing joined rows against a background of rows that do not
meet the join conditions.

CHAPTER 6 WORKING WITH DATA

152 INTERBASE 5

Choosing join columns
How do you choose which columns to join? At a minimum, they must be of compatible
datatypes and of similar content. You cannot, for example, join a CHAR column to an
INTEGER column. A common and reliable criterion is to join the foreign key of one table
to its referenced primary key. Often, joins are made between identical columns in two
tables. For example, you might join the Job and Employee tables on their respective
job_code columns.

INTEGER, DECIMAL, NUMERIC, and FLOAT datatypes can be compared to one another
because they are all numbers. String values, like CHAR and VARCHAR, can only be
compared to other string values unless they contain ASCII values that are all numbers. The
CAST() function can be used to force translation of one InterBase datatype to another for
comparisons. For more information about CAST(), see “Using CAST() for datatype
conversions” on page 121.

IMPORTANT If a joined column contains a NULL value for a given row, InterBase does not include that
row in the results table unless performing an outer join.

Using inner joins
InterBase supports two methods for creating inner joins. For portability and compatibility
with existing SQL applications, InterBase continues to support the old SQL method for
specifying joins. In older versions of SQL, there is no explicit join language. An inner join
is specified by listing tables to join in the FROM clause of a SELECT, and the columns to
compare in the WHERE clause.

For example, the following join returns the department name, manager number, and
salary for any manager whose salary accounts for one third or more of the total salaries
of employees in that department.

EXEC SQL

DECLARE BIG_SAL CURSOR FOR

SELECT D.DEPARTMENT, D.MNGR_NO, E.SALARY

FROM DEPARTMENT D, EMPLOYEE E

WHERE D.MNGR_NO = E.EMP_NO

AND E.SALARY*2 >= (SELECT SUM(S.SALARY) FROM EMPLOYEE S

WHERE D.DEPT_NO = S.DEPT_NO)

ORDER BY D.DEPARTMENT;

InterBase also implements new, explicit join syntax based on SQL-92:

SELECT col [, col ...] | *

JOINING TABLES

PROGRAMMER’S GUIDE 153

FROM <tablerefleft> [INNER] JOIN <tablerefright>
[ON <searchcondition>]

[WHERE <searchcondition>];

The join is explicitly declared in the FROM clause using the JOIN keyword. The table
reference appearing to the left of the JOIN keyword is called the left table, while the table
to the right of the JOIN is called the right table. The conditions of the join—the columns
from each table—are stated in the ON clause. The WHERE clause contains search
conditions that limit the number of rows returned. For example, using the new join
syntax, the previously described query can be rewritten as:

EXEC SQL

DECLARE BIG_SAL CURSOR FOR

SELECT D.DEPARTMENT, D.MNGR_NO, E.SALARY

 FROM DEPARTMENT D INNER JOIN EMPLOYEE E

ON D.MNGR_NO = E.EMP_NO

WHERE E.SALARY*2 > (SELECT SUM(S.SALARY) FROM EMPLOYEE S

WHERE D.DEPT_NO = S.DEPT_NO)

ORDER BY D.DEPARTMENT;

The new join syntax offers several advantages. An explicit join declaration makes the
intention of the program clear when reading its source code.

The ON clause contains join conditions. The WHERE clause can contains conditions that
restrict which rows are returned.

The FROM clause also permits the use of table references, which can be used to construct
joins between three or more tables. For more information about nested joins, see “Using
nested joins” on page 157.

4 Creating equi-joins
An inner join that matches values in join columns is called an equi-join. Equi-joins are
among the most common join operations. The ON clause in an equi-join always takes the
form:

ON t1.column = t2.column

For example, the following join returns a list of cities around the world if the capital cities
also appear in the CITIES table, and also returns the populations of those cities:

EXEC SQL

DECLARE CAPPOP CURSOR FOR

SELECT COU.NAME, COU.CAPITAL, CIT.POPULATION

FROM COUNTRIES COU JOIN CITIES CIT ON CIT.NAME = COU.CAPITAL

WHERE COU.CAPITAL NOT NULL

ORDER BY COU.NAME;

CHAPTER 6 WORKING WITH DATA

154 INTERBASE 5

In this example, the ON clause specifies that the CITIES table must contain a city name
that matches a capital name in the COUNTRIES table if a row is to be returned. Note that
the WHERE clause restricts rows retrieved from the COUNTRIES table to those where the
CAPITAL column contains a value.

4 Joins based on comparison operators
Inner joins can compare values in join columns using other comparison operators besides
the equality operator. For example, a join might be based on a column in one table
having a value less than the value in a column in another table. The ON clause in a
comparison join always takes the form:

ON t1.column <operator> t2.column

where <operator> is a valid comparison operator. For a list of valid comparison
operators, see “Using comparison operators in expressions” on page 110.

For example, the following join returns information about provinces in Canada that are
larger than the state of Alaska in the United States:

EXEC SQL

DECLARE BIGPROVINCE CURSOR FOR

SELECT S.STATE_NAME, S.AREA, P.PROVINCE_NAME, P.AREA

FROM STATES S JOIN PROVINCE P ON P.AREA > S.AREA AND

P.COUNTRY = "Canada"

WHERE S.STATE_NAME = "Alaska";

In this example, the first comparison operator in the ON clause tests to see if the area of
a province is greater than the area of any state (the WHERE clause restricts final output to
display only information for provinces that are larger in area than the state of Alaska).

4 Creating self-joins
A self-join is an inner join where a table is joined to itself to correlate columns of data.
For example, the RIVERS table lists rivers by name, and, for each river, lists the river into
which it flows. Not all rivers, of course, flow into other rivers. To discover which rivers
flow into other rivers, and what their names are, the
RIVERS table must be joined to itself:

EXEC SQL

DECLARE RIVERSTORIVERS CURSOR FOR

SELECT R1.RIVER, R2.RIVER

FROM RIVERS R1 JOIN RIVERS R2 ON R2.OUTFLOW = R1.RIVER

ORDER BY R1.RIVER, R2.SOURCE;

JOINING TABLES

PROGRAMMER’S GUIDE 155

As this example illustrates, when a table is joined to itself, each invocation of the table
must be assigned a unique correlation name (R1 and R2 are correlation names in the
example). For more information about assigning and using correlation names, see
“Declaring and using correlation names” on page 130.

Using outer joins
Outer joins produce a results table that contains columns from every row in one table,
and a subset of rows from another table. Actually, one type of outer join returns all rows
from each table, but this type of join is used less frequently than other types. Outer join
syntax is very similar to that of inner joins:

SELECT col [, col ...] | *
FROM <tablerefleft> {LEFT | RIGHT | FULL} [OUTER] JOIN

<tablerefright> [ON <searchcondition>]
[WHERE <searchcondition>];

Outer join syntax requires that you specify the type of join to perform. There are three
possibilities:

g A left outer join retrieves all rows from the left table in a join, and retrieves any rows from
the right table that match the search condition specified in the ON clause.

g A right outer join retrieves all rows from the right table in a join, and retrieves any rows
from the left table that match the search condition specified in the ON clause.

g A full outer join retrieves all rows from both the left and right tables in a join regardless
of the search condition specified in the ON clause.

Outer joins are useful for comparing a subset of data to the background of all data from
which it is retrieved. For example, when listing those countries which contain the sources
of rivers, it may be interesting to see those countries which are not the sources of rivers
as well.

4 Using a left outer join
The left outer join is more commonly used than other types of outer joins. The following
left outer join retrieves those countries that contain the sources of rivers, and identifies
those countries that do not have NULL values in the R.RIVERS column:

EXEC SQL

DECLARE RIVSOURCE CURSOR FOR

SELECT C.COUNTRY, R.RIVER

FROM COUNTRIES C LEFT JOIN RIVERS R ON R.SOURCE = C.COUNTRY

ORDER BY C.COUNTRY;

CHAPTER 6 WORKING WITH DATA

156 INTERBASE 5

The ON clause enables join search conditions to be expressed in the FROM clause. The
search condition that follows the ON clause is the only place where retrieval of rows can
be restricted based on columns appearing in the right table. The WHERE clause can be
used to further restrict rows based solely on columns in the left (outer) table.

4 Using a right outer join
A right outer join retrieves all rows from the right table in a join, and only those rows
from the left table that match the search condition specified in the ON clause. The
following right outer join retrieves a list of rivers and their countries of origin, but also
reports those countries that are not the source of any river:

EXEC SQL

DECLARE RIVSOURCE CURSOR FOR

SELECT R.RIVER, C.COUNTRY

FROM RIVERS.R RIGHT JOIN COUNTRIES C ON C.COUNTRY = R.SOURCE

ORDER BY C.COUNTRY;

TIP Most right outer joins can be rewritten as left outer joins by reversing the order in which
tables are listed.

4 Using a full outer join
A full outer join returns all selected columns that do not contain NULL values from each
table in the FROM clause without regard to search conditions. It is useful to consolidate
similar data from disparate tables.

For example, several tables in a database may contain city names. Assuming triggers have
not been created that ensure that a city entered in one table is also entered in the others
to which it also applies, one of the only ways to see a list of all cities in the database is
to use full outer joins. The following example uses two full outer joins to retrieve the
name of every city listed in three tables, COUNTRIES, CITIES, and NATIONAL_PARKS:

EXEC SQL

DECLARE ALLCITIES CURSOR FOR

SELECT DISTINCT CIT.CITY, COU.CAPITAL, N.PARKCITY

FROM (CITIES CIT FULL JOIN COUNTRIES COU) FULL

JOIN NATIONAL_PARKS N;

This example uses a nested full outer join to process all rows from the CITIES and
COUNTRIES tables. The result table produced by that operation is then used as the left
table of the full outer join with the NATIONAL_PARKS table. For more information about
using nested joins, see “Using nested joins” on page 157.

USING SUBQUERIES

PROGRAMMER’S GUIDE 157

Note In most databases where tables share similar or related information, triggers are
usually created to ensure that all tables are updated with shared information. For more
information about triggers, see the Data Definition Guide.

Using nested joins
The SELECT statement FROM clause can be used to specify any combination of available
tables or table references, parenthetical, nested joins whose results tables are created and
then processed as if they were actual tables stored in the database. Table references are
flexible and powerful, enabling the succinct creation of complex joins in a single location
in a SELECT.

For example, the following statement contains a parenthetical outer join that creates a
results table with the names of every city in the CITIES table even if the city is not
associated with a country in the COUNTRIES table. The results table is then processed as
the left table of an inner join that returns only those cities that have professional sports
teams of any kind, the name of the team, and the sport the team plays.

DECLARE SPORTSCITIES CURSOR FOR

SELECT COU.COUNTRY, C.CITY, T.TEAM, T.SPORT

FROM (CITIES CIT LEFT JOIN COUNTRIES COU ON COU.COUNTRY =

CIT.COUNTRY) INNER JOIN TEAMS T ON T.CITY = C.CITY

ORDER BY COU.COUNTRY;

For more information about left joins, see “Using outer joins” on page 155.

Using subqueries
A subquery is a parenthetical SELECT statement nested inside the WHERE clause of another
SELECT statement, where it functions as a search condition to restrict the number of rows
returned by the outer, or parent, query. A subquery can refer to the same table or tables
as its parent query, or to other tables.

The elementary syntax for a subquery is:

SELECT [DISTINCT] col [, col ...]
FROM <tableref> [, <tableref> ...]

WHERE {expression {[NOT] IN | comparison_operator}
| [NOT] EXISTS} (SELECT [DISTINCT] col [, col ...]

FROM <tableref> [, <tableref> ...]
WHERE <search_condition>);

CHAPTER 6 WORKING WITH DATA

158 INTERBASE 5

Because a subquery is a search condition, it is usually evaluated before its parent query,
which then uses the result to determine whether or not a row qualifies for retrieval. The
only exception is the correlated subquery, where the parent query provides values for the
subquery to evaluate. For more information about correlated subqueries, see
“Correlated subqueries” on page 159.

A subquery determines the search condition for a parent’s WHERE clause in one of the
following ways:

g Produces a list of values for evaluation by an IN operator in the parent query’s WHERE
clause, or where a comparison operator is modified by the ALL, ANY, or SOME operators.

g Returns a single value for use with a comparison operator.

g Tests whether or not data meets conditions specified by an EXISTS operator in the parent
query’s WHERE clause.

Subqueries can be nested within other subqueries as search conditions, establishing a
chain of parent/child queries.

Simple subqueries
A subquery is especially useful for extracting data from a single table when a self-join is
inadequate. For example, it is impossible to retrieve a list of those countries with a larger
than average area by joining the COUNTRIES table to itself. A subquery, however, can easily
return that information.

EXEC SQL

DECLARE LARGECOUNTRIES CURSOR FOR

SELECT COUNTRY, AREA

FROM COUNTRIES

WHERE AREA > (SELECT AVG(AREA) FROM COUNTRIES);

ORDER BY AREA;

In this example, both the query and subquery refer to the same table. Queries and
subqueries can refer to different tables, too. For example, the following query refers to
the CITIES table, and includes a subquery that refers to the COUNTRIES table:

EXEC SQL

DECLARE EUROCAPPOP CURSOR FOR

SELECT CIT.CITY, CIT.POPULATION

FROM CITIES CIT

WHERE CIT.CITY IN (SELECT COU.CAPITAL FROM COUNTRIES COU

WHERE COU.CONTINENT = "Europe")

ORDER BY CIT.CITY;

USING SUBQUERIES

PROGRAMMER’S GUIDE 159

This example uses correlation names to distinguish between tables even though the
query and subquery reference separate tables. Correlation names are only necessary
when both a query and subquery refer to the same tables and those tables share column
names, but it is good programming practice to use them. For more information about
using correlation names, see “Declaring and using correlation names” on page 130.

Correlated subqueries
A correlated subquery is a subquery that depends on its parent query for the values it
evaluates. Because each row evaluated by the parent query is potentially different, the
subquery is executed once for each row presented to it by the parent query.

For example, the following query lists each country for which there are three or more
cities stored in the CITIES table. For each row in the COUNTRIES table, a country name is
retrieved in the parent query, then used in the comparison operation in the subquery’s
WHERE clause to verify if a city in the CITIES table should be counted by the COUNT()
function. If COUNT() exceeds 2 for a row, the row is retrieved.

EXEC SQL

DECLARE TRICITIES CURSOR FOR

SELECT COUNTRY

FROM COUNTRIES COU

WHERE 3 <= (SELECT COUNT (*)

FROM CITIES CIT

WHERE CIT.CITY = COU.CAPITAL);

Simple and correlated subqueries can be nested and mixed to build complex queries. For
example, the following query retrieves the country name, capital city, and largest city of
countries whose areas are larger than the average area of countries that have at least one
city within 30 meters of sea level:

EXEC SQL

DECLARE SEACOUNTRIES CURSOR FOR

SELECT CO1.COUNTRY, C01.CAPITAL, CI1.CITY

FROM COUNTRIES C01, CITIES CI1

WHERE CO1.COUNTRY = CI1.COUNTRY AND CI1.POPULATION =

(SELECT MAX(CI2.POPULATION)

FROM CITIES CI2 WHERE CI2.COUNTRY = CI1.COUNTRY)

AND CO1.AREA >

(SELECT AVG (CO2.AREA)

FROM COUNTRIES C02 WHERE EXISTS

CHAPTER 6 WORKING WITH DATA

160 INTERBASE 5

(SELECT *

FROM CITIES CI3 WHERE CI3.COUNTRY = CO2.COUNTRY

AND CI3.ALTITUDE <= 30));

When a table is separately searched by queries and subqueries, as in this example, each
invocation of the table must establish a separate correlation name for the table. Using
correlation names is the only method to assure that column references are associated
with appropriate instances of their tables. For more information about correlation names,
see “Declaring and using correlation names” on page 130.

Inserting data
New rows of data are added to one table at a time with the INSERT statement. To insert
data, a user or stored procedure must have INSERT privilege for a table.

The INSERT statement enables data insertion from two different sources:

g A VALUES clause that contains a list of values to add, either through hard-coded values, or
host-language variables.

g A SELECT statement that retrieves values from one table to add to another.

The syntax of INSERT is as follows:

INSERT [TRANSACTION name] INTO table [(col [, col ...])]
{VALUES (<val>[:ind] [, <val>[:ind] ...])

| SELECT <clause>};

The list of columns into which to insert values is optional in DSQL applications. If it is
omitted, then values are inserted into a table’s columns according to the order in which
the columns were created. If there are more columns than values, the remaining columns
are filled with zeros.

Using VALUES to insert columns
Use the VALUES clause to add a row of specific values to a table, or to add values entered
by a user at run time. The list of values that follows the keyword can come from either
from host-language variables, or from hard-coded assignments.

For example, the following statement adds a new row to the DEPARTMENT table using
hard-coded value assignments:

EXEC SQL

INSERTING DATA

PROGRAMMER’S GUIDE 161

INSERT INTO DEPARTMENT (DEPT_NO, DEPARTMENT)

VALUES (7734, "Marketing");

Because the DEPARTMENT table contains additional columns not specified in the INSERT,
NULL values are assigned to the missing fields.

The following C code example prompts a user for information to add to the DEPARTMENT
table, and inserts those values from host variables:

. . .

EXEC SQL

BEGIN DECLARE SECTION;

char department[26], dept_no[16];

int dept_num;

EXEC SQL

END DECLARE SECTION;

. . .

printf("Enter name of department: ");

gets(department);

printf("\nEnter department number: ");

dept_num = atoi(gets(dept_no));

EXEC SQL

INSERT INTO COUNTRIES (DEPT_NO, DEPARTMENT)

VALUES (:dept_num, :department);

When host variables are used in the values list, they must be preceded by colons (:) so
that SQL can distinguish them from table column names.

Using SELECT to insert columns
To insert values from one table into another row in the same table or into a row in
another table, use a SELECT statement to specify a list of insertion values. For example,
the following INSERT statement copies DEPARTMENT and BUDGET information about the
publications department from the OLDDEPT table to the DEPARTMENT table. It also
illustrates how values can be hard-coded into a SELECT statement to substitute actual
column data.

EXEC SQL

INSERT INTO DEPARTMENTS (DEPT_NO, DEPARTMENT, BUDGET)

SELECT DEPT_NO, "Publications", BUDGET

FROM OLDDEPT

WHERE DEPARTMENT = "Documentation";

CHAPTER 6 WORKING WITH DATA

162 INTERBASE 5

The assignments in the SELECT can include arithmetic operations. For example, suppose
an application keeps track of employees by using an employee number. When a new
employee is hired, the following statement inserts a new employee row into the EMPLOYEE
table, and assigns a new employee number to the row by using a SELECT statement to find
the current maximum employee number and adding one to it. It also reads values for
LAST_NAME and FIRST_NAME from the host variables, lastname, and firstname.

EXEC SQL

INSERT INTO EMPLOYEE (EMP_NO, LAST_NAME, FIRST_NAME)

SELECT (MAX(EMP_NO) + 1, :lastname, :firstname)

FROM EMPLOYEE;

Inserting rows with NULL column values
Sometimes when a new row is added to a table, values are not necessary or available for
all its columns. In these cases, a NULL value should be assigned to those columns when
the row is inserted. There are three ways to assign a NULL value to a column on insertion:

g Ignore the column.

g Assign a NULL value to the column. This is standard SQL practice.

g Use indicator variables.

4 Ignoring a column
A NULL value is assigned to any column that is not explicitly specified in an INTO clause.
When InterBase encounters an unreferenced column during insertion, it sets a flag for
the column indicating that its value is unknown. For example, the DEPARTMENT table
contains several columns, among them HEAD_DEPT, MNGR_NO, and BUDGET. The
following INSERT does not provide values for these columns:

EXEC SQL

INSERT INTO DEPARTMENT (DEPT_NO, DEPARTMENT)

VALUES (:newdept_no, :newdept_name);

Because HEAD_DEPT, MNGR_NO, and BUDGET are not specified, InterBase sets the NULL
value flag for each of these columns.

Note If a column is added to an existing table, InterBase sets a NULL value flag for all
existing rows in the table.

INSERTING DATA

PROGRAMMER’S GUIDE 163

4 Assigning a NULL value to a column
When a specific value is not provided for a column on insertion, it is standard SQL
practice to assign a NULL value to that column. In InterBase a column is set to NULL by
specifying NULL for the column in the INSERT statement.

For example, the following statement stores a row into the DEPARTMENT table, assigns the
values of host variables to some columns, and assigns a NULL value to other columns:

EXEC SQL

INSERT INTO DEPARTMENT

(DEPT_NO, DEPARTMENT, HEAD_DEPT, MNGR_NO, BUDGET,

LOCATION, PHONE_NO)

VALUES (:dept_no, :dept_name, NULL, NULL, 1500000, NULL, NULL);

4 Using indicator variables
Another method for trapping and assigning NULL values—through indicator variables—
is necessary in applications that prompt users for data, where users can choose not to
enter values. By default, when InterBase stores new data, it stores zeroes for NULL
numeric data, and spaces for NULL character data. Because zeroes and spaces may be
valid data, it becomes impossible to distinguish missing data in the new row from actual
zeroes and spaces.

To trap missing data with indicator variables, and store NULL value flags, follow these
steps:

1. Declare a host-language variable to use as an indicator variable.

2. Test a value entered by the user and set the indicator variable to one of the
following values:

3. Associate the indicator variable with the host variable in the INSERT statement
using the following syntax:

INSERT INTO table (<col> [, <col> ...])
VALUES (:variable [INDICATOR] :indicator

[, :variable [INDICATOR] :indicator ...]);

Note The INDICATOR keyword is optional.

0 The host-language variable contains data.

–1 The host-language variable does not contain data.

CHAPTER 6 WORKING WITH DATA

164 INTERBASE 5

For example, the following C code fragment prompts the user for the name of a
department, the department number, and a budget for the department. It tests that the
user has entered a budget. If not, it sets the indicator variable, bi, to –1. Otherwise, it sets
bi to 0. Finally, the program INSERTS the information into the DEPARTMENT table. If the
indicator variable is –1, then no actual data is stored in the BUDGET column, but a flag is
set for the column indicating that the value is NULL

. . .

EXEC SQL

BEGIN DECLARE SECTION;

short bi; /* indicator variable declaration */

char department[26], dept_no_ascii[26], budget_ascii[26];

long num_val; /* host variable for inserting budget */

short dept_no;

EXEC SQL

END DECLARE SECTION;

. . .

printf("Enter new department name: ");

gets(cidepartment);

printf("\nEnter department number: ");

gets(dept_no_ascii);

printf("\nEnter department’s budget: ");

gets(budget_ascii);

if (budget_ascii = "")

{

bi = -1; num_val = 0;

}

else

{

bi = 0;

num_val = atoi(budget_ascii);

}

dept_no = atoi(dept_no_ascii);

EXEC SQL

INSERT INTO DEPARTMENT (DEPARTMENT, DEPT_NO, BUDGET)

VALUES (:department, :dept_no, :num_val INDICATOR :bi);

. . .

Indicator status can also be determined for data retrieved from a table. For information
about trapping NULL values retrieved from a table, see “Retrieving indicator status” on
page 144.

INSERTING DATA

PROGRAMMER’S GUIDE 165

Inserting data through a view
New rows can be inserted through a view if the following conditions are met:

g The view is updatable. For a complete discussion of updatable views, see the Data
Definition Guide.

g The view is created using the WITH CHECK OPTION.

g A user or stored procedure has INSERT privilege for the view.

Values can only be inserted through a view for those columns named in the view.
InterBase stores NULL values for unreferenced columns. For example, suppose the view,
PART_DEPT, is defined as follows:

EXEC SQL

CREATE VIEW PART_DEPT

(DEPARTMENT, DEPT_NO, BUDGET)

AS SELECT DEPARTMENT, DEPT_NO, BUDGET

FROM DEPARTMENT

WHERE DEPT_NO NOT NULL AND BUDGET > 50000

WITH CHECK OPTION;

Because PART_DEPT references a single table, DEPARTMENT, new data can be inserted for
the DEPARTMENT, DEPT_NO, and BUDGET columns. The WITH CHECK OPTION assures that
all values entered through the view fall within ranges of values that can be selected by
this view. For example, the following statement inserts a new row for the Publications
department through the PART_DEPT view:

EXEC SQL

INSERT INTO PART_DEPT (DEPARTMENT, DEPT_NO, BUDGET)

VALUES ("Publications", "7735", 1500000);

InterBase inserts NULL values for all other columns in the DEPARTMENT table that are not
available directly through the view.

For information about creating a view, see Chapter 5, “Working with Data Definition
Statements.” For the complete syntax of CREATE VIEW, see the Language Reference.

Note See the chapter on triggers in the Data Definition Guide for tips on using triggers
to update non-updatable views.

CHAPTER 6 WORKING WITH DATA

166 INTERBASE 5

Specifying transaction names in an INSERT

InterBase enables an SQL application to run simultaneous transactions if:

g Each transaction is first named with a SET TRANSACTION statement. For a complete
discussion of transaction handling and naming, see Chapter 4, “Working with
Transactions.”

g Each data manipulation statement (SELECT, INSERT, UPDATE, DELETE, DECLARE, OPEN,
FETCH, and CLOSE) specifies a TRANSACTION clause that identifies the name of the
transaction under which it operates.

g SQL statements are not dynamic (DSQL). DSQL does not support user-specified
transaction names.

With INSERT, the TRANSACTION clause intervenes between the INSERT keyword and the list
of columns to insert, as in the following syntax fragment:

INSERT TRANSACTION name INTO table (col [, col ...])

The TRANSACTION clause is optional in single-transaction programs. It must be used in a
multi-transaction program unless a statement operates under control of the default
transaction, gds__trans. For example, the following INSERT is controlled by the
transaction, T1:

EXEC SQL

INSERT TRANSACTION T1 INTO DEPARTMENT (DEPARTMENT, DEPT_NO, BUDGET)

VALUES (:deptname, :deptno, :budget INDICATOR :bi);

Updating data
To change values for existing rows of data in a table, use the UPDATE statement. To update
a table, a user or procedure must have UPDATE privilege for it. The syntax of UPDATE is:

UPDATE [TRANSACTION name] table
SET col = <assignment> [, col = <assignment> ...]
WHERE <search_condition> | WHERE CURRENT OF cursorname;

UPDATE changes values for columns specified in the SET clause; columns not listed in the
SET clause are not changed. A single UPDATE statement can be used to modify any
number of rows in a table. For example, the following statement modifies a single row:

EXEC SQL

UPDATE DEPARTMENT

UPDATING DATA

PROGRAMMER’S GUIDE 167

SET DEPARTMENT = "Publications"

WHERE DEPARTMENT = "Documentation";

The WHERE clause in this example targets a single row for update. If the same change
should be propagated to a number of rows in a table, the WHERE clause can be more
general. For example, to change all occurrences of “Documentation” to “Publications” for
all departments in the DEPARTMENT table where DEPARTMENT equals “Documentation,”
the UPDATE statement would be as follows:

EXEC SQL

UPDATE DEPARTMENT

SET DEPARTMENT = "Publications"

WHERE DEPARTMENT = "Documentation";

Using UPDATE to make the same modification to a number of rows is sometimes called a
mass update, or a searched update.

The WHERE clause in an UPDATE statement can contain a subquery that references one or
more other tables. For a complete discussion of subqueries, see “Using subqueries” on
page 157.

Updating multiple rows
There are two basic methods for modifying rows:

g The searched update method, where the same changes are applied to a number of rows,
is most useful for automated updating of rows without a cursor.

g The positioned update method, where rows are retrieved through a cursor and updated
row by row, is most useful for enabling users to enter different changes for each row
retrieved.

A searched update is easier to program than a positioned update, but also more limited
in what it can accomplish.

4 Using a searched update
Use a searched update to make the same changes to a number of rows. The UPDATE SET
clause specifies the actual changes that are to be made to columns for each row that
matches the search condition specified in the WHERE clause. Values to set can be specified
as constants or variables.

For example, the following C code fragment prompts for a country name and a
percentage change in population, then updates all cities in that country with the new
population:

CHAPTER 6 WORKING WITH DATA

168 INTERBASE 5

. . .

EXEC SQL

BEGIN DECLARE SECTION;

char country[26], asciimult[10];

int multiplier;

EXEC SQL

END DECLARE SECTION;

. . .

main ()

{

printf("Enter country with city populations needing adjustment: ");

gets(country);

printf("\nPercent change (100%% to -100%%:");

gets(asciimult);

multiplier = atoi(asciimult);

EXEC SQL

UPDATE CITIES

SET POPULATION = POPULATION * (1 + :multiplier / 100)

WHERE COUNTRY = :country;

if (SQLCODE && (SQLCODE != 100))

{

isc_print_sqlerr(SQLCODE, isc_status);

EXEC SQL

ROLLBACK RELEASE;

}

else

{

EXEC SQL

COMMIT RELEASE;

}

}

IMPORTANT Searched updates cannot be performed on arrays of datatypes.

4 Using a positioned update
Use cursors to select rows for update when prompting users for changes on a row-by-row
basis, and displaying pre- or post-modification values between row updates. Updating
through a cursor is a seven-step process:

UPDATING DATA

PROGRAMMER’S GUIDE 169

1. Declare host-language variables needed for the update operation.

2. Declare a cursor describing the rows to retrieve for update, and include the
FOR UPDATE clause in DSQL. For more information about declaring and using
cursors, see “Selecting multiple rows” on page 140.

3. Open the cursor.

4. Fetch a row.

5. Display current values and prompt for new values.

6. Update the currently selected row using the WHERE CURRENT OF clause.

7. Repeat steps 3 to 7 until all selected rows are updated.

For example, the following C code fragment updates the POPULATION column by
user-specified amounts for cities in the CITIES table that are in a country also specified by
the user:

. . .

EXEC SQL

BEGIN DECLARE SECTION;

char country[26], asciimult[10];

int multiplier;

EXEC SQL

END DECLARE SECTION;

. . .

main ()

{

EXEC SQL

DECLARE CHANGEPOP CURSOR FOR

SELECT CITY, POPULATION

FROM CITIES

WHERE COUNTRY = :country;

printf("Enter country with city populations needing adjustment: ");

gets(country);

EXEC SQL

OPEN CHANGEPOP;

EXEC SQL

FETCH CHANGEPOP INTO :country;

while(!SQLCODE)

{

printf("\nPercent change (100%% to -100%%:");

gets(asciimult);

CHAPTER 6 WORKING WITH DATA

170 INTERBASE 5

multiplier = atoi(asciimult);

EXEC SQL

UPDATE CITIES

SET POPULATION = POPULATION * (1 + :multiplier / 100)

WHERE CURRENT OF CHANGEPOP;

EXEC SQL

FETCH CHANGEPOP INTO :country;

if (SQLCODE && (SQLCODE != 100))

{

isc_print_sqlerr(SQLCODE, isc_status);

EXEC SQL

ROLLBACK RELEASE;

exit(1);

}

}

EXEC SQL

COMMIT RELEASE;

}

IMPORTANT Using FOR UPDATE with a cursor causes rows to be fetched from the database one at a
time. If FOR UPDATE is omitted, rows are fetched in batches.

NULLing columns with UPDATE

To set a column’s value to NULL during update, specify a NULL value for the column in the
SET clause. For example, the following UPDATE sets the budget of all departments without
managers to NULL:

EXEC SQL

UPDATE DEPARTMENT

SET BUDGET = NULL

WHERE MNGR_NO = NULL;

Updating through a view
Existing rows can be updated through a view if the following conditions are met:

g The view is updatable. For a complete discussion of updatable views, see the Data
Definition Guide.

g The view is created using the WITH CHECK OPTION.

UPDATING DATA

PROGRAMMER’S GUIDE 171

g A user or stored procedure has UPDATE privilege for the view.

Values can only be updated through a view for those columns named in the view. For
example, suppose the view, PART_DEPT, is defined as follows:

EXEC SQL

CREATE VIEW PART_DEPT

(DEPARTMENT, NUMBER, BUDGET)

AS SELECT DEPARTMENT, DEPT_NO, BUDGET

FROM DEPARTMENT

WITH CHECK OPTION;

Because PART_DEPT references a single table, data can be updated for the columns named
in the view. The WITH CHECK OPTION assures that all values entered through the view fall
within ranges prescribed for each column when the DEPARTMENT table was created. For
example, the following statement updates the budget of the Publications department
through the PART_DEPT view:

EXEC SQL

UPDATE PART_DEPT

SET BUDGET = 2505700

WHERE DEPARTMENT = "Publications";

For information about creating a view, see Chapter 5, “Working with Data Definition
Statements.” For the complete syntax of CREATE VIEW, see the Language Reference.

Note See the chapter on triggers in the Data Definition Guide for tips on using triggers
to update non-updatable views.

Specifying transaction names in UPDATE

InterBase enables an SQL application to run simultaneous transactions if:

g Each transaction is first named with a SET TRANSACTION statement. For a complete
discussion of transaction handling and naming, see Chapter 4, “Working with
Transactions.”

g Each data manipulation statement (SELECT, INSERT, UPDATE, DELETE, DECLARE, OPEN,
FETCH, and CLOSE) specifies a TRANSACTION clause that identifies the name of the
transaction under which it operates.

g SQL statements are not dynamic (DSQL). DSQL does not support multiple simultaneous
transactions.

In UPDATE, the TRANSACTION clause intervenes between the UPDATE keyword and the
name of the table to update, as in the following syntax:

CHAPTER 6 WORKING WITH DATA

172 INTERBASE 5

UPDATE [TRANSACTION name] table
SET col = <assignment> [, col = <assignment> ...]
WHERE <search_condition> | WHERE CURRENT OF cursorname;

The TRANSACTION clause must be used in multi-transaction programs, but is optional in
single-transaction programs or in programs where only one transaction is open at a time.
For example, the following UPDATE is controlled by the transaction, T1:

EXEC SQL

UPDATE TRANSACTION T1 DEPARTMENT

SET BUDGET = 2505700

WHERE DEPARTMENT = "Publications";

Deleting data
To remove rows of data from a table, use the DELETE statement. To delete rows a user or
procedure must have DELETE privilege for the table.

The syntax of DELETE is:

DELETE [TRANSACTION name] FROM table
WHERE <search_condition> | WHERE CURRENT OF cursorname;

DELETE irretrievably removes entire rows from the table specified in the FROM clause,
regardless of each column’s datatype.

A single DELETE can be used to remove any number of rows in a table. For example, the
following statement removes the single row containing “Channel Marketing” from the
DEPARTMENT table:

EXEC SQL

DELETE FROM DEPARTMENT

WHERE DEPARTMENT = "Channel Marketing:;

The WHERE clause in this example targets a single row for update. If the same deletion
criteria apply to a number of rows in a table, the WHERE clause can be more general. For
example, to remove all rows from the DEPARTMENT table with BUDGET values
< $1,000,000, the DELETE statement would be as follows:

EXEC SQL

DELETE FROM DEPARTMENT

WHERE BUDGET < 1000000;

Using DELETE to remove a number of rows is sometimes called a mass delete.

DELETING DATA

PROGRAMMER’S GUIDE 173

The WHERE clause in a DELETE statement can contain a subquery that references one or
more other tables. For a discussion of subqueries, see “Using subqueries” on page 157.

Deleting multiple rows
There are two methods for modifying rows:

g The searched delete method, where the same deletion condition applies to a number of
rows, is most useful for automated removal of rows.

g The positioned delete method, where rows are retrieved through a cursor and deleted row
by row, is most useful for enabling users to choose which rows that meet certain
conditions should be removed.

A searched delete is easier to program than a positioned delete, but less flexible.

4 Using a searched delete
Use a searched delete to remove a number of rows that match a condition specified in
the WHERE clause. For example, the following C code fragment prompts for a country
name, then deletes all rows that have cities in that country:

. . .

EXEC SQL

BEGIN DECLARE SECTION;

char country[26];

EXEC SQL

END DECLARE SECTION;

. . .

main ()

{

printf("Enter country with cities to delete: ");

gets(country);

EXEC SQL

DELETE FROM CITIES

WHERE COUNTRY = :country;

if(SQLCODE && (SQLCODE != 100))

{

isc_print_sqlerr(SQLCODE, isc_status);

EXEC SQL

ROLLBACK RELEASE;

}

CHAPTER 6 WORKING WITH DATA

174 INTERBASE 5

else

{

EXEC SQL

COMMIT RELEASE;

}

}

4 Using a positioned delete
Use cursors to select rows for deletion when users should decide deletion on a
row-by-row basis, and displaying pre- or post-modification values between row updates.
Updating through a cursor is a seven-step process:

1. Declare host-language variables needed for the delete operation.

2. Declare a cursor describing the rows to retrieve for possible deletion, and
include the FOR UPDATE clause. For more information about declaring and
using cursors, see “Selecting multiple rows” on page 140.

3. Open the cursor.

4. Fetch a row.

5. Display current values and prompt for permission to delete.

6. Delete the currently selected row using the WHERE CURRENT OF clause to
specify the name of the cursor.

7. Repeat steps 3 to 7 until all selected rows are deleted.

For example, the following C code deletes rows in the CITIES table that are in North
America only if a user types Y when prompted:

. . .

EXEC SQL

BEGIN DECLARE SECTION;

char cityname[26];

EXEC SQL

END DECLARE SECTION;

char response[5];

. . .

main ()

{

EXEC SQL

DECLARE DELETECITY CURSOR FOR

SELECT CITY,

FROM CITIES

WHERE CONTINENT = "North America";

DELETING DATA

PROGRAMMER’S GUIDE 175

EXEC SQL

OPEN DELETECITY;

while (!SQLCODE)

{

EXEC SQL

FETCH DELETECITY INTO :cityname;

if (SQLCODE)

{

if (SQLCODE == 100)

{

printf("Deletions complete.");

EXEC SQL

COMMIT;

EXEC SQL

CLOSE DELETECITY;

EXEC SQL

DISCONNECT ALL:

}

isc_print_sqlerr(SQLCODE, isc_status);

EXEC SQL

ROLLBACK;

EXEC SQL

DISCONNECT ALL;

exit(1);

}

printf("\nDelete %s (Y/N)?", cityname);

gets(response);

if(response[0] == ’Y’ || response == ’y’)

{

EXEC SQL

DELETE FROM CITIES

WHERE CURRENT OF DELETECITY;

if(SQLCODE && (SQLCODE != 100))

{

isc_print_sqlerr(SQLCODE, isc_status);

EXEC SQL

ROLLBACK;

EXEC SQL

DISCONNECT;

exit(1);

}

}

CHAPTER 6 WORKING WITH DATA

176 INTERBASE 5

}

Deleting through a view
Entire rows can be deleted through a view if the following conditions are met:

g The view is updatable. For a complete discussion of updatable views, see the Data
Definition Guide.

g A user or stored procedure has DELETE privilege for the view.

For example, the following statement deletes all departments with budgets under
$1,000,000, from the DEPARTMENT table through the PART_DEPT view:

EXEC SQL

DELETE FROM PART_DEPT

WHERE BUDGET < 1000000;

For information about creating a view, see Chapter 5, “Working with Data Definition
Statements.” For CREATE VIEW syntax, see the Language Reference.

Note See the chapter on triggers in the Data Definition Guide for tips on using triggers
to delete through non-updatable views.

Specifying transaction names in a DELETE

InterBase enables an SQL application to run simultaneous transactions if:

g Each transaction is first named with a SET TRANSACTION statement. For a complete
discussion of transaction handling and naming, see Chapter 4, “Working with
Transactions.”

g Each data manipulation statement (SELECT, INSERT, UPDATE, DELETE, DECLARE, OPEN,
FETCH, and CLOSE) specifies a TRANSACTION clause that identifies the name of the
transaction under which it operates.

g SQL statements are not dynamic (DSQL). DSQL does not support multiple simultaneous
transactions.

For DELETE, the TRANSACTION clause intervenes between the DELETE keyword and the
FROM clause specifying the table from which to delete:

DELETE TRANSACTION name FROM table ...

DELETING DATA

PROGRAMMER’S GUIDE 177

The TRANSACTION clause is optional in single-transaction programs or in programs where
only one transaction is open at a time. It must be used in a multi-transaction program.
For example, the following DELETE is controlled by the transaction, T1:

EXEC SQL

DELETE TRANSACTION T1 FROM PART_DEPT

WHERE BUDGET < 1000000";

CHAPTER 6 WORKING WITH DATA

178 INTERBASE 5

PROGRAMMER’S GUIDE 179

CHAPTER

7
Chapter 7Working with Dates

Most host languages do not support the DATE datatype. Instead, they treat dates as strings
or structures. InterBase supports a DATE datatype that is stored in tables as two long
integers. An InterBase DATE datatype includes information about year, month, day of the
month, and time.

This chapter discusses how to SELECT, INSERT, and UPDATE dates from tables in SQL
applications using the following isc call interface routines:

g isc_decode_date() to convert the InterBase internal date format to the C time structure

g isc_encode_date() to convert the C time structure to the internal InterBase date format

The chapter also discusses how to use the CAST() function to translate a DATE datatype
into a CHARACTER datatype and back again, and how to use the DATE literals, NOW and
TODAY when selecting and inserting dates.

Note InterBase does not directly support SQL-92 DATE, TIME, and TIMESTAMP datatypes.

CHAPTER 7 WORKING WITH DATES

180 INTERBASE 5

Selecting dates
To select a date from a table, and convert it to a form usable in a C language program,
follow these steps:

1. Create a host variable for a C time structure. Most C and C++ compilers
provide a typedef declaration, tm, for the C time structure in the time.h
header file. The following C code includes that header file, and declares a
variable of type tm:

#include <time.h>;

. . .

struct tm hire_time;

. . .

To create host-language time structures in languages other than C and C++, see the
host-language reference manual.

2. Create a host variable of type ISC_QUAD. For example, the host-variable
declaration might look like this:

ISC_QUAD hire_date;

The ISC_QUAD structure is automatically declared for programs when they are
preprocessed with gpre, but the programmer must declare actual host-language
variables of type ISC_QUAD.

3. Retrieve a date from a table into the ISC_QUAD variable. For example,

EXEC SQL

SELECT LAST_NAME, FIRST_NAME, DATE_OF_HIRE

INTO :lname, :fname, :hire_date

FROM EMPLOYEE

WHERE LAST_NAME = ’Smith’ AND FIRST_NAME = ’Margaret’;

Convert the ISC_QUAD variable into a numeric Unix format with the InterBase
function, isc_decode_date(). This function is automatically declared for programs when
they are preprocessed with gpre. isc_decode_date() requires two parameters, the address
of the ISC_QUAD host-language variable, and the address of the tm host-language
variable. For example, the following code fragment coverts hire_date to hire_time:

isc_decode_date(&hire_date, &hire_time);

INSERTING DATES

PROGRAMMER’S GUIDE 181

Inserting dates
To insert a date in a table, it must be converted from the host-language format into
InterBase format, and then stored. To perform the conversion and insertion in a C
program, follow these steps:

1. Create a host variable for a C time structure. Most C and C++ compilers
provide a typedef declaration, tm, for the C time structure in the time.h
header file. The following C code includes that header file, and declares a tm
variable, hire_time:

#include <time.h>;

. . .

struct tm hire_time;

. . .

To create host-language time structures in languages other than C and C++, see the
host-language reference manual.

2. Create a host variable of type ISC_QUAD, for use by InterBase. For example,
the host-variable declaration might look like this:

ISC_QUAD mydate;

The ISC_QUAD structure is automatically declared for programs when they are
preprocessed with gpre, but the programmer must declare actual host-language
variables of type ISC_QUAD.

3. Put date and time information into hire_time.

4. Use the InterBase isc_encode_date() function to convert the information in
hire_time into InterBase internal format and store that formatted information
in the ISC_QUAD host variable (hire_date in the example). This function is
automatically declared for programs when they are preprocessed with gpre.
isc_encode_date() requires two parameters, the address of the Unix time
structure, and the address of the ISC_QUAD host-language variable.

For example, the following code converts hire_time to hire_date:

isc_encode_date(&hire_time, &hire_date);

5. Insert the date into a table. For example,

EXEC SQL

INSERT INTO EMPLOYEE (EMP_NO, DEPARTMENT, DATE_OF_HIRE)

VALUES (:emp_no, :deptname, :hire_date);

CHAPTER 7 WORKING WITH DATES

182 INTERBASE 5

Updating dates
To update a date in a table, it must be converted from the host-language format into
InterBase format, and then stored. To convert a host variable into InterBase format, see
“Inserting dates” on page 181. The actual update is performed using an UPDATE
statement. For example,

EXEC SQL

UPDATE EMPLOYEE

SET DATE_OF_HIRE = :hire_date

WHERE DATE_OF_HIRE < ’1 JAN 1994’

Using CAST() to convert dates
The built-in CAST() function can be used in SELECT statements to translate a DATE datatype
into a CHARACTER or NUMERIC datatype, or to translate CHARACTER and NUMERIC datatypes
into DATE datatypes. Typically, CAST() is used in the WHERE clause to compare different
datatypes. The syntax for CAST() is:

CAST (<value> AS <datatype>)

In the following WHERE clause, CAST() is translates a CHAR datatype, INTERVIEW_DATE, to
a DATE datatype to compare against a DATE datatype, HIRE_DATE:

… WHERE HIRE_DATE = CAST(INTERVIEW_DATE AS DATE);

In the next example, CAST() translates a DATE datatype into a CHAR datatype:

… WHERE CAST(HIRE_DATE AS CHAR) = INTERVIEW_DATE;

CAST() also can be used to compare columns with different datatypes in the same table,
or across tables.

TIP To truncate the time portion of a date field, cast the date to a CHAR that is long enough
to contain the date but not the time. For example:

CAST(INTERVIEW_DATE AS CHAR(7));

For more information about CAST(), see Chapter 6, “Working with Data.”

USING DATE LITERALS

PROGRAMMER’S GUIDE 183

Using date literals
InterBase supports four date literals, ’NOW’, ’TODAY’, ’YESTERDAY’, and ’TOMORROW’. Date
literals are string values entered between quotation marks that can be interpreted as date
values for SELECT, INSERT, and UPDATE operations. ’NOW’ is a date literal that combines
today’s date and time in InterBase format. ’TODAY’ is today’s date with time information
set to zero. Similarly, ’YESTERDAY’ and ’TOMORROW’ are the expected dates with the time
information set to zero.

In SELECT, ’NOW’ and ’TODAY’ can be used in the search condition of a WHERE clause to
restrict the data retrieved:

EXEC SQL

SELECT * FROM CROSS_RATE WHERE UPDATE_DATE = ’TODAY’;

In INSERT and UPDATE, ’NOW’ and ’TODAY’ can be used to enter date and time values
instead of relying on isc calls to convert C dates to InterBase dates:

EXEC SQL

INSERT INTO CROSS_RATE VALUES(:from, :to, :rate, ’NOW’);

EXEC SQL

UPDATE CROSS_RATE

SET CONV_RATE = 1.75,

SET UPDATE_DATE = ’NOW’

WHERE FROM_CURRENCY = ’POUND’ AND TO_CURRENCT = ’DOLLAR’

AND UPDATE_DATE < ’TODAY’;

CHAPTER 7 WORKING WITH DATES

184 INTERBASE 5

PROGRAMMER’S GUIDE 185

CHAPTER

8
Chapter 8Working with Blob Data

This chapter describes the BLOB datatype and its subtypes, how to store Blobs, how to
access them with SQL, DSQL, and API calls, and how to filter Blobs. It also includes
information on writing Blob filters.

What is a Blob?
A Blob is a dynamically sizable datatype that has no specified size and encoding. You can
use a Blob to store large amounts of data of various types, including:

g Bitmapped images

g Vector drawings

g Sounds, video segments, and other multimedia information

g Text and data, including book-length documents

Data stored in the Blob datatype can be manipulated in most of the same ways as data
stored in any other datatype. InterBase stores Blob data inside the database, in contrast
to similar other systems that store pointers to non-database files. For each Blob, there is
a unique identification handle in the appropriate table to point to the database location
of the Blob. By maintaining the Blob data within the database, InterBase improves data
management and access.

CHAPTER 8 WORKING WITH BLOB DATA

186 INTERBASE 5

The combination of true database management of Blob data and support for a variety of
datatypes makes InterBase Blob support ideal for transaction-intensive multimedia
applications. For example, InterBase is an excellent platform for interactive kiosk
applications that might provide hundreds or thousands of product descriptions,
photographs, and video clips, in addition to point-of-sale and order processing
capabilities.

How are Blob data stored?
Blob is the InterBase datatype that represents various objects, such as bitmapped images,
sound, video, and text. Before you store these items in the database, you create or
manage them as platform- or product-specific files or data structures, such as:

g TIFF, PICT, BMP, WMF, GEM, TARGA or other bitmapped or vector-graphic files.

g MIDI or WAV sound files.

g Audio Video Interleaved format (.AVI) or QuickTime video files.

g ASCII, MIF, DOC, RTF, WPx or other text files.

g CAD files.

You must load these files from memory into the database programmatically, as you do
any other host-language data items or records you intend to store in InterBase.

HOW ARE BLOB DATA STORED?

PROGRAMMER’S GUIDE 187

Blob subtypes
Although you manage Blob data in the same way as other datatypes, InterBase provides
more flexible datatyping rules for Blob data. Because there are many native datatypes that
you can define as Blob data, InterBase treats them somewhat generically and allows you
to define your own datatype, known as a subtype. Also, InterBase provides seven standard
subtypes with which you can characterize Blob data:

You can specify user-defined subtypes as negative numbers between –1 and
 –32,678. Positive integers are reserved for InterBase subtypes.

For example, the following statement defines three Blob columns: Blob1 with subtype 0
(the default), Blob2 with subtype 1 (TEXT), and Blob3 with user-defined subtype –1:

EXEC SQL CREATE TABLE TABLE2

(

BLOB1 BLOB,

BLOB2 BLOB SUB_TYPE 1,

BLOB3 BLOB SUB_TYPE -1

);

To specify both a default segment length and a subtype when creating a Blob column,
use the SEGMENT SIZE option after the SUB_TYPE option. For example:

EXEC SQL CREATE TABLE TABLE2

(

BLOB
subtype Description

0 Unstructured, generally applied to binary data or data of an indeterminate type

1 Text

2 Binary language representation (BLR)

3 Access control list

4 (Reserved for future use)

5 Encoded description of a table’s current metadata

6 Description of multi-database transaction that finished irregularly

TABLE 8.1 BLOB subtypes defined by InterBase

CHAPTER 8 WORKING WITH BLOB DATA

188 INTERBASE 5

BLOB1 BLOB SUB_TYPE 1 SEGMENT SIZE 100;

);

The only rule InterBase enforces over these user-defined subtypes is that, when
converting a Blob from one subtype to another, those subtypes must be compatible.
InterBase does not otherwise enforce subtype integrity.

Blob database storage
Because Blob data are typically large, variably-sized objects of binary or text data,
InterBase stores them most efficiently using a method of segmentation. It would be an
inefficient use of disk space to store each Blob as one contiguous mass. Instead, InterBase
stores each Blob in segments that are indexed by a handle that InterBase generates when
you create the Blob. This handle is known as the Blob ID and is a quadword (64-bit)
containing a unique combination of table identifier and Blob identifier.

The Blob ID for each Blob is stored in its appropriate field in the table record. The Blob
ID points to the first segment of the Blob, or to a page of pointers, each of which points
to a segment of one or more Blob fields. You can retrieve the Blob ID by executing a
SELECT statement that specifies the Blob as the target, as in the following example:

EXEC SQL

DECLARE BLOBDESC CURSOR FOR

SELECT GUIDEBOOK

FROM TOURISM

WHERE STATE = ’CA’;

You define Blob columns the same way you define non-Blob columns.

The following SQL code creates a table with a Blob column called PROJ_DESC. It sets the
subtype parameter to 1, which denotes a TEXT Blob, and sets the segment size to 80 bytes:

CREATE TABLE PROJECT

(

PROJ_ID PROJNO NOT NULL,

PROJ_NAME VARCHAR(20) NOT NULL UNIQUE,

PROJ_DESC BLOB SUBTYPE 1 SEGMENT SIZE 80,

TEAM_LEADER EMPNO,

PRODUCT PRODTYPE,

...

);

The following diagram shows the relationship between a Blob column containing a Blob
ID and the Blob data referenced by the Blob ID:

HOW ARE BLOB DATA STORED?

PROGRAMMER’S GUIDE 189

FIGURE 8.1 Relationship of a Blob ID to Blob segments in a database

Rather than store Blob data directly in the table, InterBase stores a Blob ID in each row
of the table. The Blob ID, a unique number, points to the first segment of the Blob data
that is stored elsewhere in the database, in a series of segments. When an application
creates a Blob, it must write data to that Blob a segment at a time. Similarly, when an
application reads of Blob, it reads a segment at a time. Because most Blob data are large
objects, most Blob management is performed with loops in the application code.

Blob segment length
When you define a Blob in a table, you specify the expected size of Blob segments that
are to be written to the column in the Blob definition statement. The segment length you
define for a Blob column specifies the maximum number of bytes that an application is
expected to write to or read from any Blob in the column. The default segment length is
80. For example, the following column declaration creates a Blob with a segment length
of 120:

EXEC SQL CREATE TABLE TABLE2

(

Blob1 Blob SEGMENT SIZE 120;

);

InterBase uses the segment length setting to determine the size of an internal buffer to
which it writes Blob segment data. Normally, you should not attempt to write segments
larger than the segment length you defined in the table; doing so may result in a buffer
overflow and possible memory corruption.

Specifying a segment size of n guarantees that no more than n number of bytes are read
or written in a single Blob operation. With some types of operations, for instance, with
SELECT, INSERT, and UPDATE operations, you can read or write Blob segments of varying
length.

In the following example of an INSERT CURSOR statement, specify the segment length in
a host language variable, segment_length, as follows:

Blob ID ……

Blob
column

Table row

Blob data segment segment segment …

CHAPTER 8 WORKING WITH BLOB DATA

190 INTERBASE 5

EXEC SQL

INSERT CURSOR BCINS VALUES (:write_segment_buffer

INDICATOR :segment_length);

For more information about the syntax of the INSERT CURSOR statement, see the Language
Reference.

Overriding segment length
You can override the segment length setting by including the MAXIMUM_SEGMENT option
in a DECLARE CURSOR statement. For example, the following Blob INSERT cursor
declaration overrides the segment length that was defined for the field, Blob2, increasing
it to 1024:

EXEC SQL

DECLARE BCINS CURSOR FOR INSERT Blob Blob2 INTO TABLE 2

MAXIMUM_SEGMENT 1024;

Note By overriding the segment length setting, you affect only the segment size for the
cursor, not for the column, or for other cursors. Other cursors using the same Blob
column maintain the original segment size that was defined in the column definition, or
can specify their own overrides.

The segment length setting does not affect InterBase system performance. Choose the
segment length most convenient for the specific application. The largest possible segment
length is 65,535 bytes (64K).

Accessing Blob data with SQL
InterBase supports SELECT, INSERT, UPDATE, and DELETE operations on Blob data. The
following sections contain brief discussions of example programs. These programs
illustrate how to perform standard SQL operations on Blob data.

Selecting Blob data
The following example program selects Blob data from the GUIDEBOOK column of the
TOURISM table:

ACCESSING BLOB DATA WITH SQL

PROGRAMMER’S GUIDE 191

1. Declare host-language variables to store the Blob ID, the Blob segment data,
and the length of segment data:

EXEC SQL

BEGIN DECLARE SECTION;

BASED ON TOURISM.GUIDEBOOK blob_id;

BASED ON TOURISM.GUIDEBOOK.SEGMENT blob_segment_buf;

BASED ON TOURISM.STATE state;

unsigned short blob_seg_len;

EXEC SQL

END DECLARE SECTION;

The BASED ON … SEGMENT syntax declares a host-language variable,
blob_segment_buf, that is large enough to hold a Blob segment during a FETCH
operation. For more information about the BASED ON statement, see the Language
Reference.

2. Declare a table cursor to select the desired Blob column, in this case the
GUIDEBOOK column:

EXEC SQL

DECLARE TC CURSOR FOR

SELECT STATE, GUIDEBOOK

FROM TOURISM

WHERE STATE = ’CA’;

3. Declare a Blob read cursor. A Blob read cursor is a special cursor used for
reading Blob segments:

EXEC SQL

DECLARE BC CURSOR FOR

READ Blob GUIDEBOOK

FROM TOURISM;

The segment length of the GUIDEBOOK Blob column is defined as 60, so Blob cursor,
BC, reads a maximum of 60 bytes at a time.

To override the segment length specified in the database schema for GUIDEBOOK,
use the MAXIMUM_SEGMENT option. For example, the following code restricts each
Blob read operation to a maximum of 40 bytes, and SQLCODE is set to 101 to indicate
when only a portion of a segment has been read:

EXEC SQL

DECLARE BC CURSOR FOR

READ Blob GUIDEBOOK

FROM TOURISM

MAXIMUM_SEGMENT 40;

CHAPTER 8 WORKING WITH BLOB DATA

192 INTERBASE 5

No matter what the segment length setting is, only one segment is read at a time.

4. Open the table cursor and fetch a row of data containing a Blob:

EXEC SQL

OPEN TC;

EXEC SQL

FETCH TC INTO :state, :blob_id;

The FETCH statement fetches the STATE and GUIDEBOOK columns into host variables
state and blob_id, respectively.

5. Open the Blob read cursor using the Blob ID stored in the blob_id variable,
and fetch the first segment of Blob data:

EXEC SQL

OPEN BC USING :blob_id;

EXEC SQL

FETCH BC INTO :blob_segment_buf:blob_seg_len;

When the FETCH operation completes, blob_segment_buf contains the first segment
of the Blob, and blob_seg_len contains the segment’s length, which is the number of
bytes copied into blob_segment_buf.

6. Fetch the remaining segments in a loop. SQLCODE should be checked each
time a fetch is performed. An error code of 100 indicates that all of the Blob
data has been fetched. An error code of 101 indicates that the segment
contains additional data:

while (SQLCODE != 100 || SQLCODE == 101)

{

printf("%*.*s", blob_seg_len, blob_seg_len, blob_segment_buf);

EXEC SQL

FETCH BC INTO :blob_segment_buf:blob_seg_len;

}

InterBase produces an error code of 101 when the length of the segment buffer is less
than the length of a particular segment.

For example, if the length of the segment buffer is 40 and the length of a particular
segment is 60, the first FETCH produces an error code of 101 indicating that data
remains in the segment. The second FETCH reads the remaining 20 bytes of data, and
produces an SQLCODE of 0, indicating that the next segment is ready to be read, or 100
if this was the last segment in the Blob.

1. Close the Blob read cursor:

EXEC SQL

CLOSE BC;

ACCESSING BLOB DATA WITH SQL

PROGRAMMER’S GUIDE 193

2. Close the table cursor:

EXEC SQL

CLOSE TC;

Inserting Blob data
The following program inserts Blob data into the GUIDEBOOK column of the TOURISM
table:

1. Declare host-language variables to store the Blob ID, Blob segment data, and
the length of segment data:

EXEC SQL

BEGIN DECLARE SECTION;

BASED ON TOURISM.GUIDEBOOK blob_id;

BASED ON TOURISM.GUIDEBOOK.SEGMENT blob_segment_buf;

BASED ON TOURISM.STATE state;

unsigned short blob_seg_len;

EXEC SQL

END DECLARE SECTION;

· The BASED ON … SEGMENT syntax declares a host-language variable, blob_segment_buf,
that is large enough to hold a Blob segment during a FETCH operation. For more
information about the BASED ON directive, see the Language Reference.

2. Declare a Blob insert cursor:

EXEC SQL

DECLARE BC CURSOR FOR INSERT Blob GUIDEBOOK INTO TOURISM;

3. Open the Blob insert cursor and specify the host variable in which to store
the Blob ID:

EXEC SQL

OPEN BC INTO :blob_id;

4. Store the segment data in the segment buffer, blob_segment_buf, calculate
the length of the segment data, and use an INSERT CURSOR statement to write
the segment:

sprintf(blob_segment_buf, ’We hold these truths to be self

evident’);

blob_segment_len = strlen(blob_segment_buf);

CHAPTER 8 WORKING WITH BLOB DATA

194 INTERBASE 5

EXEC SQL

INSERT CURSOR BC VALUES (:blob_segment_buf:blob_segment_len);

Repeat these steps in a loop until you have written all Blob segments.

5. Close the Blob insert cursor:

EXEC SQL

CLOSE BC;

6. Use an INSERT statement to insert a new row containing the Blob into the
TOURISM table:

EXEC SQL

INSERT INTO TOURISM (STATE,GUIDEBOOK) VALUES (’CA’,:blob_id);

7. Commit the changes to the database:

EXEC SQL

COMMIT;

Updating Blob data
You cannot update a Blob directly. You must create a new Blob, read the old Blob data
into a buffer where you can edit or modify it, then write the modified data to the new
Blob.

Create a new Blob by following these steps:

1. Declare a Blob insert cursor:

EXEC SQL

DECLARE BC CURSOR FOR INSERT BLOB GUIDEBOOK INTO TOURISM;

2. Open the Blob insert cursor and specify the host variable in which to store
the Blob ID:

EXEC SQL

OPEN BC INTO :blob_id;

3. Store the old Blob segment data in the segment buffer blob_segment_buf,
calculate the length of the segment data, perform any modifications to the
data, and use an INSERT CURSOR statement to write the segment:

/* Programmatically read the first/next segment of the old Blob

* segment data into blob_segment_buf; */

EXEC SQL

INSERT CURSOR BC VALUES (:blob_segment_buf:blob_segment_len);

ACCESSING BLOB DATA WITH SQL

PROGRAMMER’S GUIDE 195

Repeat these steps in a loop until you have written all Blob segments.

4. Close the Blob insert cursor:

EXEC SQL

CLOSE BC;

5. When you have completed creating the new Blob, issue an UPDATE statement
to replace the old Blob in the table with the new one, as in the following
example:

EXEC SQL UPDATE TOURISM

SET

GUIDEBOOK = :blob_id;

WHERE CURRENT OF TC;

Note The TC table cursor points to a target row established by declaring the cursor and
then fetching the row to update.

To modify a text Blob using this technique, you might read an existing Blob field into a
host-language buffer, modify the data, then write the modified buffer over the existing
field data with an UPDATE statement.

Deleting Blob data
There are two methods for deleting a Blob. The first is to delete the row containing the
Blob. The second is to update the row and set the Blob column to NULL or to the Blob ID
of a different Blob (for example, the new Blob created to update the data of an existing
Blob).

The following statement deletes current Blob data in the GUIDEBOOK column of the
TOURISM table by setting it to NULL:

EXEC SQL UPDATE TOURISM

SET

GUIDEBOOK = NULL;

WHERE CURRENT OF TC;

Blob data is not immediately deleted when DELETE is specified. The actual delete
operation occurs when InterBase performs version cleanup. The following code fragment
illustrates how to recover space after deleting a Blob:

EXEC SQL

UPDATE TABLE SET Blob_COLUMN = NULL WHERE ROW = :myrow;

EXEC SQL

COMMIT;

CHAPTER 8 WORKING WITH BLOB DATA

196 INTERBASE 5

/* wait for all active transactions to finish */

/* force a sweep of the database */

When InterBase performs garbage collection on old versions of a record, it verifies
whether or not recent versions of the record reference the Blob ID. If the record does not
reference the Blob ID, InterBase cleans up the Blob.

Accessing Blob data with API calls
In addition to accessing Blob data using SQL as described in this chapter, the InterBase
API provides routines for accessing Blob data. The following API calls are provided for
accessing and managing Blob data:

Function Description

isc_blob_default_desc() Loads a Blob descriptor data structure with default information
about a Blob.

isc_blob_gen_bpb() Generates a Blob parameter buffer (BPB) from source and target
Blob descriptors to allow dynamic access to Blob subtype and
character set information.

isc_blob_info() Returns information about an open Blob.

isc_blob_lookup_desc() Looks up and stores into a Blob descriptor the subtype, character
set, and segment size of a Blob.

isc_blob_set_desc() Sets the fields of a Blob descriptor to values specified in parameters
to isc_blob_set_desc().

isc_cancel_blob() Discards a Blob and frees internal storage.

isc_close_blob() Closes an open Blob.

isc_create_blob2() Creates a context for storing a Blob, opens the Blob for write access,
and optionally specifies a filter to be used to translate the Blob data
from one subtype to another.

isc_get_segment() Reads a segment from an open Blob.

isc_open_blob2() Opens an existing Blob for retrieval and optional filtering.

isc_put_segment() Writes a Blob segment.

TABLE 8.2 API Blob calls

FILTERING BLOB DATA

PROGRAMMER’S GUIDE 197

For details on using the API calls to access Blob data, see the API Guide.

Filtering Blob data
An understanding of Blob subtypes is particularly important when working with Blob
filters. A Blob filter is a routine that translates Blob data from one subtype to another.
InterBase includes a set of special internal Blob filters that convert from subtype 0 to
subtype 1 (TEXT), and from subtype 1 (TEXT) to subtype 0. In addition to using these
standard filters, you can write your own external filters to provide special data translation.
For example, you might develop a filter to translate bitmapped images from one format
to another.

IMPORTANT Blob filters are available for databases residing on all InterBase server platforms except
NetWare, where Blob filters cannot be created or used.

Using the standard InterBase text filters
The standard InterBase filters convert Blob data of subtype 0, or any InterBase system
type, to subtype 1 (TEXT).

When a text filter is being used to read data from a Blob column, it modifies the standard
InterBase behavior for supplying segments. Regardless of the actual nature of the
segments in the Blob column, the text filter enforces the rule that segments must end with
a newline character (\n).

The text filter returns all the characters up to and including the first newline as the first
segment, the next characters up to and including the second newline as the second
segment, and so on.

TIP To convert any non-text subtype to TEXT, declare its FROM subtype as subtype 0 and its
TO subtype as subtype 1.

Using an external Blob filter
Unlike the standard InterBase filters that convert between subtype 0 and subtype 1, an
external Blob filter is generally part of a library of routines you create and link to your
application.

To use an external filter, you must first write it, compile and link it, then declare it to the
database that contains the Blob data you want processed.

CHAPTER 8 WORKING WITH BLOB DATA

198 INTERBASE 5

4 Declaring an external filter to the database
To declare an external filter to a database, use the DECLARE FILTER statement. For example,
the following statement declares the filter, SAMPLE:

EXEC SQL

DECLARE FILTER SAMPLE

INPUT_TYPE -1 OUTPUT_TYPE -2

ENTRY_POINT "FilterFunction"

MODULE_NAME "filter.dll";

In the example, the filter’s input subtype is defined as -1 and its output subtype as -2. In
this example, INPUT_TYPE specifies lowercase text and OUTPUT_TYPE specifies uppercase
text. The purpose of filter, SAMPLE, therefore, is to translate Blob data from lowercase text
to uppercase text.

The ENTRY_POINT and MODULE_NAME parameters specify the external routine that
InterBase calls when the filter is invoked. The MODULE_NAME parameter specifies filter.dll,
the dynamic link library containing the filter’s executable code. The ENTRY_POINT
parameter specifies the entry point into the DLL. The example shows only a simple file
name. It is good practice to specify a fully-qualified path name, since users of your
application need to load the file.

4 Using a filter to read and write Blob data
The following illustration shows the default behavior of the SAMPLE filter that translates
from lowercase text to uppercase text.

FIGURE 8.2 Filtering from lowercase to uppercase

Similarly, when reading data, the SAMPLE filter can easily read Blob data of subtype -2,
and translate it to data of subtype -1.

Application

abcdef

Blob

ABCDEF
Filter:
SAMPLE

WRITING AN EXTERNAL BLOB FILTER

PROGRAMMER’S GUIDE 199

FIGURE 8.3 Filtering from uppercase to lowercase

4 Invoking a filter in an application
To invoke a filter in an application, use the FILTER option when declaring a Blob cursor.
Then, when the application performs operations using the cursor, InterBase
automatically invokes the filter.

For example, the following INSERT cursor definition specifies that the filter, SAMPLE, is to
be used in any operations involving the cursor, BCINS1:

EXEC SQL

DECLARE BCINS1 CURSOR FOR

INSERT Blob Blob1 INTO TABLE1

FILTER FROM -1 TO -2;

When InterBase processes this declaration, it searches a list of filters defined in the
current database for a filter with matching FROM and TO subtypes. If such a filter exists,
InterBase invokes it during Blob operations that use the cursor, BCINS1. If InterBase
cannot locate a filter with matching FROM and TO subtypes, it returns an error to the
application.

Writing an external Blob filter
If you choose to write your own filters, you must have a detailed understanding of the
datatypes you plan to translate. As mentioned elsewhere in this chapter, InterBase does
not do strict datatype checking on Blob data, but does enforce the rule that Blob source
and target subtypes must be compatible. Maintaining and enforcing this compatibility is
your responsibility.

Blob

ABCDEF

Application

abcdef
Filter:
SAMPLE

CHAPTER 8 WORKING WITH BLOB DATA

200 INTERBASE 5

Filter types
Filters can be divided into two types: filters that convert data one segment at a time, and
filters that convert data many segments at a time.

The first type of filter reads a segment of data, converts it, and supplies it to the
application a segment at a time.

The second type of filter might read all the data and do all the conversion when the Blob
read cursor is first opened, and then simulate supplying data a segment at a time to the
application.

If timing is an issue for your application, you should carefully consider these two types
of filters and which might better serve your purpose.

Read-only and write-only filters
Some filters may only support reading from or writing to a Blob, but not both operations.
If you attempt to use a Blob filter for an operation that it does not support, InterBase
returns an error to the application.

Defining the filter function
When writing your filter, you must include an entry point, known as a filter function in
the declaration section of the program. InterBase calls the filter function when your
application performs a Blob access operation. All communication between InterBase and
the filter is through the filter function. The filter function itself may call other functions
that comprise the filter executable.

WRITING AN EXTERNAL BLOB FILTER

PROGRAMMER’S GUIDE 201

FIGURE 8.4 Filter interaction with an application and a database

Declare the name of the filter function and the name of the filter executable with the
ENTRY_POINT and MODULE_NAME parameters of the DECLARE FILTER statement.

A filter function must have the following declaration calling sequence:

filter_function_name(short action, isc_blob_ctl control);

The parameter, action, is one of eight possible action macro definitions and the
parameter, control, is an instance of the isc_blob_ctl Blob control structure, defined in
the InterBase header file ibase.h. These parameters are discussed later in this chapter.

The following listing of a skeleton filter declares the filter function, jpeg_filter:

#include <ibase.h>

#define SUCCESS 0

#define FAILURE 1

ISC_STATUS jpeg_filter(short action, isc_blob_ctl control)

{

ISC_STATUS status = SUCCESS;

switch (action)

{

case isc_blob_filter_open:

. . .

break;

case isc_blob_filter_get_segment:

. . .

break;

case isc_blob_filter_create:

. . .

INTERBASE

APPLICATION

FILTER

CHAPTER 8 WORKING WITH BLOB DATA

202 INTERBASE 5

break;

case isc_blob_filter_put_segment:

. . .

break;

case isc_blob_filter_close:

. . .

break;

case isc_blob_filter_alloc:

. . .

break;

case isc_blob_filter_free:

. . .

break;

case isc_blob_filter_seek:

. . .

break;

default:

status = isc_uns_ext /* unsupported action value */

. . .

break;

}

return status;

}

InterBase passes one of eight possible actions to the filter function, jpeg_filter(), by way
of the action parameter, and also passes an instance of the Blob control structure,
isc_blob_ctl, by way of the parameter control.

The ellipses (…) in the previous listing represent code that performs some operations
based on each action, or event, that is listed in the case statement. Each action is a
particular event invoked by a database operation the application might perform. For
more information, see “Programming filter function actions” on page 205.

The isc_blob_ctl Blob control structure provides the fundamental data exchange between
InterBase and the filter. For more information on the Blob control structure, see
“Defining the Blob control structure” on page 202.

4 Defining the Blob control structure
The Blob control structure, isc_blob_ctl, provides the fundamental method of data
exchange between InterBase and a filter. The declaration for the isc_blob_ctl control
structure is in the InterBase include file, ibase.h.

WRITING AN EXTERNAL BLOB FILTER

PROGRAMMER’S GUIDE 203

The isc_blob_ctl structure is used in two ways:

1. When the application performs a Blob access operation, InterBase calls the
filter function and passes it an instance of isc_blob_ctl.

2. Internal filter functions can pass an instance of isc_blob_ctl to internal
InterBase access routines.

In either case, the purpose of certain isc_blob_ctl fields depends on the action being
performed.

For example, when an application attempts a Blob INSERT, InterBase passes an
isc_blob_filter_put_segment action to the filter function. The filter function passes an
instance of the control structure to InterBase. The ctl_buffer of the structure contains the
segment data to be written, as specified by the application in its Blob INSERT statement.
Because the buffer contains information to pass into the filter function, it is called an IN
field. The filter function should include instructions in the case statement under the
isc_blob_filter_put_segment case for performing the write to the database.

In a different case, for instance when an application attempts a FETCH operation, the case
of an isc_blob_filter_get_segment action should include instructions for filling ctl_buffer
with segment data from the database to return to the application. In this case, because
the buffer is used for filter function output, it is called an out field.

CHAPTER 8 WORKING WITH BLOB DATA

204 INTERBASE 5

The following table describes each of the fields in the isc_blob_ctl Blob control structure,
and whether they are used for filter function input (IN), or output (OUT).

Field name Description

(*ctl_source)() Pointer to the internal InterBase Blob access routine. (IN)

*ctl_source_handle Pointer to an instance of isc_blob_ctl to be passed to the internal InterBase
Blob access routine. (IN)

ctl_to_sub_type Target subtype. Information field. Provided to support multi-purpose filters
that can perform more than one kind of translation. This field and the next one
enable such a filter to decide which translation to perform. (IN)

ctl_from_sub_type Source subtype. Information field. Provided to support multi-purpose filters
that can perform more than one kind of translation. This field and the previous
one enable such a filter to decide which translation to perform. (IN)

ctl_buffer_length For isc_blob_filter_put_segment, field is an IN field that contains the length of
the segment data contained in ctl_buffer.

For isc_blob_filter_get_segment, field is an IN field set to the size of the buffer
pointed to by ctl_buffer, which is used to store the retrieved Blob data.

ctl_segment_length Length of the current segment. This field is not used for
isc_blob_filter_put_segment.

For isc_blob_filter_get_segment, the field is an OUT field set to the size of the
retrieved segment (or partial segment, in the case when the buffer length
ctl_buffer_length is less than the actual segment length).

ctl_bpb_length Length of the Blob parameter buffer. Reserved for future enhancement.

*ctl_bpb Pointer to a Blob parameter buffer. Reserved for future enhancement.

*ctl_buffer Pointer to a segment buffer. For isc_blob_filter_put_segment, field is an IN field
that contains the segment data.

For isc_blob_filter_get_segment, the field is an OUT field the filter function fills
with segment data for return to the application.

TABLE 8.3 isc_blob_ctl structure field descriptions

WRITING AN EXTERNAL BLOB FILTER

PROGRAMMER’S GUIDE 205

SETTING CONTROL STRUCTURE INFORMATION FIELD VALUES

The isc_blob_ctl structure contains three fields that store information about the Blob
currently being accessed: ctl_max_segment, ctl_number_segments, and ctl_total_length.

You should attempt to maintain correct values for these fields in the filter function,
whenever possible. Depending on the purpose of the filter, maintaining correct values for
the fields is not always possible. For example, a filter that compresses data on a
segment-by-segment basis cannot determine the size of ctl_max_segment until it
processes all segments.

These fields are informational only. InterBase does not use the values of these fields in
internal processing.

4 Programming filter function actions
When an application performs a Blob access operation, InterBase passes a corresponding
action message to the filter function by way of the action parameter. There are eight
possible actions, each of which results from a particular access operation. The following
list of action macro definitions are declared in the ibase.h file:

#define isc_blob_filter_open 0

#define isc_blob_filter_get_segment 1

#define isc_blob_filter_close 2

#define isc_blob_filter_create 3

#define isc_blob_filter_put_segment 4

#define isc_blob_filter_alloc 5

ctl_max_segment Length of longest segment in the Blob. Initial value is 0. The filter function sets
this field. This field is informational only.

ctl_number_segments Total number of segments in the Blob. Initial value is 0. The filter function sets
this field. This field is informational only.

ctl_total_length Total length of the Blob. Initial value is 0. The filter function sets this field. This
field is informational only.

*ctl_status Pointer to the InterBase status vector. (OUT)

ctl_data[8] 8-element array of application-specific data. Use this field to store resource
pointers, such as memory pointers and file handles created by the
isc_blob_filter_open handler, for example. Then, the next time the filter
function is called, the resource pointers will be available for use. (IN/OUT)

Field name Description

TABLE 8.3 isc_blob_ctl structure field descriptions (continued)

CHAPTER 8 WORKING WITH BLOB DATA

206 INTERBASE 5

#define isc_blob_filter_free 6

#define isc_blob_filter_seek 7

The following table describes the Blob access operation that corresponds to each action:

Action Invoked when … Use to …

isc_blob_filter_open Application opens a Blob READ
cursor

Set the information fields of the Blob control
structure.

Perform initialization tasks, such as allocating
memory or opening temporary files.

Set the status variable, if necessary. The value of the
status variable becomes the filter function’s return
value.

isc_blob_filter_get_segment Application executes a Blob
FETCH statement

Set the ctl_buffer and ctl_segment_length fields of
the Blob control structure to contain a segment’s
worth of translated data on the return of the filter
function.

Perform the data translation if the filter processes
the Blob segment-by-segment.

Set the status variable. The value of the status
variable becomes the filter function’s return value.

isc_blob_filter_close Application closes a Blob cursor Perform exit tasks, such as freeing allocated
memory, closing, or removing temporary files.

isc_blob_filter_create Application opens a Blob INSERT
cursor

Set the information fields of the Blob control
structure.

Perform initialization tasks, such as allocating
memory or opening temporary files.

Set the status variable, if necessary. The value of the
status variable becomes the filter function’s return
value.

TABLE 8.4 Blob access operations

WRITING AN EXTERNAL BLOB FILTER

PROGRAMMER’S GUIDE 207

TIP Store resource pointers, such as memory pointers and file handles created by the
isc_blob_filter_open handler, in the ctl_data field of the isc_blob_ctl Blob control
structure. Then, the next time the filter function is called, the resource pointers are still
available.

4 Testing the function return value
The filter function must return an integer indicating the status of the operation it
performed. You can have the function return any InterBase status value returned by an
internal InterBase routine.

isc_blob_filter_put_segment Application executes a Blob
INSERT statement

Perform the data translation on the segment data
passed in through the Blob control structure.

Write the segment data to the database. If the
translation process changes the segment length,
the new value must be reflected in the values
passed to the writing function.

Set the status variable. The value of the status
variable becomes the filter function’s return value.

isc_blob_filter_alloc InterBase initializes filter
processing; not a result of a
particular application action

Set the information fields of the Blob control
structure.

Perform initialization tasks, such as allocating
memory or opening temporary files.

Set the status variable, if necessary. The value of the
status variable becomes the filter function’s return
value.

isc_blob_filter_free InterBase ends filter
processing; not a result of a
particular application action

Perform exit tasks, such as freeing allocated
memory, closing, or removing temporary files.

isc_blob_filter_seek Reserved for internal filter use;
not used by external filters

Action Invoked when … Use to …

TABLE 8.4 Blob access operations (continued)

CHAPTER 8 WORKING WITH BLOB DATA

208 INTERBASE 5

In some filter applications, a filter function has to supply status values directly. The
following table lists status values that apply particularly to Blob processing:

For more information about InterBase status values, see the Language Reference.

Macro constant Value Meaning

SUCCESS 0 Indicates the filter action has been handled successfully. On a
Blob read (isc_blob_filter_get_segment) operation, indicates that
the entire segment has been read.

FAILURE 1 Indicates an unsuccessful operation. In most cases, a status more
specific to the error is returned.

isc_uns_ext See ibase.h Indicates that the attempted action is unsupported by the filter.
For example, a read-only filter would return isc_uns_ext for an
isc_blob_filter_put_segment action.

isc_segment See ibase.h During a Blob read operation, indicates that the supplied buffer is
not large enough to contain the remaining bytes in the current
segment. In this case, only ctl_buffer_length bytes are copied,
and the remainder of the segment must be obtained through
additional isc_blob_filter_get_segment calls.

isc_segstr_eof See ibase.h During a Blob read operation, indicates that the end of the Blob
has been reached; there are no additional segments remaining to
be read.

TABLE 8.5 Blob filter status values

PROGRAMMER’S GUIDE 209

CHAPTER

9
Chapter 9 Using Arrays

InterBase supports arrays of most datatypes. Using an array enables multiple data items
to be stored in a single column. InterBase can treat an array as a single unit, or as a series
of separate units, called slices. Using an array is appropriate when:

g The data items naturally form a set of the same datatype

g The entire set of data items in a single database column must be represented and
controlled as a unit, as opposed to storing each item in a separate column

g Each item must also be identified and accessed individually

The data items in an array are called array elements. An array can contain elements of
any InterBase datatype except BLOB. It cannot be an array of arrays, although InterBase
does support multidimensional arrays. All of the elements of an array must be of the same
datatype.

Creating arrays
Arrays are defined with the CREATE DOMAIN or CREATE TABLE statements. Defining an array
column is just like defining any other column, except that you must also specify the array
dimensions.

Array indexes range from –231 to +231–1.

CHAPTER 9 USING ARRAYS

210 INTERBASE 5

The following statement defines a regular character column and a single-dimension,
character array column containing four elements:

EXEC SQL

CREATE TABLE TABLE1

(

NAME CHAR(10),

CHAR_ARR CHAR(10)[4]

);

Array dimensions are always enclosed in square brackets following a column’s datatype
specification.

For a complete discussion of CREATE TABLE and array syntax, see the Language Reference.

Multi-dimensional arrays
InterBase supports multi-dimensional arrays, arrays with 1 to 16 dimensions. For
example, the following statement defines three integer array columns with two, three,
and six dimensions, respectively:

EXEC SQL

CREATE TABLE TABLE1

(

INT_ARR2 INTEGER[4,5]

INT_ARR3 INTEGER[4,5,6]

INT_ARR6 INTEGER[4,5,6,7,8,9]

);

In this example, INT_ARR2 allocates storage for 4 rows, 5 elements in width, for a total of
20 integer elements, INT_ARR3 allocates 120 elements, and INT_ARR6 allocates 60,480
elements.

IMPORTANT InterBase stores multi-dimensional arrays in row-major order. Some host languages,
such as FORTRAN, expect arrays to be in column-major order. In these cases, care must
be taken to translate element ordering correctly between InterBase and the host
language.

CREATING ARRAYS

PROGRAMMER’S GUIDE 211

Specifying subscript ranges
In InterBase, array dimensions have a specific range of upper and lower boundaries,
called subscripts. In many cases, the subscript range is implicit: the first element of the
array is element 1, the second element 2, and the last is element n. For example, the
following statement creates a table with a column that is an array of four integers:

EXEC SQL

CREATE TABLE TABLE1

(

INT_ARR INTEGER[4]

);

The subscripts for this array are 1, 2, 3, and 4.

A different set of upper and lower boundaries for each array dimension can be explicitly
defined when an array column is created. For example, C programmers, familiar with
arrays that start with a lower subscript boundary of zero, may want to create array
columns with a lower boundary of zero as well.

To specify array subscripts for an array dimension, both the lower and upper boundaries
of the dimension must be specified using the following syntax:

lower:upper

For example, the following statement creates a table with a single-dimension array
column of four elements where the lower boundary is 0 and the upper boundary is 3:

EXEC SQL

CREATE TABLE TABLE1

(

INT_ARR INTEGER[0:3]

);

The subscripts for this array are 0, 1, 2, and 3.

When creating multi-dimensional arrays with explicit array boundaries, separate each
dimension’s set of subscripts from the next with commas. For example, the following
statement creates a table with a two-dimensional array column where each dimension
has four elements with boundaries of 0 and 3:

EXEC SQL

CREATE TABLE TABLE1

(

INT_ARR INTEGER[0:3, 0:3]

);

CHAPTER 9 USING ARRAYS

212 INTERBASE 5

Accessing arrays
InterBase can perform operations on an entire array, effectively treating it as a single
element, or it can operate on an array slice, a subset of array elements. An array slice can
consist of a single element, or a set of many contiguous elements.

InterBase supports the following data manipulation operations on arrays:

g Selecting data from an array

g Inserting data into an array

g Updating data in an array slice

g Selecting data from an array slice

g Evaluating an array element in a search condition

A user-defined function (UDF) can only reference a single array element.

The following array operations are not supported:

g Referencing array dimensions dynamically in DSQL

g Inserting data into an array slice

g Setting individual array elements to NULL

g Using the aggregate functions, MIN(), MAX(), SUM(), AVG(), and COUNT() with arrays

g Referencing arrays in the GROUP BY clause of a SELECT

g Creating views that select from array slices

Selecting data from an array
To select data from an array, perform the following steps:

1. Declare a host-language array variable of the correct size to hold the array
data. For example, the following statements create three such variables:

EXEC SQL

BEGIN DECLARE SECTION;

BASED ON TABLE1.CHAR_ARR char_arr;

BASED ON TABLE1.INT_ARR int_arr;

BASED ON TABLE1.FLOAT_ARR float_arr;

EXEC SQL

END DECLARE SECTION;

2. Declare a cursor that specifies the array columns to select. For example,

ACCESSING ARRAYS

PROGRAMMER’S GUIDE 213

EXEC SQL

DECLARE TC1 CURSOR FOR

SELECT NAME, CHAR_ARR[], INT_ARR[]

FROM TABLE1;

Be sure to include brackets ([]) after the array column name to select the array data.
If the brackets are left out, InterBase reads the array ID for the column, instead of the
array data.

The ability to read the array ID, which is actually a Blob ID, is included only to
support applications that access array data using InterBase API calls.

3. Open the cursor, and fetch data:

EXEC SQL

OPEN TC1;

EXEC SQL

FETCH TC1 INTO :name, :char_arr, :int_arr;

Note It is not necessary to use a cursor to select array data. For example, a singleton
SELECT might be appropriate, too.

When selecting array data, keep in mind that InterBase stores elements in row-major
order. For example, in a 2-dimensional array, with 2 rows and 3 columns, all 3 elements
in row 1 are returned, then all three elements in row two.

Inserting data into an array
INSERT can be used to insert data into an array column. The data to insert must exactly
fill the entire array, or an error can occur.

To insert data into an array, follow these steps:

1. Declare a host-language variable to hold the array data. Use the BASED ON
clause as a handy way of declaring array variables capable of holding data to
insert into the entire array. For example, the following statements create three
such variables:

EXEC SQL

BEGIN DECLARE SECTION;

BASED ON TABLE1.CHAR_ARR char_arr;

BASED ON TABLE1.INT_ARR int_arr;

BASED ON TABLE1.FLOAT_ARR float_arr;

EXEC SQL

END DECLARE SECTION;

CHAPTER 9 USING ARRAYS

214 INTERBASE 5

2. Load the host-language variables with data.

3. Use INSERT to write the arrays. For example,

EXEC SQL

INSERT INTO TABLE1 (NAME, CHAR_ARR, INT_ARR, FLOAT_ARR)

VALUES ("Sample", :char_arr, :int_arr, :float_arr);

4. Commit the changes:

EXEC SQL

COMMIT;

IMPORTANT When inserting data into an array column, provide data to fill all array elements, or the
results will be unpredictable.

Selecting from an array slice
The SELECT statement supports syntax for retrieving contiguous ranges of elements from
arrays. These ranges are referred to as array slices. Array slices to retrieve are specified
in square brackets ([]) following a column name containing an array. The number inside
the brackets indicates the elements to retrieve. For a one-dimensional array, this is a
single number. For example, the following statement selects the second element in a
one-dimensional array:

EXEC SQL

SELECT JOB_TITLE[2]

INTO :title

FROM EMPLOYEE

WHERE LAST_NAME = :lname;

To retrieve a subset of several contiguous elements from a one-dimensional array, specify
both the first and last elements of the range to retrieve, separating the values with a colon.
The syntax is as follows:

[lower_bound:upper_bound]

For example, the following statement retrieves a subset of three elements from a
one-dimensional array:

EXEC SQL

SELECT JOB_TITLE[2:4]

INTO :title

FROM EMPLOYEE

WHERE LAST_NAME = :lname;

ACCESSING ARRAYS

PROGRAMMER’S GUIDE 215

For multi-dimensional arrays, the lower and upper values for each dimension must be
specified, separated from one another by commas, using the following syntax:

[lower:upper, lower:upper [, lower:upper ...]]

Note In this syntax, the bold brackets must be included.

For example, the following statement retrieves two rows of three elements each:

EXEC SQL

DECLARE TC2 CURSOR FOR

SELECT INT_ARR[1:2,1:3]

FROM TABLE1

Because InterBase stores array data in row-major order, the first range of values between
the brackets specifies the subset of rows to retrieve. The second range of values specifies
which elements in each row to retrieve.

To select data from an array slice, perform the following steps:

1. Declare a host-language variable large enough to hold the array slice data
retrieved. For example,

EXEC SQL

BEGIN DECLARE SECTION;

char char_slice[11]; /* 11-byte string for CHAR(10) datatype

*/

long int_slice[2][3];

EXEC SQL

END DECLARE SECTION;

The first variable, char_slice, is intended to store a single element from the CHAR_ARR
column. The second example, int_slice, is intended to store a six-element slice from
the INT_ARR integer column.

2. Declare a cursor that specifies the array slices to read. For example,

EXEC SQL

DECLARE TC2 CURSOR FOR

SELECT CHAR_ARR[1], INT_ARR[1:2,1:3]

FROM TABLE1

3. Open the cursor, and the fetch data:

EXEC SQL

OPEN TC2;

EXEC SQL

FETCH TC2 INTO :char_slice, :int_slice;

CHAPTER 9 USING ARRAYS

216 INTERBASE 5

Updating data in an array slice
A subset of elements in an array can be updated with a cursor. To perform an update,
follow these steps:

1. Declare a host-language variable to hold the array slice data. For example,

EXEC SQL

BEGIN DECLARE SECTION;

char char_slice[11]; /* 11-byte string for CHAR(10) datatype

*/

long int_slice[2][3];

EXEC SQL

END DECLARE SECTION;

The first variable, char_slice, is intended to hold a single element of the CHAR_ARR
array column defined in the programming example in the previous section. The
second example, int_slice, is intended to hold a six-element slice of the INT_ARR
integer array column.

2. Select the row that contains the array data to modify. For example, the
following cursor declaration selects data from the INT_ARRAY and CHAR_ARRAY
columns:

EXEC SQL

DECLARE TC1 CURSOR FOR

SELECT CHAR_ARRAY[1], INT_ARRAY[1:2,1:3] FROM TABLE1;

EXEC SQL

OPEN TC1;

EXEC SQL

FETCH TC1 INTO :char_slice, :int_slice;

This example fetches the data currently stored in the specified slices of CHAR_ARRAY
and INT_ARRAY, and stores it into the char_slice and int_slice host-language variables,
respectively.

3. Load the host-language variables with new or updated data.

4. Execute an UPDATE statement to insert data into the array slices. For example,
the following statements put data into parts of CHAR_ARRAY and INT_ARRAY,
assuming char_slice and int_slice contain information to insert into the table:

EXEC SQL

UPDATE TABLE1

SET

CHAR_ARR[1] = :char_slice,

ACCESSING ARRAYS

PROGRAMMER’S GUIDE 217

INT_ARR[1:2,1:3] = :int_slice

WHERE CURRENT OF TC1;

5. Commit the changes:

EXEC SQL

COMMIT;

The following fragment of the output from this example illustrates the contents of the
columns, CHAR_ARR and INT_ARR after this operation.

Testing a value in a search condition
A single array element’s value can be evaluated in the search condition of a WHERE
clause. For example,

EXEC SQL

DECLARE TC2 CURSOR FOR

SELECT CHAR_ARR[1], INT_ARR[1:2,1:3]

FROM TABLE1

WHERE SMALLINT_ARR[1,1,1] = 111;

IMPORTANT You cannot evaluate multi-element array slices.

Using host variables in array subscripts
Integer host variables can be used as array subscripts. For example, the following cursor
declaration uses host variables, getval, and testval, in array subscripts:

EXEC SQL

DECLARE TC2 CURSOR FOR

SELECT CHAR_ARR[1], INT_ARR[:getval:1,1:3]

FROM TABLE1

WHERE FLOAT_ARR[:testval,1,1] = 111.0;

char_arr values:

 [0]:string0 [1]:NewString [2]:string2 [3]:string3

int_arr values:

 [0][0]:0 [0][1]:1 [0][2]:2 [0][3]:3

 [1][0]:10 [1][1]:999 [1][2]:999 [1][3]:999

 [2][0]:20 [2][1]:999 [2][2]:999 [2][3]:999

 [3][0]:30 [3][1]:31 [3][2]:32 [3][3]:33

updated values

CHAPTER 9 USING ARRAYS

218 INTERBASE 5

Using arithmetic expressions with arrays
Arithmetic expressions involving arrays can be used only in search conditions. For
example, the following code fetches a row of array data at a time that meets the search
criterion:

for (i = 1; i < 100 && SQLCODE == 0; i++)

{

EXEC SQL

SELECT ARR[:i] INTO :array_var

FROM TABLE1

WHERE ARR1[:j + 1] = 5;

process_array(array_var);

}

PROGRAMMER’S GUIDE 219

CHAPTER

10
Chapter 10Working with

User-Defined Functions

Just as InterBase has built-in SQL functions such as MIN(), MAX(), and CAST(), it also
supports libraries of external functions, or user-defined functions (UDFs). A UDF is a
function written entirely in a host language to perform a data manipulation task not
directly supported by InterBase. Possibilities include statistical, string, and date functions.

IMPORTANT UDFs are not supported on NetWare.

Once a UDF is created, it can be used in a database application anywhere that a built-in
SQL function can be used. This chapter describes how to create UDFs and how to use
them in an application.

CHAPTER 10 WORKING WITH USER-DEFINED FUNCTIONS

220 INTERBASE 5

Creating a UDF
Creating a UDF is a three-step process:

1. Writing and compiling a UDF in a programming language such as C or
Delphi

2. Building a dynamically linked library containing the UDF

3. Declaring the UDF to the database.

A UDF can be written in C or in any other host language that can be called from C.
Throughout this chapter, the sample UDF code comes from a single C source file,
udflib.c, which is in the InterBase examples subdirectory.

Note A library, in this context, is a shared object that typically has a .dll extension on
Wintel platforms, a .so extension on Solaris, and a .sl extension on HP-UX.

Writing a function module
In C, a UDF is written like any standard function. The UDF can require up to ten input
parameters, and can return only a single C data value. A single source code module can
define one or more UDFs. For example, the sample UDF module, udflib.c, includes the
following UDFs:

g fn_abs() returns the absolute value of a number passed as an input argument.

g fn_datediff() takes two InterBase dates as input, and returns the number of days between
them.

g fn_trim() imitates the SQL-92 TRIM() function. It takes three input arguments, an integer
specifying the string trim operation to perform (trim leading characters, trim trailing
characters, or trim both leading and trailing characters), the character to trim, and the
string from which to trim characters. It returns the trimmed string.

The sample code for these functions is as follows:

#include <math.h>

#include <ctype.h>

#include <string.h>

#include <time.h>

/* Defines for fn_trim(). */

#define LEADING 0

#define TRAILING 1

CREATING A UDF

PROGRAMMER’S GUIDE 221

#define BOTH 2

/* Function prototypes. */

static char *strtriml(char *string, int c);

static char *strtrimr(char *string, int c);

char *fn_trim(int operation, int c, char *string);

long fn_datediff(ISC_QUAD d1, ISC_QUAD d2);

double fn_abs(double *x);

/* Function Definitons */

/* fn_abs() returns the absolute value of its argument. */

double fn_abs(double *x)

{

return(*x < 0.0) ? -*x : *x;

}

/* fn_datediff() returns the number of days between two dates */

long fn_datediff(ISC_QUAD d1, ISC_QUAD d2)

{

struct tm tm1, tm2;

isc_decode_date(d1, &tm1); /* convert IB date to tm */

isc_decode_date(d2, &tm2);

return(long) (timelocal(&tm1) - timelocal(&tm2)) / (24 * 3600.0);

}

/* trim leading and/or trailing characters of type c from string */

char *fn_trim(int operation, int c, char *string)

{

switch (operation) {

case LEADING:

strtriml(string, c);

case TRAILING:

strtrimr(string, c);

break;

case BOTH:

default:

strtrimr(string, c);

strtriml(string, c);

break;

}

CHAPTER 10 WORKING WITH USER-DEFINED FUNCTIONS

222 INTERBASE 5

return(string);

}

/* trim all chars of type c from left of string and close up */

static char *strtriml(char *string, int c)

{

int n,i;

n = 0;

while (string[n] == c) /* skip leading characters */

n++;

for (i = 0;string[n];i++,n++) /* copy backward over itself */

string[i] = string[n];

string[i] = NULL; /* don’t forget string terminator */

}

/* trim all chars of type c from right of string and truncate length */

static char *strtrimr(char *string, int c)

{

int n;

n = strlen(string) - 1;

while (string[n] == c)

n--;

string[n + 1] = NULL;

return(string);

}

As this sample code illustrates, a UDF source code module can use typedefs defined in
the InterBase ibase.h header file. To compile such a module successfully, include ibase.h
in the source code by adding the following include directive:

#include "ibase.h"

Note The sample code also includes calls to two InterBase library functions,
isc_decode_date(), and isc_encode_date(). The ibase.h header file includes function
prototypes for all InterBase library function calls.

4 Specifying parameters
A UDF can accept up to ten parameters corresponding to any InterBase datatype. Array
elements cannot be passed as parameters. If a UDF returns a Blob, the number of input
parameters is restricted to nine. All parameters are passed to the UDF by reference.

CREATING A UDF

PROGRAMMER’S GUIDE 223

Programming language datatypes specified as parameters must be capable of handling
corresponding InterBase datatypes. For example, the C function declaration for fn_abs()
accepts one parameter of type double. The expectation is that when fn_abs() is called, it
will be passed a datatype of DOUBLE PRECISION by InterBase.

UDFs that accept Blob parameters require special data structure for processing. A Blob is
passed by reference to a Blob UDF structure. For more information about the Blob UDF
structure, see “Writing a Blob UDF” on page 229.

4 Specifying a return value
A UDF can return values that can be translated into any InterBase datatype, including a
Blob, but it cannot return arrays of datatypes. For example, the C function declaration for
fn_abs() returns a value of type double, which corresponds to the InterBase DOUBLE
PRECISION datatype.

By default, return values are passed by reference. Numeric values can be returned by
reference or by value. To return a numeric parameter by value, include the optional BY
VALUE keyword after the return value when declaring a UDF to a database.

A UDF that returns a Blob does not actually define a return value. Instead, a pointer to a
structure describing the Blob to return must be passed as the last input parameter to the
UDF.

Handling memory for return values
InterBase 5’s single multi-threaded process requires some modification in the way
memory is allocated and released in UDFs and in the way these UDFs are declared. There
are several issues: in the single-process, multi-thread architecture, memory allocated
dynamically is not released, since the process does not end; users running UDFs
concurrently will conflict in their use of the same static memory space; and memory must
be released by the same runtime library that allocated it.

The procedure for allocating and freeing memory for return values in a fashion that is
both thread safe and compiler independent is as follows:

1. In the UDF code, use InterBase’s ib_util_malloc() function to allocate memory
for return values. This function is contained in the ib_install_dir/lib/ib_util
library (ib_util.dll on Windows, ib_util.so on Solaris, and ib_util.sl on
HP-UX).

2. Linking and compiling:

Microsoft Visual C/C++ Link with ib_install_dir/lib/ib_util_ms.lib and include
ib_install_dir/include/ib_util.h

CHAPTER 10 WORKING WITH USER-DEFINED FUNCTIONS

224 INTERBASE 5

Borland C++ Link with ib_install_dir/lib/ib_util.lib and include
ib_install_dir/include/ib_util.h

Delphi Use ib_install_dir/include/ib_util.pas.

3. Use the FREE_IT keyword in the RETURNS clause when declaring a function
that returns dynamically allocated objects. For example:

DECLARE EXTERNAL FUNCTION lowers VARCHAR(256)

RETURNS CSTRING(256) FREE_IT

ENTRY POINT ’fn_lower’ MODULE_NAME ’udflib.dll’

InterBase’s FREE_IT keyword allows InterBase users to write thread-safe UDF functions
without memory leaks.

Note UDFs must avoid static variables in order to be thread safe. You can use local
variables only if you can guarantee that only one user at a time will be accessing UDFs.
If you do return a pointer to static data, you must not use FREE_IT.

Compiling a function module
After a UDF module is complete, you can compile it in a normal fashion into object or
library format. You then declare the UDFs in the resulting object or library module to the
database using the DECLARE EXTERNAL FUNCTION statement. Once declared to the
database, the library containing all the UDFs is automatically loaded at run time from a
shared library or dynamic link library.

See “Handling memory for return values” on page 223 of this book for a detailed
description of how to allocate and return memory for return values as well as information
on linking and compiling the UDF library.

IMPORTANT See the makefiles (makefile.bc and makefile.msc on Wintel, makefile on UNIX) in the
InterBase examples subdirectory for details on how to compile a UDF library.

Note UDFs are not supported on NetWare.

CREATING A UDF LIBRARY

PROGRAMMER’S GUIDE 225

Creating a UDF library
UDF libraries are standard C object libraries that are dynamically loaded by the database
at runtime. You can create UDF libraries on any platform—except NetWare—that is
supported by InterBase. To use the same set of UDFs with databases running on different
platforms, create separate libraries on each platform where the databases reside. UDFs
run on the server where the database resides.

The InterBase examples directory contains sample makefiles (makefile.bc and
makefile.msc on Wintel, makefile on UNIX) that build a UDF function library from
udflib.c.

Modifying a UDF library
To add a UDF to an existing UDF library on a platform:

g Compile the UDF according to the instructions for the platform.

g Include all object files previously included in the library and the newly-created object file
in the command line when creating the function library.

Note On some platforms, object files can be added directly to existing libraries. For more
information, consult the platform-specific compiler and linker documentation.

To delete a UDF from a library, follow the linker’s instructions for removing an object
from a library. Deleting a UDF from a library does not eliminate references to it in the
database.

Placing the UDF library
When you specify the module (library) name in the DECLARE EXTERNAL FUNCTION
statement, you can use an absolute path, a relative path, or the library name only.
Absolute paths are, of course, inflexible and relative paths are subject to misinterpretation
by the OS. If you use the module name only, the operating system will always find it in
the lib subdirectory of the InterBase install directory. If you want to place the library
elsewhere, the operating system looks in the following places, in sequence:

Windows

· ib_install_dir\bin on the server

· win_install_dir\system32 when present

CHAPTER 10 WORKING WITH USER-DEFINED FUNCTIONS

226 INTERBASE 5

· win_install_dir\system

· All directories in PATH

· ib_install_dir/lib

Solaris

· /usr/lib

· Directories in the LD_LIBRARY_PATH environment variable on the server

· ib_install_dir/lib

HP-UX

· Directories in the SH_LIB environment variable on the server

· ib_install_dir/lib

Declaring a UDF to a database
Once a UDF has been written and compiled into a library, you must declare it to each
database where you want to use it, using the DELCARE EXTERNAL FUNCTION statement.
Each UDF in a library must be declared separately, but needs to be declared only once to
each database.

Declaring a UDF to a database informs the database about its location and properties:

g The UDF name as it will be used in embedded SQL statements

g The number and datatypes of its arguments

g The return datatype

g The name of the function as it exists in the UDF module or library

g The name of the library that contains the UDF

You can use isql, interBase Windows ISQL, or a script to declare your UDFs.

For more information about declaring a UDF to a database, see “Declaring the external
function” on page 190 of the Data Definition Guide and “DECLARE EXTERNAL
FUNCTION” on page 90 of the Language Reference.

CALLING A UDF

PROGRAMMER’S GUIDE 227

For example, the following isql script declares three UDFs, ABS(), DATEDIFF(), and TRIM(),
to the employee.gdb database:

CONNECT "employee.gdb";

DECLARE EXTERNAL FUNCTION ABS

DOUBLE PRECISION

RETURNS DOUBLE BY VALUE

ENTRY_POINT "fn_abs" MODULE_NAME "udflib.dll";

COMMIT;

DECLARE EXTERNAL FUNCTION DATEDIFF

DATE, DATE

RETURNS INTEGER

ENTRY_POINT "fn_datediff" MODULE_NAME "udflib.dll";

COMMIT;

DECLARE EXTERNAL FUNCTION TRIM

SMALLINT, CSTRING(256), SMALLINT

RETURNS CSTRING(256) FREE_IT

ENTRY_POINT "fn_trim" MODULE_NAME "udflib.dll";

COMMIT;

Although UDFs are written in a host language and therefore take host-language datatypes
for both its parameters and its return value, when a UDF is declared, it must translate
them to SQL datatypes or to a CSTRING type of a specified maximum byte length. CSTRING
is used to translate parameters of CHAR and VARCHAR datatypes into a null-terminated C
string for processing, and to return a variable-length, null-terminated C string to
InterBase for automatic conversion to CHAR or VARCHAR.

When you declare a UDF that returns a C string, CHAR or VARCHAR, you must include the
FREE_IT keyword in the declaration in order to free the memory used by the return value.

Calling a UDF
After a UDF is created and declared to a database, it can be used in SQL statements
wherever a built-in function is permitted. To use a UDF, insert its name in an SQL
statement at an appropriate location, and enclose its input arguments in parentheses.

For example, the following DELETE statement calls the ABS() UDF as part of a search
condition that restricts which rows are deleted:

EXEC SQL

DELETE FROM CITIES

WHERE ABS (POPULATION - 100000) > 50000;

CHAPTER 10 WORKING WITH USER-DEFINED FUNCTIONS

228 INTERBASE 5

UDFs can also be called in stored procedures and triggers. For more information, see the
Data Definition Guide.

Calling a UDF with SELECT

In SELECT statements, a UDF can be used in a select list to specify data retrieval, or in the
WHERE clause search condition.

The following statement uses ABS() to guarantee that a returned column value is positive:

EXEC SQL

SELECT ABS (JOB_GRADE) FROM PROJECTS;

The next statement uses DATEDIFF() in a search condition to restrict rows retrieved:

EXEC SQL

SELECT START_DATE FROM PROJECTS

WHERE DATEDIFF (:today, START_DATE) > 10;

Calling a UDF with INSERT

In INSERT statements, a UDF can be used in the comma-delimited list in the VALUES clause.

The following statement uses TRIM() to remove leading blanks from firstname and trailing
blanks from lastname before inserting the values of these host variables into the
EMPLOYEE table:

EXEC SQL

INSERT INTO EMPLOYEE(FIRST_NAME, LAST_NAME, EMP_NO, DEPT_NO,

SALARY)

VALUES (TRIM (0, ’ ’,:firstname), TRIM (1, ’ ’, :lastname),

:empno, :deptno, greater(30000, :est_salary));

Calling a UDF with UPDATE

In UPDATE statements, a UDF can be used in the SET clause as part of the expression
assigning column values.

For example, the following statement uses TRIM() to ensure that update values do not
contain leading or trailing blanks:

EXEC SQL

UPDATE COUNTRIES

WRITING A BLOB UDF

PROGRAMMER’S GUIDE 229

SET COUNTRY = TRIM (2, ’ ’, COUNTRY);

Calling a UDF with DELETE

In DELETE statements, a UDF can be used in a WHERE clause search condition:

EXEC SQL

DELETE FROM COUNTRIES

WHERE ABS (POPULATION - 100000) < 50000;

Writing a Blob UDF
A Blob UDF differs from other UDFs, because pointers to Blob control structures are
passed to the UDF instead of references to actual data. A Blob UDF cannot open or close
a Blob, but instead invokes functions to perform Blob access.

Creating a Blob control structure
A Blob control structure is a C struct, declared within a UDF module as a
typedef. Programmers must provide the control structure definition, which should be
defined as follows:

typedef struct blob {

void (*blob_get_segment) ();

int *blob_handle;

long number_segments;

long max_seglen;

long total_size;

void (*blob_put_segment) ();

} *Blob;

CHAPTER 10 WORKING WITH USER-DEFINED FUNCTIONS

230 INTERBASE 5

Field Description

blob_get_segment The first field in the Blob struct, blob_get_segment, is a pointer to a
function that is called to read a segment from a Blob if one is passed
to the UDF. The function takes four arguments: a Blob handle, the
address of a buffer into which to place Blob a segment of data that
is read, the size of that buffer, and the address of variable into to
store the size of the segment that is read. If Blob data is not read by
the UDF, set blob_get_segment to NULL.

blob_handle The second field in the Blob struct, blob_handle, is required. It is a
Blob handle that uniquely identifies a Blob passed to a UDF or
returned by it.

number_segments For Blob data passed to a UDF, number_segments specifies the total
number of segments in the Blob. Set this value to NULL if Blob data
is not passed to a UDF.

max_seglen For Blob data passed to a UDF, max_seglen specifies the size, in
bytes, of the largest single segment passed. Set this value to NULL if
Blob data is not passed to a UDF.

total_size For Blob data passed to a UDF, total_size specifies the actual size, in
bytes, of the Blob as a single unit. Set this value to NULL if Blob data
is not passed to a UDF.

blob_put_segment The last field in the Blob struct, blob_put_segment, is a pointer to a
function that is called to write a segment to a Blob if one is being
returned by the UDF. The function takes three arguments: a Blob
handle, the address of a buffer containing the data to write into the
Blob, and the size, in bytes, of the data to write. If Blob data is not
read by the UDF, set blob_put_segment to NULL.

TABLE 10.1 Fields in the Blob struct

WRITING A BLOB UDF

PROGRAMMER’S GUIDE 231

Declaring a Blob UDF
A Blob UDF is declared to the database using DECLARE EXTERNAL FUNCTION like any
non-Blob UDF. A UDF that returns a Blob does not actually define a return value. Instead,
a pointer to a structure describing the Blob to return must be passed as the last input
parameter to the UDF. For example, the following statement declares the Blob UDF,
Blob_PLUS_Blob, to a database:

DECLARE EXTERNAL FUNCTION Blob_PLUS_Blob

Blob,

Blob,

Blob

ENTRY_POINT "blob_concatenate" MODULE_NAME "udflib.dll";

COMMIT;

A Blob UDF example
The following code creates a UDF, blob_concatenate(), that appends data from one Blob to
the end of another Blob to return a third Blob consisting of concatenated Blob data.

/* Blob control structure */

typedef struct blob {

void (*blob_get_segment) ();

int *blob_handle;

long number_segments;

long max_seglen;

long total_size;

void (*blob_put_segment) ();

} *Blob;

extern char *isc_$alloc();

#define MAX(a, b) (a > b) ? a : b

#define DELIMITER "-----------------------------"

blob_concatenate(Blob from1, Blob from2, Blob to)

/* Note Blob to, as final input parameter, is actually for output! */

{

char *buffer;

long length, b_length;

b_length = MAX(from1->max_seglen, from2->max_seglen);

CHAPTER 10 WORKING WITH USER-DEFINED FUNCTIONS

232 INTERBASE 5

buffer = isc_alloc(b_length);

/* write the from1 Blob into the return Blob, to */

while ((*from1->blob_get_segment) (from1->blob_handle, buffer,

b_length, &length))

(*to->blob_put_segment) (to->blob_handle, buffer, length);

/* now write a delimiter as a dividing line in the blob */

(*to->blob_put_segment) (to->blob_handle, DELIMITER,

sizeof(DELIMITER) - 1);

/* finally write the from2 Blob into the return Blob, to */

while ((*from2->blob_get_segment) (from2->blob_handle, buffer,

b_length, &length))

(*to->blob_put_segment) (to->blob_handle, buffer, length);

/* free the memory allocated to the buffer */

isc_$free(buffer);

}

PROGRAMMER’S GUIDE 233

CHAPTER

11
Chapter 11Working with

Stored Procedures

A stored procedure is a self-contained set of extended SQL statements stored in a database
as part of its metadata.

Applications can interact with stored procedures in the following ways:

g They can pass parameters to and receive return values from stored procedures.

g They can invoke stored procedures directly to perform a task.

g They can substitute an appropriate stored procedure for a table or view in a SELECT
statement.

The advantages of using stored procedures are:

g Applications can share code. A common piece of SQL code written once and stored in the
database can be used in any application that accesses the database, including the new
InterBase interactive SQL tool, isql.

g Modular design. Stored procedures can be shared among applications, eliminating
duplicate code, and reducing the size of applications.

g Streamlined maintenance. When a procedure is updated, the changes are automatically
reflected in all applications that use it without the need to recompile and relink them.

CHAPTER 11 WORKING WITH STORED PROCEDURES

234 INTERBASE 5

g Improved performance, especially for remote client access. Stored procedures are
executed by the server, not the client.

This chapter describes how to call and execute stored procedures in applications once
they are written. For information on how to create a stored procedure, see the Data
Definition Guide.

Using stored procedures
There are two types of procedures that can be called from an application:

g Select procedures that an application can use in place of a table or view in a SELECT
statement. A select procedure must return one or more values, or an error results.

g Executable procedures that an application can call directly, with the EXECUTE PROCEDURE
statement. An executable procedure may or may not return values to the calling program.

Both kinds of procedures are defined with CREATE PROCEDURE and have the same syntax.
The difference is in how the procedure is written and how it is intended to be used. Select
procedures always return zero or more rows, so that to the calling program they appear
as a table or view. Executable procedures are simply routines invoked by the calling
program that can return only a single set of values.

In fact, a single procedure conceivably can be used as a select procedure or an executable
procedure, but this is not recommended. In general a procedure is written specifically to
be used in a SELECT statement (a select procedure) or to be used in an EXECUTE
PROCEDURE statement (an executable procedure). For more information on creating
stored procedures, see the Data Definition Guide.

Procedures and transactions
Procedures operate within the context of a transaction in the program that uses them. If
procedures are used in a transaction, and the transaction is rolled back, then any actions
performed by the procedures are also rolled back. Similarly, a procedure’s actions are not
final until its controlling transaction is committed.

USING SELECT PROCEDURES

PROGRAMMER’S GUIDE 235

Security for procedures
When an application calls a stored procedure, the person running the application must
have EXECUTE privilege on the stored procedure. An extension to the GRANT statement
enables assignment of EXECUTE privilege, and an extension to the REVOKE statement
enables removal of the privilege. For more information about granting privileges to users,
see the Data Definition Guide.

In addition, if the stored procedure accesses objects in the database, one of two things
must be true: either the user running the application or the called stored procedure must
have the appropriate permissions on the accessed objects. The GRANT statement assigns
privileges to procedures, and REVOKE eliminates privileges.

Using select procedures
A select procedure is used in place of a table or view in a SELECT statement and can return
zero or more rows. A select procedure must return one or more output parameters, or an
error results. If returned values are not specified, NULL values are returned by default.

The advantages of select procedures over tables or views are:

g They can take input parameters that can affect the output produced.

g They can contain control statements, local variables, and data manipulation statements,
offering great flexibility to the user.

Input parameters are passed to a select procedure in a comma-delimited list in
parentheses following the procedure name.

The following isql script defines the procedure, GET_EMP_PROJ, which returns emp_proj,
the project numbers assigned to an employee, when passed the employee number,
emp_no, as the input parameter:

SET TERM !! ;

CREATE PROCEDURE GET_EMP_PROJ (emp_no SMALLINT)

RETURNS (emp_proj SMALLINT) AS

BEGIN

FOR SELECT PROJ_ID

FROM EMPLOYEE_PROJECT

WHERE EMP_NO = :emp_no

INTO :emp_proj

DO

CHAPTER 11 WORKING WITH STORED PROCEDURES

236 INTERBASE 5

SUSPEND;

END !!

The following statement retrieves PROJ_ID from the above procedure, passing the host
variable, number, as input:

SELECT PROJ_ID FROM GET_EMP_PROJ (:number);

Calling a select procedure
To use a select procedure in place of a table or view name in an application, use the
procedure name anywhere a table or view name is appropriate. Supply any input
parameters required in a comma-delimited list in parentheses following the procedure
name.

EXEC SQL

SELECT PROJ_ID FROM GET_EMP_PROJ (:emp_no)

ORDER BY PROJ_ID;

IMPORTANT InterBase does not support creating a view by calling a select procedure.

Using a select procedure with cursors
A select procedure can also be used in a cursor declaration. For example, the following
code declares a cursor named PROJECTS, using the GET_EMP_PROJ procedure in place of a
table:

EXEC SQL

DECLARE PROJECTS CURSOR FOR

SELECT PROJ_ID FROM GET_EMP_PROJ (:emp_no)

ORDER BY PROJ_ID;

The following application C code with embedded SQL then uses the PROJECTS cursor to
print project numbers to standard output:

EXEC SQL

OPEN PROJECTS

/* Print employee projects. */

while (SQLCODE == 0)

{

EXEC SQL

FETCH PROJECTS INTO :proj_id :nullind;

USING EXECUTABLE PROCEDURES

PROGRAMMER’S GUIDE 237

if (SQLCODE == 100)

break;

if (nullind == 0)

printf("\t%s\n", proj_id);

}

Using executable procedures
An executable procedure is called directly by an application, and often performs a task
common to applications using the same database. Executable procedures can receive
input parameters from the calling program, and can optionally return a single row to the
calling program.

Input parameters pass to an executable procedure in a comma-delimited list following
the procedure name.

Note Executable procedures cannot return multiple rows.

Executing a procedure
To execute a procedure in an application, use the following syntax:

EXEC SQL

EXECUTE PROCEDURE name [:param [[INDICATOR]:indicator]]
[, :param [[INDICATOR]:indicator] ...]
[RETURNING_VALUES :param [[INDICATOR]:indicator]
[, :param [[INDICATOR]:indicator]...]];

When an executable procedure uses input parameters, the parameters can be literal
values (such as 7 or “Fred”), or host variables. If a procedure returns output parameters,
host variables must be supplied in the RETURNING_VALUES clause to hold the values
returned.

For example, the following statement demonstrates how the executable procedure,
DEPT_BUDGET, is called with literal parameters:

EXEC SQL

EXECUTE PROCEDURE DEPT_BUDGET 100 RETURNING_VALUES :sumb;

The following statement also calls the same procedure using a host variable instead of a
literal as the input parameter:

EXEC SQL

CHAPTER 11 WORKING WITH STORED PROCEDURES

238 INTERBASE 5

EXECUTE PROCEDURE DEPT_BUDGET :rdno RETURNING_VALUES :sumb;

4 Indicator variables
Both input parameters and return values can have associated indicator variables for
tracking NULL values. You must use indicator variables to indicate unknown or NULL
values of return parameters. The INDICATOR keyword is optional. An indicator variable
that is less than zero indicates that the parameter is unknown or NULL. An indicator
variable that is 0 indicates that the associated parameter contains a non-NULL value. For
more information about indicator variables, see Chapter 6, “Working with Data.”

Executing a procedure in a DSQL application
To execute a stored procedure in a dynamic SQL (DSQL) application follow these steps:

1. Use a PREPARE statement to parse and prepare the procedure call for
execution using the following syntax:

EXEC SQL

PREPARE sql_statement_name FROM :var | "<statement>";

2. Set up an input XSQLDA using the following syntax:

EXEC SQL

DESCRIBE INPUT sql_statement_name INTO SQL DESCRIPTOR
input_xsqlda;

3. Use DESCRIBE OUTPUT to set up an output XSQLDA using the following syntax:

EXEC SQL

DESCRIBE OUTPUT sql_statement_name INTO SQL DESCRIPTOR
output_xsqlda;

Setting up an output XSQLDA is only necessary for procedures that return values.

4. Execute the statement using the following syntax:

EXEC SQL

EXECUTE statement USING SQL DESCRIPTOR input_xsqlda
INTO DESCRIPTOR output_xsqlda;

Input parameters to stored procedures can be passed as run-time values by substituting
a question mark (?) for each value. For example, the following DSQL statements prepare
and execute the ADD_EMP_PROJ procedure:

. . .

strcpy(uquery, "EXECUTE PROCEDURE ADD_EMP_PROJ ?, ?");

. . .

USING EXECUTABLE PROCEDURES

PROGRAMMER’S GUIDE 239

EXEC SQL

PREPARE QUERY FROM :uquery;

EXEC SQL

DESCRIBE INPUT QUERY INTO SQL DESCRIPTOR input_xsqlda;

EXEC SQL

DESCRIBE OUTPUT QUERY INTO SQL DESCRIPTOR output_xsqlda;

EXEC SQL

EXECUTE QUERY USING SQL DESCRIPTOR input_xsqlda INTO SQL DESCRIPTOR

output_xsqlda;

. . .

CHAPTER 11 WORKING WITH STORED PROCEDURES

240 INTERBASE 5

PROGRAMMER’S GUIDE 241

CHAPTER

12
Chapter 12Working with Events

This chapter describes the InterBase event mechanism and how to write applications that
register interest in and respond to events. The event mechanism enables applications to
respond to actions and database changes made by other, concurrently running
applications without the need for those applications to communicate directly with one
another, and without incurring the expense of CPU time required for periodic polling to
determine if an event has occurred.

Understanding the event mechanism
In InterBase, an event is a message passed by a trigger or a stored procedure to the
InterBase event manager to announce the occurrence of a specified condition or action,
usually a database change such as an INSERT, UPDATE, or DELETE. Events are passed by
triggers or stored procedures only when the transaction under which they occur is
committed.

The event manager maintains a list of events posted to it by triggers and stored
procedures. It also maintains a list of applications that have registered an interest in
events. Each time a new event is posted to it, the event manager notifies interested
applications that the event has occurred.

Applications can respond to specific events that might be posted by a trigger or stored
procedure by:

CHAPTER 12 WORKING WITH EVENTS

242 INTERBASE 5

1. Indicating an interest in the events to the event manager.

2. Waiting for event notification.

3. Determining which event occurred (if an application is waiting for more than
one event to occur).

The InterBase event mechanism, then, consists of three parts:

g A trigger or stored procedure that posts an event to the event manager.

g The event manager that maintains an event queue and notifies applications when an
event occurs.

g An application that registers interest in the event and waits for it to occur.

A second application that uses the event-posting stored procedure (or that fires the
trigger) causes the event manager to notify the waiting application so that it can resume
processing.

Signaling event occurrences
A trigger or stored procedure must signal the occurrence of an event, usually a database
change such as an INSERT, UPDATE, or DELETE, by using the POST_EVENT statement.
POST_EVENT alerts the event manager to the occurrence of an event after a transaction is
committed. At that time, the event manager passes the information to registered
applications.

A trigger or stored procedure that posts an event is sometimes called an event alerter. For
example, the following isql script creates a trigger that posts an event to the event
manager whenever any application inserts data in a table:

SET TERM !! ;

CREATE TRIGGER POST_NEW_ORDER FOR SALES

ACTIVE

AFTER INSERT

POSITION 0

AS

BEGIN

POST_EVENT "new_order";

END

!!

SET TERM ; !!

Event names are restricted to 15 characters in size.

REGISTERING INTEREST IN EVENTS

PROGRAMMER’S GUIDE 243

Note POST_EVENT is a stored procedure and trigger language extension, available only
within stored procedures and triggers.

For a complete discussion of writing a trigger or stored procedure as an event alerter, see
the Data Definition Guide.

Registering interest in events
An application must register a request to be notified about a particular event with the
InterBase event manager before waiting for the event to occur. To register interest in an
event, use the EVENT INIT statement. EVENT INIT requires two arguments:

g An application-specific request handle to pass to the event manager.

g A list of events to be notified about, enclosed in parentheses.

The application-specific request handle is used by the application in a subsequent EVENT
WAIT statement to indicate a readiness to receive event notification. The request handle
is used by the event manager to determine where to send notification about particular
events to wake up a sleeping application so that it can respond to them.

The list of event names in parentheses must match event names posted by triggers or
stored procedures, or notification cannot occur.

To register interest in a single event, use the following EVENT INIT syntax:

EXEC SQL

EVENT INIT request_name (event_name);

event_name can be up to 15 characters in size, and can be passed as a constant string in
quotes, or as a host-language variable.

For example, the following application code creates a request named RESPOND_NEW that
registers interest in the “new_order” event:

EXEC SQL

EVENT INIT RESPOND_NEW ("new_order");

The next example illustrates how RESPOND_NEW might be initialized using a
host-language variable, myevent, to specify the name of an event:

EXEC SQL

EVENT INIT RESPOND_NEW (:myevent);

After an application registers interest in an event, it is not notified about an event until it
first pauses execution with EVENT WAIT. For more information about waiting for events,
see “Waiting for events with EVENT WAIT” on page 244.

CHAPTER 12 WORKING WITH EVENTS

244 INTERBASE 5

Note As an alternative to registering interest in an event and waiting for the event to
occur, applications can use an InterBase API call to register interest in an event, and
identify an asynchronous trap (AST) function to receive event notification. This method
enables an application to continue other processing instead of waiting for an event to
occur. For more information about programming events with the InterBase API, see the
API Guide.

Registering interest in multiple events
Often, an application may be interested in several different events even though it can only
wait on a single request handle at a time. EVENT INIT enables an application to specify a
list of event names in parentheses, using the following syntax:

EXEC SQL

EVENT INIT request_name (event_name [event_name ...]);

Each event_name can be up to 15 characters in size, and should correspond to event
names posted by triggers or stored procedures, or notification may never occur. For
example, the following application code creates a request named RESPOND_MANY that
registers interest in three events, “new_order,” “change_order,” and “cancel_order”:

EXEC SQL

EVENT INIT RESPOND_MANY ("new_order", "change_order",

"cancel_order");

Note An application can also register interest in multiple events by using a separate
EVENT INIT statement with a unique request handle for a single event or groups of events,
but it can only wait on one request handle at a time.

Waiting for events with EVENT WAIT

Even after an application registers interest in an event, it does not receive notification
about that event. Before it can receive notification, it must use the EVENT WAIT statement
to indicate its readiness to the event manager, and to suspend its processing until
notification occurs.

To signal the event manager and suspend an application’s processing, use the following
EVENT WAIT statement syntax:

EXEC SQL

EVENT WAIT request_name;

RESPONDING TO EVENTS

PROGRAMMER’S GUIDE 245

request_name must be the name of a request handle declared in a previous EVENT INIT
statement.

The following statements register interest in an event, and wait for event notification:

EXEC SQL

EVENT INIT RESPOND_NEW ("new_order");

EXEC SQL

EVENT WAIT RESPOND_NEW;

Once EVENT WAIT is executed, application processing stops until the event manager sends
a notification message to the application.

Note An application can contain more than one EVENT WAIT statement, but all processing
stops when the first statement is encountered. Each time processing restarts, it stops
when it encounters the next EVENT WAIT statement.

If one event occurs while an application is processing another, the event manager sends
notification the next time the application returns to a wait state.

Responding to events
When event notification occurs, a suspended application resumes normal processing at
the next statement following EVENT WAIT.

If an application has registered interest in more than one event with a single EVENT INIT
call, then the application must determine which event occurred by examining the event
array, isc_event[]. The event array is automatically created for an application during
preprocessing. Each element in the array corresponds to an event name passed as an
argument to EVENT INIT. The value of each element is the number of times that event
occurred since execution of the last EVENT WAIT statement with the same request handle.

In the following code, an application registers interest in three events, then suspends
operation pending event notification:

EXEC SQL

EVENT INIT RESPOND_MANY ("new_order", "change_order",

"cancel_order");

EXEC SQL

EVENT WAIT RESPOND_MANY;

When any of the “new_order,” “change_order,” or “cancel_order” events are posted and
their controlling transactions commit, the event manager notifies the application and
processing resumes. The following code illustrates how an application might test which
event occurred:

CHAPTER 12 WORKING WITH EVENTS

246 INTERBASE 5

for (i = 0; i < 3; i++)

{

if (isc_$event[i] > 0)

{

/* this event occurred, so process it */

. . .

}

}

PROGRAMMER’S GUIDE 247

CHAPTER

13
Chapter 13Error Handling and Recovery

All SQL applications should include mechanisms for trapping, responding to, and
recovering from run-time errors, the errors that can occur when someone uses an
application. This chapter describes both standard, portable SQL methods for handling
errors, and additional error handling specific to InterBase.

Standard error handling
Every time an SQL statement is executed, it returns a status indicator in the SQLCODE
variable, which is declared automatically for SQL programs during preprocessing with
gpre. The following table summarizes possible SQLCODE values and their meanings:

Value Meaning

0 Success

1–99 Warning or informational message

100 End of file (no more data)

< 0 Error. Statement failed to complete

TABLE 13.1 Possible SQLCODE values

CHAPTER 13 ERROR HANDLING AND RECOVERY

248 INTERBASE 5

To trap and respond to run-time errors, SQLCODE should be checked after each SQL
operation. There are three ways to examine SQLCODE and respond to errors:

g Use WHENEVER statements to automate checking SQLCODE and handle errors when they
occur.

g Test SQLCODE directly after individual SQL statements.

g Use a judicious combination of WHENEVER statements and direct testing.

Each method has advantages and disadvantages, described fully in the remainder of this
chapter.

WHENEVER statements
The WHENEVER statement enables all SQL errors to be handled with a minimum of coding.
WHENEVER statements specify error-handling code that a program should execute when
SQLCODE indicates errors, warnings, or end-of-file. The syntax of WHENEVER is:

EXEC SQL

WHENEVER {SQLERROR | SQLWARNING | NOT FOUND}

 {GOTO label | CONTINUE};

After WHENEVER appears in a program, all subsequent SQL statements automatically jump
to the specified code location identified by label when the appropriate error or warning
occurs.

Because they affect all subsequent statements, WHENEVER statements are usually
embedded near the start of a program. For example, the first statement in the following
C code’s main() function is a WHENEVER that traps SQL errors:

main()

{

EXEC SQL

WHENEVER SQLERROR GOTO ErrorExit;

. . .

Error Exit:

if (SQLCODE)

{

print_error();

EXEC SQL

ROLLBACK;

EXEC SQL

DISCONNECT;

exit(1);

STANDARD ERROR HANDLING

PROGRAMMER’S GUIDE 249

}

}

. . .

print_error()

{

printf("Database error, SQLCODE = %d\n", SQLCODE);

}

Up to three WHENEVER statements can be active at any time:

g WHENEVER SQLERROR is activated when SQLCODE is less than zero, indicating that a
statement failed.

g WHENEVER SQLWARNING is activated when SQLCODE contains a value from 1 to 99,
inclusive, indicating that while a statement executed, there is some question about the
way it succeeded.

g WHENEVER NOT FOUND is activated when SQLCODE is 100, indicating that end-of-file was
reached during a FETCH or SELECT.

Omitting a statement for a particular condition means it is not trapped, even if it occurs.
For example, if WHENEVER NOT FOUND is left out of a program, then when a FETCH or
SELECT encounters the end-of-file, SQLCODE is set to 100, but program execution
continues as if no error condition has occurred.

Error conditions also can be overlooked by using the CONTINUE statement inside a
WHENEVER statement:

. . .

EXEC SQL

WHENEVER SQLWARNING

CONTINUE;

. . .

This code traps SQLCODE warning values, but ignores them. Ordinarily, warnings should
be investigated, not ignored.

IMPORTANT Use WHENEVER SQLERROR CONTINUE at the start of error-handling routines to disable
error handling temporarily. Otherwise, there is a possibility of an infinite loop; should
another error occur in the handler itself, the routine will call itself again.

SCOPE OF WHENEVER STATEMENTS

WHENEVER only affects all subsequent SQL statements in the module, or source code file,
where it is defined. In programs with multiple source code files, each module must define
its own WHENEVER statements.

CHAPTER 13 ERROR HANDLING AND RECOVERY

250 INTERBASE 5

CHANGING ERROR-HANDLING ROUTINES

To switch to another error-handling routine for a particular error condition, embed
another WHENEVER statement in the program at the point where error handling should be
changed. The new assignment overrides any previous assignment, and remains in effect
until overridden itself. For example, the following program fragment sets an initial jump
point for SQLERROR conditions to ErrorExit1, then resets it to ErrorExit2:

EXEC SQL

WHENEVER SQLERROR

GOTO ErrorExit1;

. . .

EXEC SQL

WHENEVER SQLERROR

GOTO ErrorExit2;

. . .

LIMITATIONS OF WHENEVER STATEMENTS

There are two limitations to WHENEVER. It:

g Traps errors indiscriminately. For example, WHENEVER SQLERROR traps both missing
databases and data entry that violates a CHECK constraint, and jumps to a single
error-handling routine. While a missing database is a severe error that may require action
outside the context of the current program, invalid data entry may be the result of a
typing mistake that could be fixed by reentering the data.

g Does not easily enable a program to resume processing at the point where the error
occurred. For example, a single WHENEVER SQLERROR can trap data entry that violates a
CHECK constraint at several points in a program, but jumps to a single error-handling
routine. It might be helpful to allow the user to reenter data in these cases, but the error
routine cannot determine where to jump to resume program processing.

Error-handling routines can be very sophisticated. For example, in C or C++, a routine
might use a large CASE statement to examine SQLCODE directly and respond differently to
different values. Even so, creating a sophisticated routine that can resume processing at
the point where an error occurred is difficult. To resume processing after error recovery,
consider testing SQLCODE directly after each SQL statement, or consider using a
combination of error-handling methods.

STANDARD ERROR HANDLING

PROGRAMMER’S GUIDE 251

Testing SQLCODE directly
A program can test SQLCODE directly after each SQL statement instead of relying on
WHENEVER to trap and handle all errors. The main advantage to testing SQLCODE directly
is that custom error-handling routines can be designed for particular situations.

For example, the following C code fragment checks if SQLCODE is not zero after a SELECT
statement completes. If so, an error has occurred, so the statements inside the if clause
are executed. These statements test SQLCODE for two specific values,
–1, and 100, handling each differently. If SQLCODE is set to any other error value, a generic
error message is displayed and the program is ended gracefully.

EXEC SQL

SELECT CITY INTO :city FROM STATES

WHERE STATE = :stat:statind;

if (SQLCODE)

{

if (SQLCODE == –1)

printf("too many records found\n");

else if (SQLCODE == 100)

printf("no records found\n");

else

{

printf("Database error, SQLCODE = %d\n", SQLCODE);

EXEC SQL

ROLLBACK;

EXEC SQL

DISCONNECT;

exit(1);

}

}

printf("found city named %s\n", city);

EXEC SQL

COMMIT;

EXEC SQL

DISCONNECT;

The disadvantage to checking SQLCODE directly is that it requires many lines of extra code
just to see if an error occurred. On the other hand, it enables errors to be handled with
function calls, as the following C code illustrates:

EXEC SQL

CHAPTER 13 ERROR HANDLING AND RECOVERY

252 INTERBASE 5

SELECT CITY INTO :city FROM STATES

WHERE STATE = :stat:statind;

switch (SQLCODE)

{

case 0:

break; /* NO ERROR */

case –1

ErrorTooMany();

break;

case 100:

ErrorNotFound();

break;

default:

ErrorExit(); /* Handle all other errors */

break;

}

. . .

Using function calls for error handling enables programs to resume execution if errors
can be corrected.

Combining error-handling techniques
Error handling in many programs can benefit from combining WHENEVER with direct
checking of SQLCODE. A program might include generic WHENEVER statements for
handling most SQL error conditions, but for critical operations, WHENEVER statements
might be temporarily overridden to enable direct checking of SQLCODE.

For example, the following C code:

g Sets up generic error handling with three WHENEVER statements.

g Overrides the WHENEVER SQLERROR statement to force program continuation using the
CONTINUE clause.

g Checks SQLCODE directly.

g Overrides WHENEVER SQLERROR again to reset it.

main()

{

EXEC SQL

WHENEVER SQLERROR GOTO ErrorExit; /* trap all errors */

EXEC SQL

STANDARD ERROR HANDLING

PROGRAMMER’S GUIDE 253

WHENEVER SQLWARNING GOTO WarningExit; /* trap warnings */

EXEC SQL

WHENEVER NOT FOUND GOTO AllDone; /* trap end of file */

. . .

EXEC SQL

WHENEVER SQLERROR CONTINUE; /* prevent trapping of errors */

EXEC SQL

SELECT CITY INTO :city FROM STATES

WHERE STATE = :stat:statind;

switch (SQLCODE)

{

case 0:

break; /* NO ERROR */

case –1

ErrorTooMany();

break;

case 100:

ErrorNotFound();

break;

default:

ErrorExitFunction(); /* Handle all other errors */

break;

}

EXEC SQL

WHENEVER SQLERROR GOTO ErrorExit; /* reset to trap all errors

*/

. . .

}

Guidelines for error handling
The following guidelines apply to all error-handling routines in a program.

USING SQL AND HOST-LANGUAGE STATEMENTS

All SQL statements and InterBase functions can be used in error-handling routines, except
for CONNECT.

Any host-language statements and functions can appear in an error-handling routine
without restriction.

CHAPTER 13 ERROR HANDLING AND RECOVERY

254 INTERBASE 5

IMPORTANT Use WHENEVER SQLERROR CONTINUE at the start of error-handling routines to disable
error-handling temporarily. Otherwise, there is a possibility of an infinite loop; should
another error occur in the handler itself, the routine will call itself again.

NESTING ERROR-HANDLING ROUTINES

Although error-handling routines can be nested or called recursively, this practice is not
recommended unless the program preserves the original contents of SQLCODE and the
InterBase error status array.

HANDLING UNEXPECTED AND UNRECOVERABLE ERRORS

Even if an error-handling routine catches and handles recoverable errors, it should always
contain statements to handle unexpected or unrecoverable errors.

The following code handles unrecoverable errors:

. . .

isc_print_sqlerr(SQLCODE, isc_status);

EXEC SQL

ROLLBACK;

EXEC SQL

DISCONNECT;

exit(1);

PORTABILITY

For portability among different SQL implementations, SQL programs should limit error
handling to WHENEVER statements or direct examination of SQLCODE values.

InterBase internal error recognition occurs at a finer level of granularity than SQLCODE
representation permits. A single SQLCODE value can represent many different internal
InterBase errors. Where portability is not an issue, it may be desirable to perform
additional InterBase error handling. The remainder of this chapter explains how to use
these additional features.

Additional InterBase error handling
The same SQLCODE value can be returned by multiple InterBase errors. For example, the
SQLCODE value, –901, is generated in response to many different InterBase errors. When
portability to other vendors’ SQL implementations is not required, SQL programs can
sometimes examine the InterBase error status array, isc_status, for more specific error
information.

ADDITIONAL INTERBASE ERROR HANDLING

PROGRAMMER’S GUIDE 255

isc_status is an array of twenty elements of type ISC_STATUS. It is declared automatically
for programs when they are preprocessed with gpre. Two kinds of InterBase error
information are reported in the status array:

g InterBase error message components.

g InterBase error numbers.

As long as the current SQLCODE value is not –1, 0, or 100, error-handling routines that
examine the error status array can do any of the following:

g Display SQL and InterBase error messages.

g Capture SQL and InterBase error messages to a storage buffer for further manipulation.

g Trap for and respond to particular InterBase error codes.

The InterBase error status array is usually examined only after trapping errors with
WHENEVER or testing SQLCODE directly.

Displaying error messages
If SQLCODE is less than –1, additional InterBase error information can be displayed using
the InterBase isc_print_sqlerror() function inside an error-handling routine. During
preprocessing with gpre, this function is automatically declared for InterBase applications.

isc_print_sqlerror() displays the SQLCODE value, a related SQL error message, and any
InterBase error messages in the status array. It requires two parameters: SQLCODE, and a
pointer to the error status array, isc_status.

For example, when an error occurs, the following code displays the value of SQLCODE,
displays a corresponding SQL error message, then displays additional InterBase error
message information if possible:

. . .

EXEC SQL

SELECT CITY INTO :city FROM STATES

WHERE STATE = :stat:statind;

if(SQLCODE)

{

isc_print_sqlerror(SQLCODE, isc_status);

EXEC SQL

ROLLBACK;

EXEC SQL

DISCONNECT ALL;

exit(1);

CHAPTER 13 ERROR HANDLING AND RECOVERY

256 INTERBASE 5

}

. . .

IMPORTANT Some windowing systems do not encourage or permit direct screen writes. Do not use
isc_print_sqlerror() when developing applications for these environments. Instead, use
isc_sql_interprete() and isc_interprete() to capture messages to a buffer for display.

Capturing SQL error messages
Instead of displaying SQL error messages, an application can capture the text of those
messages in a buffer by using isc_sql_interprete(). Capture messages in a buffer when
applications:

g Run under windowing systems that do not permit direct writing to the screen.

g Store a record of all error messages in a log file.

g Manipulate or format error messages for display.

Given SQLCODE, a pointer to a storage buffer, and the maximum size of the buffer in bytes,
isc_sql_interprete() builds an SQL error message string, and puts the formatted string in the
buffer where it can be manipulated. A buffer size of 256 bytes is large enough to hold any
SQL error message.

For example, the following code stores an SQL error message in err_buf, then writes
err_buf to a log file:

. . .

char err_buf[256]; /* error message buffer for isc_sql_interprete() */

FILE *efile=NULL; /* code fragment assumes pointer to an open file */

. . .

EXEC SQL

SELECT CITY INTO :city FROM STATES

WHERE STATE = :stat:statind;

if (SQLCODE)

{

isc_sql_interprete(SQLCODE, err_buf, sizeof(err_buf));

if(efile==NULL) efile=fopen("errors", "w");

fprintf(efile, "%s\n", err_buf); /* write buffer to log file */

EXEC SQL

ROLLBACK; /* undo database changes */

EXEC SQL

DISCONNECT ALL; /* close open databases */

exit(1); /* exit with error flag set */

ADDITIONAL INTERBASE ERROR HANDLING

PROGRAMMER’S GUIDE 257

}

. . .

isc_sql_interprete() retrieves and formats a single message corresponding to a given
SQLCODE. When SQLCODE is less than –1, more specific InterBase error information is
available. It, too, can be retrieved, formatted, and stored in a buffer by using the
isc_interprete() function.

Capturing InterBase error messages
The text of InterBase error messages can be captured in a buffer by using isc_interprete().
Capture messages in a buffer when applications:

g Run under windowing systems that do not permit direct writing to the screen.

g Store a record of all error messages in a log file.

g Manipulate or format error messages for display.

IMPORTANT isc_interprete() should not be used unless SQLCODE is less than –1 because the contents of
isc_status may not contain reliable error information in these cases.

Given both the location of a storage buffer previously allocated by the program, and a
pointer to the start of the status array, isc_interprete() builds an error message string from
the information in the status array, and puts the formatted string in the buffer where it
can be manipulated. It also advances the status array pointer to the start of the next
cluster of available error information.

isc_interprete() retrieves and formats a single error message each time it is called. When an
error occurs in an InterBase program, however, the status array may contain more than
one error message. To retrieve all relevant error messages, error-handling routines should
repeatedly call isc_interprete() until it returns no more messages.

Because isc_interprete() modifies the pointer to the status array that it receives, do not pass
isc_status directly to it. Instead, declare a pointer to isc_status, then pass the pointer to
isc_interprete().

The following C code fragment illustrates how InterBase error messages can be captured
to a log file, and demonstrates the proper declaration of a string buffer and pointer to
isc_status. It assumes the log file is properly declared and opened before control is passed
to the error-handling routine. It also demonstrates how to set the pointer to the start of
the status array in the error-handling routine before isc_interprete() is first called.

. . .

#include "ibase.h";

. . .

CHAPTER 13 ERROR HANDLING AND RECOVERY

258 INTERBASE 5

main()

{

char msg[512];

ISC_STATUS *vector;

FILE *efile; /* code fragment assumes pointer to an open file */

. . .

if (SQLCODE < –1)

ErrorExit();

}

. . .

ErrorExit()

{

vector = isc_status; /* (re)set to start of status vector */

isc_interprete(msg, &vector); /* retrieve first mesage */

fprintf(efile, "%s\n", msg); /* write buffer to log file */

msg[0] = '-'; /* append leading hyphen to secondary messages */

while (isc_interprete(msg + 1, &vector)) /* more?*/

fprintf(efile, "%s\n", msg); /* if so, write it to log */

fclose(efile); /* close log prior to quitting program */

EXEC SQL

ROLLBACK;

EXEC SQL

DISCONNECT ALL;

exit(1); /* quit program with an 'abnormal termination' code */

}

. . .

In this example, the error-handling routine performs the following tasks:

g Sets the error array pointer to the starting address of the status vector, isc_status.

g Calls isc_interprete() a single time to retrieve the first error message from the status vector.

g Writes the first message to a log file.

g Makes repeated calls to isc_interprete() within a WHILE loop to retrieve any additional
messages. If additional messages are retrieved, they are also written to the log file.

g Rolls back the transaction.

g Closes the database and releases system resources.

ADDITIONAL INTERBASE ERROR HANDLING

PROGRAMMER’S GUIDE 259

Handling InterBase error codes
Whenever SQLCODE is less than –1, the error status array, isc_status, may contain detailed
error information specific to InterBase, including error codes, numbers that uniquely
identify each error. With care, error-handling routines can trap for and respond to specific
codes.

To trap and handle InterBase error codes in an error-handling routine, follow these steps:

1. Check SQLCODE to be sure it is less than –1.

2. Check that the first element of the status array is set to isc_arg_gds,
indicating that an InterBase error code is available. In C programs, the first
element of the status array is isc_status[0].

Do not attempt to handle errors reported in the status array if the first status array
element contains a value other than 1.

3. If SQLCODE is less than –1 and the first element in isc_status is set to
isc_arg_gds, use the actual InterBase error code in the second element of
isc_status to branch to an appropriate routine for that error.

TIP InterBase error codes are mapped to mnemonic definitions (for example, isc_arg_gds)
that can be used in code to make it easier to read, understand, and maintain. Definitions
for all InterBase error codes can be found in the ibase.h file.

The following C code fragment illustrates an error-handling routine that:

g Displays error messages with isc_print_sqlerror().

g Illustrates how to parse for and handle six specific InterBase errors which might be
corrected upon roll back, data entry, and retry.

g Uses mnemonic definitions for InterBase error numbers.

. . .

int c, jval, retry_flag = 0;

jmp_buf jumper;

. . .

main()

{

. . .

jval = setjmp(jumper);

if (retry_flag)

ROLLBACK;

. . .

}

CHAPTER 13 ERROR HANDLING AND RECOVERY

260 INTERBASE 5

int ErrorHandler(void)

{

retry_flag = 0; /* reset to 0, no retry */

isc_print_sqlerror(SQLCODE, isc_status); /* display errors */

if (SQLCODE < –1)

{

if (isc_status[0] == isc_arg_gds)

{

switch (isc_status[1])

{

case isc_convert_error:

case isc_deadlock:

case isc_integ_fail:

case isc_lock_conflict:

case isc_no_dup:

case isc_not_valid:

printf("\n Do you want to try again? (Y/N)");

c = getchar();

if (c == 'Y' || c == 'y')

{

retry_flag = 1; /* set flag to retry */

longjmp(jumper, 1);

}

break;

case isc_end_arg: /* there really isn’t an error */

retry_flag = 1; /* set flag to retry */

longjump(jumper, 1);

break;

default: /* we can’t handle everything, so abort */

break;

}

}

}

EXEC SQL

ROLLBACK;

EXEC SQL

DISCONNECT ALL;

exit(1);

}

PROGRAMMER’S GUIDE 261

CHAPTER

14
Chapter 14Using Dynamic SQL

This chapter describes how to write dynamic SQL applications, applications that elicit or
build SQL statements for execution at run time.

In many database applications, the programmer specifies exactly which SQL statements
to execute against a particular database. When the application is compiled, these
statements become fixed. In some database applications, it is useful to build and execute
statements from text string fragments or from strings elicited from the user at run time.
These applications require the capability to create and execute SQL statements
dynamically at run time. Dynamic SQL (DSQL) provides this capability. For example, the
InterBase isql utility is a DSQL application.

Overview of the DSQL programming process
Building and executing DSQL statements involves the following general steps:

g Embedding SQL statements that support DSQL processing in an application.

g Using host-language facilities, such as datatypes and macros, to provide input and output
areas for passing statements and parameters at run time.

g Programming methods that use these statements and facilities to process SQL statements
at run time.

These steps are described in detail throughout this chapter.

CHAPTER 14 USING DYNAMIC SQL

262 INTERBASE 5

DSQL limitations
Although DSQL offers many advantages, it also has the following limitations:

g Access to one database at a time.

g Dynamic transaction processing is not permitted; all named transactions must be
declared at compile time.

g Dynamic access to Blob and array data is not supported; Blob and array data can be
accessed, but only through standard, statically processed SQL statements, or through
low-level API calls.

g Database creation is restricted to CREATE DATABASE statements executed within the context
of EXECUTE IMMEDIATE.

For more information about handling transactions in DSQL applications, see “Handling
transactions” on page 263. For more information about working with Blob data in
DSQL, see “Processing Blob data” on page 265. For more information about handling
array data in DSQL, see “Processing array data” on page 265. For more information
about dynamic creation of databases, see “Creating a database” on page 264.

Accessing databases
Using standard SQL syntax, a DSQL application can only use one database handle per
source file module, and can, therefore, only be connected to a single database at a time.
Database handles must be declared and initialized when an application is preprocessed
with gpre. For example, the following code creates a single handle, db1, and initializes it
to zero:

#include "ibase.h"

isc_db_handle db1;

. . .

db1 = 0L;

After a database handle is declared and initialized, it can be assigned dynamically to a
database at run time as follows:

char dbname[129];

. . .

prompt_user("Name of database to open: ");

gets(dbname);

EXEC SQL

SET DATABASE db1 = :dbname;

DSQL LIMITATIONS

PROGRAMMER’S GUIDE 263

EXEC SQL

CONNECT db1;

. . .

The database accessed by DSQL statements is always the last database handle mentioned
in a SET DATABASE command. A database handle can be used to connect to different
databases as long as a previously connected database is first disconnected with
DISCONNECT. DISCONNECT automatically sets database handles to NULL. The following
statements disconnect from a database, zero the database handle, and connect to a new
database:

EXEC SQL

DISCONNECT db1;

EXEC SQL

SET DATABASE db1 = "employee.gdb";

EXEC SQL

CONNECT db1;

To access more than one database using DSQL, create a separate source file module for
each database, and use low-level API calls to attach to the databases and access data. For
more information about accessing databases with API calls, see the API Guide. For more
information about SQL database statements, see Chapter 3, “Working with Databases.”

Handling transactions
InterBase requires that all transaction names be declared when an application is
preprocessed with gpre. Once fixed at precompile time, transaction handles cannot be
changed at run time, nor can new handles be declared dynamically at run time.

SQL statements such as PREPARE, DESCRIBE, EXECUTE, and EXECUTE IMMEDIATE, can be
coded at precompile time to include an optional TRANSACTION clause specifying which
transaction controls statement execution. The following code declares, initializes, and
uses a transaction handle in a statement that processes a run-time DSQL statement:

#include "ibase.h"

isc_tr_handle t1;

. . .

t1 = 0L;

EXEC SQL

SET TRANSACTION NAME t1;

EXEC SQL

PREPARE TRANSACTION t1 Q FROM :sql_buf;

CHAPTER 14 USING DYNAMIC SQL

264 INTERBASE 5

DSQL statements that are processed with PREPARE, DESCRIBE, EXECUTE, and EXECUTE
IMMEDIATE cannot use a TRANSACTION clause, even if it is permitted in standard,
embedded SQL.

The SET TRANSACTION statement cannot be prepared, but it can be processed with
EXECUTE IMMEDIATE if:

1. Previous transactions are first committed or rolled back.

2. The transaction handle is set to NULL.

For example, the following statements commit the previous default transaction, then start
a new one with EXECUTE IMMEDIATE:

EXEC SQL

COMMIT;

/* set default transaction name to NULL */

gds__trans = NULL;

EXEC SQL

EXECUTE IMMEDIATE "SET TRANSACTION READ ONLY";

Creating a database
To create a new database in a DSQL application:

1. Disconnect from any currently attached databases. Disconnecting from a
database automatically sets its database handle to NULL.

2. Build the CREATE DATABASE statement to process.

3. Execute the statement with EXECUTE IMMEDIATE.

For example, the following statements disconnect from any currently connected
databases, and create a new database. Any existing database handles are set to NULL, so
that they can be used to connect to the new database in future DSQL statements.

char *str = "CREATE DATABASE \"new_emp.gdb\"";

. . .

EXEC SQL

DISCONNECT ALL;

EXEC SQL

EXECUTE IMMEDIATE :str;

WRITING A DSQL APPLICATION

PROGRAMMER’S GUIDE 265

Processing Blob data
DSQL does not directly support Blob processing. Blob cursors are not supported in DSQL.
DSQL applications can use API calls to process Blob data. For more information about
Blob API calls, see the API Guide.

Processing array data
DSQL does not directly support array processing. DSQL applications can use API calls to
process array data. For more information about array API calls, see the API Guide.

Writing a DSQL application
Write a DSQL application when any of the following are not known until run time:

g The text of the SQL statement

g The number of host variables

g The datatypes of host variables

g References to database objects

Writing a DSQL application is usually more complex than programming with regular SQL
because for most DSQL operations, the application needs explicitly to allocate and
process an extended SQL descriptor area (XSQLDA) data structure to pass data to and from
the database.

To use DSQL to process an SQL statement, follow these basic steps:

1. Determine if DSQL can process the SQL statement.

2. Represent the SQL statement as a character string in the application.

3. If necessary, allocate one or more XSQLDAs for input parameters and return
values.

4. Use an appropriate DSQL programming method to process the SQL
statement.

CHAPTER 14 USING DYNAMIC SQL

266 INTERBASE 5

SQL statements that DSQL can process
DSQL can process most but not all SQL statements. The following table lists SQL
statement that are available to DSQL:

The following ESQL statements cannot be processed by DSQL: CLOSE, DECLARE, CURSOR,
DESCRIBE, EXECUTE, EXECUTE IMMEDIATE, FETCH, OPEN, PREPARE.

The following ISQL commands cannot be processed by DSQL: BLOBDUMP, EDIT, EXIT, HELP,
INPUT, OUTPUT, QUIT, SET, SET AUTODDL, SET BLOBDISPLAY, SET COUNT, SET ECHO, SET LIST,
SET NAMES, SET PLAN, SET STATS, SET TERM, SET TIME, SHELL, SHOW CHECK, SHOW DATABASE,
SHOW DOMAINS, SHOW EXCEPTIONS, SHOW FILTERS, SHOW FUNCTIONS, SHOW GENERATORS,
SHOW GRANT, SHOW INDEX, SHOW PROCEDURES, SHOW SYSTEM, SHOW TABLES, SHOW
TRIGGERS, SHOW VERSION, SHOW VIEWS.

ALTER DATABASE

ALTER DOMAIN

ALTER EXCEPTION

ALTER INDEX

ALTER PROCEDURE

ALTER TABLE

ALTER TRIGGER

COMMIT

CONNECT

CREATE DATABASE

CREATE DOMAIN

CREATE EXCEPTION

CREATE GENERATOR

CREATE INDEX

CREATE PROCEDURE

CREATE ROLE

CREATE SHADOW

CREATE TABLE

CREATE TRIGGER

CREATE VIEW

DECLARE EXTERNAL FUNCTION

DECLARE FILTER

DELETE

DROP DATABASE

DROP DOMAIN

DROP EXCEPTION

DROP EXTERNAL FUNCTION

DROP FILTER

DROP INDEX

DROP PROCEDURE

DROP ROLE

DROP SHADOW

DROP TABLE

DROP TRIGGER

DROP VIEW

EXECUTE PROCEDURE

GRANT

INSERT

INSERT CURSOR (BLOB)

REVOKE

ROLLBACK

SELECT

SET GENERATOR

UPDATE

WRITING A DSQL APPLICATION

PROGRAMMER’S GUIDE 267

SQL character strings
Within a DSQL application, an SQL statement can come from different sources. It can
come directly from a user who enters a statement at a prompt, as does isql. Or it can be
generated by the application in response to user interaction. Whatever the source of the
SQL statement it must be represented as an SQL statement string, a character string that
is passed to DSQL for processing.

Because SQL statement strings are C character strings that are processed directly by
DSQL, they cannot begin with the EXEC SQL prefix or end with a semicolon (;). The
semicolon is, of course, the appropriate terminator for the C string declaration itself. For
example, the following host-language variable declaration is a valid SQL statement string:

char *str = "DELETE FROM CUSTOMER WHERE CUST_NO = 256";

Value parameters in statement strings
SQL statement strings often include value parameters, expressions that evaluate to a
single numeric or character value. Parameters can be used anywhere in statement strings
where SQL expects a value that is not the name of a database object.

A value parameter in a statement string can be passed as a constant, or passed as a
placeholder at run time. For example, the following statement string passes 256 as a
constant:

char *str = "DELETE FROM CUSTOMER WHERE CUST_NO = 256";

It is also possible to build strings at run time from a combination of constants. This
method is useful for statements where the variable is not a true constant, or it is a table
or column name, and where the statement is executed only once in the application.

To pass a parameter as a placeholder, the value is passed as a question mark (?)
embedded within the statement string:

char *str = "DELETE FROM CUSTOMER WHERE CUST_NO = ?";

When DSQL processes a statement containing a placeholder, it replaces the question
mark with a value supplied in the XSQLDA. Use placeholders in statements that are
prepared once, but executed many times with different parameter values.

Replaceable value parameters are often used to supply values in WHERE clause
comparisons and in the UPDATE statement SET clause.

CHAPTER 14 USING DYNAMIC SQL

268 INTERBASE 5

Understanding the XSQLDA
All DSQL applications must declare one or more extended SQL descriptor areas
(XSQLDAs). The XSQLDA structure definition can be found in the ibase.h header file in the
InterBase include directory. Applications declare instances of the XSQLDA for use.

The XSQLDA is a host-language data structure that DSQL uses to transport data to or from
a database when processing an SQL statement string. There are two types of XSQLDAs:
input descriptors and output descriptors. Both input and output descriptors are
implemented using the XSQLDA structure.

One field in the XSQLDA, the XSQLVAR, is especially important, because one XSQLVAR must
be defined for each input parameter or column returned. Like the XSQLDA, the XSQLVAR is
a structure defined in ibase.h in the InterBase include directory.

Applications do not declare instances of the XSQLVAR ahead of time, but must, instead,
dynamically allocate storage for the proper number of XSQLVAR structures required for
each DSQL statement before it is executed, then deallocate it, as appropriate, after
statement execution.

The following figure illustrates the relationship between the XSQLDA and the XSQLVAR:

UNDERSTANDING THE XSQLDA

PROGRAMMER’S GUIDE 269

FIGURE 14.1 XSQLDA and XSQLVAR relationship

An input XSQLDA consists of a single XSQLDA structure, and one XSQLVAR structure for
each input parameter. An output XSQLDA also consists of one XSQLDA structure and one
XSQLVAR structure for each data item returned by the statement. An XSQLDA and its
associated XSQLVAR structures are allocated as a single block of contiguous memory.

Single instance of XSQLDA

short version

char sqldaid[8]

ISC_LONG sqldabc

short sqln

short sqld

XSQLVAR sqlvar[n]

Array of n instances of XSQLVAR

1st instance nth instance

short sqltype short sqltype

short sqlscale short sqlscale

short sqlsubtype short sqlsubtype

short sqllen short sqllen

char *sqldata char *sqldata

short *sqlind short *sqlind

short sqlname_length short sqlname_length

char sqlname[32] char sqlname[32]

short relname_length short relname_length

char relname[32] char relname[32]

short ownname_length short ownname_length

char ownname[32] char ownname[32]

short aliasname_length short aliasname_length

char aliasname[32] char aliasname[32]

CHAPTER 14 USING DYNAMIC SQL

270 INTERBASE 5

The PREPARE and DESCRIBE statements can be used to determine the proper number of
XSQLVAR structures to allocate, and the XSQLDA_LENGTH macro can be used to allocate the
proper amount of space. For more information about the XSQLDA_LENGTH macro, see
“Using the XSQLDA_LENGTH macro” on page 273.

XSQLDA field descriptions
The following table describes the fields that comprise the XSQLDA structure:

Field definition Description

short version Indicates the version of the XSQLDA structure. Set by an application. The current
version is defined in ibase.h as SQLDA_VERSION1.

char sqldaid[8] Reserved for future use.

ISC_LONG
sqldabc

Reserved for future use.

short sqln Indicates the number of elements in the sqlvar array. Set by the application.
Whenever the application allocates storage for a descriptor, it should set this field.

short sqld Indicates the number of parameters (for an input XSQLDA), or the number of
select-list items (for an output XSQLDA). Set by InterBase during a DESCRIBE or
PREPARE.

For an input descriptor, an sqld of 0 indicates that the SQL statement has no
parameters. For an output descriptor, an sqld of 0 indicates that the SQL statement is
not a SELECT statement.

XSQLVAR sqlvar The array of XSQLVAR structures. The number of elements in the array is specified in
the sqln field.

TABLE 14.1 XSQLDA field descriptions

UNDERSTANDING THE XSQLDA

PROGRAMMER’S GUIDE 271

XSQLVAR field descriptions
The following table describes the fields that comprise the XSQLVAR structure:

Field definition Description

short sqltype Indicates the SQL datatype of parameters or select-list items. Set by InterBase
during PREPARE or DESCRIBE.

short sqlscale Provides scale, specified as a negative number, for exact numeric datatypes
(DECIMAL, NUMERIC). Set by InterBase during PREPARE or DESCRIBE.

short sqlsubtype Specifies the subtype for Blob data. Set by InterBase during PREPARE or
DESCRIBE.

short sqllen Indicates the maximum size, in bytes, of data in the sqldata field. Set by
InterBase during PREPARE or DESCRIBE.

char *sqldata For input descriptors, specifies either the address of a select-list item or a
parameter. Set by the application.

For output descriptors, contains a value for a select-list item. Set by InterBase.

short *sqlind On input, specifies the address of an indicator variable. Set by an application.

On output, specifies the address of column indicator value for a select-list
item following a FETCH. A value of 0 indicates that the column is not NULL; a
value of –1 indicates the column is NULL. Set by InterBase.

short sqlname_length Specifies the length, in bytes, of the data in field, sqlname. Set by InterBase
during DESCRIBE OUTPUT.

char sqlname[32] Contains the name of the column. Not null (\0) terminated. Set by InterBase
during DESCRIBE OUTPUT.

short relname_length Specifies the length, in bytes, of the data in field, relname. Set by InterBase
during DESCRIBE OUTPUT.

TABLE 14.2 XSQLVAR field descriptions

CHAPTER 14 USING DYNAMIC SQL

272 INTERBASE 5

Input descriptors
Input descriptors process SQL statement strings that contain parameters. Before an
application can execute a statement with parameters, it must supply values for them. The
application indicates the number of parameters passed in the XSQLDA sqld field, then
describes each parameter in a separate XSQLVAR structure. For example, the following
statement string contains two parameters, so an application must set sqld to 2, and
describe each parameter:

char *str = "UPDATE DEPARTMENT SET BUDGET = ? WHERE LOCATION = ?";

When the statement is executed, the first XSQLVAR supplies information about the BUDGET
value, and the second XSQLVAR supplies the LOCATION value.

For more information about using input descriptors, see “DSQL programming
methods” on page 279.

Output descriptors
Output descriptors return values from an executed query to an application. The sqld field
of the XSQLDA indicates how many values were returned. Each value is stored in a
separate XSQLVAR structure. The XSQLDA sqlvar field points to the first of these XSQLVAR
structures. The following statement string requires an output descriptor:

char *str = "SELECT * FROM CUSTOMER WHERE CUST_NO > 100";

char relname[32] Contains the name of the table. Not null (\0) terminated. Set by InterBase
during DESCRIBE OUTPUT.

short
ownname_length

Specifies the length, in bytes, of the data in field, ownname. Set by InterBase
during DESCRIBE OUTPUT.

char ownname[32] Contains the owner name of the table. Not null (\0) terminated. Set by
InterBase during DESCRIBE OUTPUT.

short
aliasname_length

Specifies the length, in bytes, of the data in field, aliasname. Set by InterBase
during DESCRIBE OUTPUT.

char aliasname[32] Contains the alias name of the column. If no alias exists, contains the column
name. Not null (\0) terminated. Set by InterBase during DESCRIBE OUTPUT.

Field definition Description

TABLE 14.2 XSQLVAR field descriptions (continued)

UNDERSTANDING THE XSQLDA

PROGRAMMER’S GUIDE 273

For information about retrieving information from an output descriptor, see “DSQL
programming methods” on page 279.

Using the XSQLDA_LENGTH macro
The ibase.h header file defines a macro, XSQLDA_LENGTH, to calculate the number of bytes
that must be allocated for an input or output XSQLDA. XSQLDA_LENGTH is defined as
follows:

#define XSQLDA_LENGTH (n) (sizeof (XSQLDA) + (n - 1) * sizeof(XSQLVAR))

n is the number of parameters in a statement string, or the number of select-list items
returned from a query. For example, the following C statement uses the XSQLDA_LENGTH
macro to specify how much memory to allocate for an XSQLDA with 5 parameters or
return items:

XSQLDA *my_xsqlda;

. . .

my_xsqlda = (XSQLDA *) malloc(XSQLDA_LENGTH(5));

. . .

For more information about using the XSQLDA_LENGTH macro, see “DSQL programming
methods” on page 279.

CHAPTER 14 USING DYNAMIC SQL

274 INTERBASE 5

SQL datatype macro constants
InterBase defines a set of macro constants to represent SQL datatypes and NULL status
information in an XSQLVAR. An application should use these macro constants to specify
the datatype of parameters and to determine the datatypes of select-list items in an SQL
statement. The following table lists each SQL datatype, its corresponding macro constant
expression, C datatype or InterBase typedef, and whether or not the sqlind field is used
to indicate a parameter or variable that contains NULL or unknown data:

SQL datatype Macro expression C datatype or typedef
sqlind
used?

Array SQL_ARRAY ISC_QUAD No

Array SQL_ARRAY + 1 ISC_QUAD Yes

Blob SQL_BLOB ISC_QUAD No

Blob SQL_BLOB + 1 ISC_QUAD Yes

CHAR SQL_TEXT char[] No

CHAR SQL_TEXT + 1 char[] Yes

DATE SQL_DATE ISC_QUAD No

DATE SQL_DATE + 1 ISC_QUAD Yes

DECIMAL SQL_SHORT, SQL_LONG, or
QL_DOUBLE

int, long, or double No

DECIMAL SQL_SHORT + 1, SQL_LONG + 1,
or SQL_DOUBLE + 1

int, long, or double Yes

DOUBLE PRECISON SQL_DOUBLE double No

DOUBLE PRECISION SQL_DOUBLE + 1 double Yes

INTEGER SQL_LONG long No

INTEGER SQL_LONG + 1 long Yes

FLOAT SQL_FLOAT float No

FLOAT SQL_FLOAT + 1 float Yes

TABLE 14.3 SQL datatypes, macro expressions, and C datatypes

UNDERSTANDING THE XSQLDA

PROGRAMMER’S GUIDE 275

Note DECIMAL and NUMERIC datatypes are stored internally as SMALLINT, INTEGER, or
DOUBLE PRECISION datatypes. To specify the correct macro expression to provide for a
DECIMAL or NUMERIC column, use isql to examine the column definition in the table to see
how InterBase is storing column data, then choose a corresponding macro expression.

The datatype information for a parameter or select-list item is contained in the sqltype
field of the XSQLVAR structure. The value contained in the sqltype field provides two pieces
of information:

g The datatype of the parameter or select-list item.

g Whether sqlind is used to indicate NULL values. If sqlind is used, its value specifies
whether the parameter or select-list item is NULL (–1), or not NULL (0).

For example, if the sqltype field equals SQL_TEXT, the parameter or select-list item is a
CHAR that does not use sqlind to check for a NULL value (because, in theory, NULL values
are not allowed for it). If sqltype equals SQL_TEXT + 1, then sqlind can be checked to see
if the parameter or select-list item is NULL.

TIP The C language expression, sqltype & 1, provides a useful test of whether a parameter
or select-list item can contain a NULL. The expression evaluates to 0 if the parameter or
select-list item cannot contain a NULL, and 1 if the parameter or select-list item can
contain a NULL. The following code fragment demonstrates how to use the expression:

if (sqltype & 1 == 0)

NUMERIC SQL_SHORT, SQL_LONG,
or SQL_DOUBLE

int, long, or double No

NUMERIC SQL_SHORT + 1, SQL_LONG + 1,
or SQL_DOUBLE + 1

int, long, or double Yes

SMALLINT SQL_SHORT short No

SMALLINT SQL_SHORT + 1 short Yes

VARCHAR SQL_VARYING First 2 bytes: short containing
the length of the character string.
Remaining bytes: char[]

No

VARCHAR SQL_VARYING + 1 First 2 bytes: short containing
the length of the character string.
Remaining bytes: char[]

Yes

SQL datatype Macro expression C datatype or typedef
sqlind
used?

TABLE 14.3 SQL datatypes, macro expressions, and C datatypes (continued)

CHAPTER 14 USING DYNAMIC SQL

276 INTERBASE 5

{

 /* parameter or select-list item that CANNOT contain a NULL */

}

else

{

 /* parameter or select-list item CAN contain a NULL */

}

By default, both PREPARE INTO and DESCRIBE return a macro expression of type + 1, so
the sqlind should always be examined for NULL values with these statements.

Handling varying string datatypes
VARCHAR, CHARACTER VARYING, and NCHAR VARYING datatypes require careful handling in
DSQL. The first two bytes of these datatypes contain string length information, while the
remainder of the data contains the actual bytes of string data to process.

To avoid having to write code to extract and process variable-length strings in an
application, it is possible to force these datatypes to fixed length using SQL macro
expressions. For more information about forcing variable-length data to fixed length for
processing, see “Coercing datatypes” on page 277.

Applications can, instead, detect and process variable-length data directly. To do so, they
must extract the first two bytes from the string to determine the byte-length of the string
itself, then read the string, byte-by-byte, into a null-terminated buffer.

NUMERIC and DECIMAL datatypes
DECIMAL and NUMERIC datatypes are stored internally as SMALLINT, INTEGER, or DOUBLE
PRECISION datatypes, depending on the precision and scale defined for a column
definition that uses these types. To determine how a DECIMAL or NUMERIC value is actually
stored in the database, use isql to examine the column definition in the table. If NUMERIC
is reported, then data is actually being stored as DOUBLE PRECISION.

When a DECIMAL or NUMERIC value is stored as a SMALLINT or INTEGER, the value is stored
as a whole number. During retrieval in DSQL, the sqlscale field of the XSQLVAR is set to a
negative number that indicates the factor of ten by which the whole number (returned in
sqldata), must be divided in order to produce the correct NUMERIC or DECIMAL value with
its fractional part. If sqlcale is –1, then the number must be divided by 10, if it is –2, then
the number must be divided by 100, –3 by 1,000, and so forth.

UNDERSTANDING THE XSQLDA

PROGRAMMER’S GUIDE 277

Coercing datatypes
Sometimes when processing DSQL input parameters and select-list items, it is desirable
or necessary to translate one datatype to another. This process is referred to as datatype
coercion. For example, datatype coercion is often used when parameters or select-list
items are of type VARCHAR. The first two bytes of VARCHAR data contain string length
information, while the remainder of the data is the string to process. By coercing the data
from SQL_VARYING to SQL_TEXT, data processing can be simplified.

Coercion can only be from one compatible datatype to another. For example,
SQL_VARYING to SQL_TEXT, or SQL_SHORT to SQL_LONG.

4 Coercing character datatypes
To coerce SQL_VARYING datatypes to SQL_TEXT datatypes, change the sqltype field in the
parameter’s or select-list item’s XSQLVAR structure to the desired SQL macro datatype
constant. For example, the following statement assumes that var is a pointer to an
XSQLVAR structure, and that it contains an SQL_VARYING datatype to convert to SQL_TEXT:

var->sqltype = SQL_TEXT;

After coercing a character datatype, provide proper storage space for it. The XSQLVAR field,
sqllen, contains information about the size of the uncoerced data. Set the XSQLVAR sqldata
field to the address of the data.

4 Coercing numeric datatypes
To coerce one numeric datatype to another, change the sqltype field in the parameter’s or
select-list item’s XSQLVAR structure to the desired SQL macro datatype constant. For
example, the following statement assumes that var is a pointer to an XSQLVAR structure,
and that it contains an SQL_SHORT datatype to convert to SQL_LONG:

var->sqltype = SQL_LONG;

IMPORTANT Do not coerce a larger datatype to a smaller one. Data can be lost in such a translation.

4 Setting a NULL indicator
If a parameter or select-list item can contain a NULL value, the sqlind field is used to
indicate its NULL status. Appropriate storage space must be allocated for sqlind before
values can be stored there.

On insertion, set sqlind to –1 to indicate that NULL values are legal. Otherwise set sqlind
to 0.

CHAPTER 14 USING DYNAMIC SQL

278 INTERBASE 5

On selection, an sqlind of –1 indicates a field contains a NULL value. Other values indicate
a field contains non-NULL data.

Aligning numerical data
Ordinarily, when a variable with a numeric datatype is created, the compiler will ensure
that the variable is stored at a properly aligned address, but when numeric data is stored
in a dynamically allocated buffer space, such as can be pointed to by the XSQLDA and
XSQLVAR structures, the programmer must take precautions to ensure that the storage
space is properly aligned.

Certain platforms, in particular those with RISC processors, require that numeric data in
dynamically allocated storage structures be aligned properly in memory. Alignment is
dependent both on datatype and platform.

For example, a short integer on a Sun SPARCstation must be located at an address divisible
by 2, while a long on the same platform must be located at an address divisible by 4. In
most cases, a data item is properly aligned if the address of its starting byte is divisible by
the correct alignment number. Consult specific system and compiler documentation for
alignment requirements.

A useful rule of thumb is that the size of a datatype is always a valid alignment number
for the datatype. For a given type T, if size of (T) equals n, then addresses divisible by n
are correctly aligned for T. The following macro expression can be used to align data:

#define ALIGN(ptr, n) ((ptr + n - 1) & ~(n - 1))

where ptr is a pointer to char.

The following code illustrates how the ALIGN macro might be used:

char *buffer_pointer, *next_aligned;

next_aligned = ALIGN(buffer_pointer, sizeof(T));

DSQL PROGRAMMING METHODS

PROGRAMMER’S GUIDE 279

DSQL programming methods
There are four possible DSQL programming methods for handling an SQL statement
string. The best method for processing a string depends on the type of SQL statement in
the string, and whether or not it contains placeholders for parameters. The following
decision table explains how to determine the appropriate processing method for a given
string.

Method 1: Non-query statements without parameters
There are two ways to process an SQL statement string containing a non-query statement
without placeholder parameters:

g Use EXECUTE IMMEDIATE to prepare and execute the string a single time.

g Use PREPARE to parse the statement for execution and assign it a name, then use EXECUTE
to carry out the statement’s actions as many times as required in an application.

4 Using EXECUTE IMMEDIATE

1. To execute a statement string a single time, use EXECUTE IMMEDIATE:

2. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates an
SQL statement string:

char *str = "UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05";

3. Parse and execute the statement string using EXECUTE IMMEDIATE:

EXEC SQL

EXECUTE IMMEDIATE :str;

Is it a query? Does it have placeholders?
Processing method to
use

No No Method 1

No Yes Method 2

Yes No Method 3

Yes Yes Method 4

TABLE 14.4 SQL statement strings and recommended processing methods

CHAPTER 14 USING DYNAMIC SQL

280 INTERBASE 5

Note EXECUTE IMMEDIATE also accepts string literals. For example,

EXEC SQL

EXECUTE IMMEDIATE

"UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05";

4 Using PREPARE and EXECUTE

To execute a statement string several times, use PREPARE and EXECUTE:

1. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates an
SQL statement string:

char *str = "UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05";

2. Parse and name the statement string with PREPARE. The name is used in
subsequent calls to EXECUTE:

EXEC SQL

PREPARE SQL_STMT FROM :str;

SQL_STMT is the name assigned to the parsed statement string.

3. Execute the named statement string using EXECUTE. For example, the
following statement executes a statement string named SQL_STMT:

EXEC SQL

EXECUTE SQL_STMT;

Note PREPARE also accepts string literals. For example,

EXEC SQL

PREPARE SQL_STMT FROM

"UPDATE DEPARTMENT SET BUDGET = BUDGET * 1.05";

Once a statement string is prepared, it can be executed as many times as required in
an application.

Method 2: Non-query statements with parameters
There are two steps to processing an SQL statement string containing a non-query
statement with placeholder parameters:

1. Creating an input XSQLDA to process a statement string’s parameters.

2. Preparing and executing the statement string with its parameters.

DSQL PROGRAMMING METHODS

PROGRAMMER’S GUIDE 281

4 Creating the input XSQLDA

Placeholder parameters are replaced with actual data before a prepared SQL statement
string is executed. Because those parameters are unknown when the statement string is
created, an input XSQLDA must be created to supply parameter values at execute time. To
prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA needed to process parameters. For
example, the following declaration creates an XSQLDA called in_sqlda:

XSQLDA *in_sqlda;

2. Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:

XSQLVAR *var;

Declaring a pointer to the XSQLVAR structure is not necessary, but can simplify
referencing the structure in subsequent statements.

3. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
following statement allocates storage for in_sqlda:

in_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(10));

In this statement space for 10 XSQLVAR structures is allocated, allowing the XSQLDA
to accommodate up to 10 parameters.

4. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the sqln field
to indicate the number of XSQLVAR structures allocated:

in_sqlda_version = SQLDA_VERSION1;

in_sqlda->sqln = 10;

4 Preparing and executing a statement string with parameters
After an XSQLDA is created for holding a statement string’s parameters, the statement
string can be created and prepared. Local variables corresponding to the placeholder
parameters in the string must be assigned to their corresponding sqldata fields in the
XSQLVAR structures.

To prepare and execute a non-query statement string with parameters, follow these steps:

1. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates an
SQL statement string with placeholder parameters:

char *str = "UPDATE DEPARTMENT SET BUDGET = ?, LOCATION = ?";

This statement string contains two parameters: a value to be assigned to the BUDGET
field and a value to be assigned to the LOCATION field.

CHAPTER 14 USING DYNAMIC SQL

282 INTERBASE 5

2. Parse and name the statement string with PREPARE. The name is used in
subsequent calls to DESCRIBE and EXECUTE:

EXEC SQL

PREPARE SQL_STMT FROM :str;

SQL_STMT is the name assigned to the prepared statement string.

3. Use DESCRIBE INPUT to fill the input XSQLDA with information about the
parameters contained in the SQL statement:

EXEC SQL

DESCRIBE INPUT SQL_STMT USING SQL DESCRIPTOR in_sqlda;

4. Compare the value of the sqln field of the XSQLDA to the value of the sqld field
to make sure enough XSQLVARs are allocated to hold information about each
parameter. sqln should be at least as large as sqln. If not, free the storage
previously allocated to the input descriptor, reallocate storage to reflect the
number of parameters specified by sqld, reset sqln and version, then execute
DESCRIBE INPUT again:

if (in_sqlda->sqld > in_sqlda->sqln)

{

n = in_sqlda->sqld;

free(in_sqlda);

in_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(n));

in_sqlda->sqln = n;

in_sqlda->version = SQLDA_VERSION1;

EXEC SQL

DESCRIBE INPUT SQL_STMT USING SQL DESCRIPTOR in_sqlda;

}

5. Process each XSQLVAR parameter structure in the XSQLDA. Processing a
parameter structure involves up to four steps:

- Coercing a parameter’s datatype (optional).

- Allocating local storage for the data pointed to by the sqldata field of the XSQLVAR.
This step is only required if space for local variables is not allocated until run time.
The following example illustrates dynamic allocation of local variable storage space.

- Providing a value for the parameter consistent with its datatype (required).

- Providing a NULL value indicator for the parameter.

The following code example illustrates these steps, looping through each XSQLVAR
structure in the in_sqlda XSQLDA:

for (i=0, var = in_sqlda->sqlvar; i < in_sqlda->sqld; i++, var++)

{

DSQL PROGRAMMING METHODS

PROGRAMMER’S GUIDE 283

/* Process each XSQLVAR parameter structure here.

The parameter structure is pointed to by var.*/

dtype = (var->sqltype & ~1) /* drop NULL flag for now */

switch(dtype)

{

case SQL_VARYING: /* coerce to SQL_TEXT */

var->sqltype = SQL_TEXT;

/* Allocate local variable storage. */

var->sqldata = (char *)malloc(sizeof(char)*var->sqllen);

. . .

break;

case SQL_TEXT:

var->sqldata = (char *)malloc(sizeof(char)*var->sqllen);

/* Provide a value for the parameter. */

. . .

break;

case SQL_LONG:

var->sqldata = (char *)malloc(sizeof(long));

/* Provide a value for the parameter. */

*(long *)(var->sqldata) = 17;

break;

. . .

} /* End of switch statement. */

if (sqltype & 1)

{

/* Allocate variable to hold NULL status. */

var->sqlind = (short *)malloc(sizeof(short));

}

} /* End of for loop. */

For more information about datatype coercion and NULL indicators, see “Coercing
datatypes” on page 277.

6. Execute the named statement string with EXECUTE. Reference the parameters
in the input XSQLDA with the USING SQL DESCRIPTOR clause. For example, the
following statement executes a statement string named SQL_STMT:

EXEC SQL

EXECUTE SQL_STMT USING SQL DESCRIPTOR in_sqlda;

CHAPTER 14 USING DYNAMIC SQL

284 INTERBASE 5

4 Re-executing the statement string
Once a non-query statement string with parameters is prepared, it can be executed as
often as required in an application. Before each subsequent execution, the input XSQLDA
can be supplied with new parameter and NULL indicator data.

To supply new parameter and NULL indicator data for a prepared statement, repeat steps
3–5 of “Preparing and Executing a Statement String with Parameters,” in this chapter.

Method 3: Query statements without parameters
There are three steps to processing an SQL query statement string without parameters:

1. Preparing an output XSQLDA to process the select-list items returned when the
query is executed.

2. Preparing the statement string.

3. Using a cursor to execute the statement and retrieve select-list items from the
output XSQLDA.

4 Preparing the output XSQLDA

Most queries return one or more rows of data, referred to as a select-list. Because the
number and kind of items returned are unknown when a statement string is created, an
output XSQLDA must be created to store select-list items that are returned at run time. To
prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA needed to store the column data for
each row that will be fetched. For example, the following declaration creates
an XSQLDA called out_sqlda:

XSQLDA *out_sqlda;

2. Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:

XSQLVAR *var;

Declaring a pointer to the XSQLVAR structure is not necessary, but can simplify
referencing the structure in subsequent statements.

3. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
following statement allocates storage for out_sqlda:

out_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(10));

DSQL PROGRAMMING METHODS

PROGRAMMER’S GUIDE 285

Space for 10 XSQLVAR structures is allocated in this statement, enabling the XSQLDA to
accommodate up to 10 select-list items.

4. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the sqln field
of the XSQLDA to indicate the number of XSQLVAR structures allocated:

out_sqlda->version = SQLDA_VERSION1;

out_sqlda->sqln = 10;

4 Preparing a query statement string
After an XSQLDA is created for holding the items returned by a query statement string, the
statement string can be created, prepared, and described. When a statement string is
executed, InterBase creates the select-list of selected rows.

To prepare a query statement string, follow these steps:

1. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates an
SQL statement string that performs a query:

char *str = "SELECT * FROM CUSTOMER";

The statement appears to have only one select-list item (*). The asterisk is a wildcard
symbol that stands for all of the columns in the table, so the actual number of items
returned equals the number of columns in the table.

2. Parse and name the statement string with PREPARE. The name is used in
subsequent calls to statements such as DESCRIBE and EXECUTE:

EXEC SQL

PREPARE SQL_STMT FROM :str;

SQL_STMT is the name assigned to the prepared statement string.

3. Use DESCRIBE OUTPUT to fill the output XSQLDA with information about the
select-list items returned by the statement:

EXEC SQL

DESCRIBE OUTPUT SQL_STMT INTO SQL DESCRIPTOR out_sqlda;

4. Compare the sqln field of the XSQLDA to the sqld field to determine if the
output descriptor can accommodate the number of select-list items specified
in the statement. If not, free the storage previously allocated to the output
descriptor, reallocate storage to reflect the number of select-list items
specified by sqld, reset sqln and version, then execute DESCRIBE OUTPUT
again:

if (out_sqlda->sqld > out_sqlda->sqln)

{

CHAPTER 14 USING DYNAMIC SQL

286 INTERBASE 5

n = out_sqlda->sqld;

free(out_sqlda);

out_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(n));

out_sqlda->sqln = n;

out_sqlda->version = SQLDA_VERSION1;

EXEC SQL

DESCRIBE OUTPUT SQL_STMT INTO SQL DESCRIPTOR out_sqlda;

}

5. Set up an XSQLVAR structure for each item returned. Setting up an item
structure involves the following steps:

- Coercing an item’s datatype (optional).

- Allocating local storage for the data pointed to by the sqldata field of the XSQLVAR.
This step is only required if space for local variables is not allocated until run time.
The following example illustrates dynamic allocation of local variable storage space.

- Providing a NULL value indicator for the parameter.

The following code example illustrates these steps, looping through each XSQLVAR
structure in the out_sqlda XSQLDA:

for (i=0, var = out_sqlda->sqlvar; i < out_sqlda->sqld; i++, var++)

{

dtype = (var->sqltype & ~1) /* drop flag bit for now */

switch (dtype)

{

case SQL_VARYING:

var->sqltype = SQL_TEXT;

var->sqldata = (char *)malloc(sizeof(char)*var->sqllen +

2);

break;

case SQL_TEXT:

var->sqldata = (char *)malloc(sizeof(char)*var->sqllen);

break;

case SQL_LONG:

var->sqldata = (char *)malloc(sizeof(long));

break;

. . .

/* process remaining types */

} /* end of switch statements */

if (sqltype & 1)

{

/* allocate variable to hold NULL status */

DSQL PROGRAMMING METHODS

PROGRAMMER’S GUIDE 287

var->sqlind = (short *)malloc(sizeof(short));

}

} /* end of for loop */

For more information about datatype coercion and NULL indicators, see “Coercing
datatypes” on page 277.

4 Executing a statement string within the context of a cursor
To retrieve select-list items from a prepared statement string, the string must be executed
within the context of a cursor. All cursor declarations in InterBase are fixed, embedded
statements inserted into the application before it is compiled. DSQL application
developers must anticipate the need for cursors when writing the application and declare
them ahead of time.

A looping construct is used to fetch a single row at a time from the cursor and to process
each select-list item (column) in that row before the next row is fetched.

To execute a statement string within the context of a cursor and retrieve rows of select-list
items, follow these steps:

1. Declare a cursor for the statement string. For example, the following
statement declares a cursor, DYN_CURSOR, for the SQL statement string,
SQL_STMT:

EXEC SQL

DECLARE DYN_CURSOR CURSOR FOR SQL_STMT;

2. Open the cursor:

EXEC SQL

OPEN DYN_CURSOR;

Opening the cursor causes the statement string to be executed, and an active set of
rows to be retrieved. For more information about cursors and active sets, see Chapter
6, “Working with Data.”

3. Fetch one row at a time and process the select-list items (columns) it
contains. For example, the following loops retrieve one row at a time from
DYN_CURSOR and process each item in the retrieved row with an
application-specific function (here called process_column()):

while (SQLCODE == 0)

{

EXEC SQL

FETCH DYN_CURSOR USING SQL DESCRIPTOR out_sqlda;

if (SQLCODE == 100)

break;

CHAPTER 14 USING DYNAMIC SQL

288 INTERBASE 5

for (i = 0; i < out_sqlda->sqld; i++)

{

process_column(out_sqlda->sqlvar[i]);

}

}

The process_column() function mentioned in this example processes each returned
select-list item. The following skeleton code illustrates how such a function can be set
up:

void process_column(XSQLVAR *var)

{

/* test for NULL value */

if ((var->sqltype & 1) && (*(var->sqlind) = -1))

{

/* process the NULL value here */

}

else

{

/* process the data instead */

}

. . .

}

4. When all the rows are fetched, close the cursor:

EXEC SQL

CLOSE DYN_CURSOR;

4 Re-executing a query statement string
Once a query statement string without parameters is prepared, it can be executed as often
as required in an application by closing and reopening its cursor.

To reopen a cursor and process select-list items, repeat steps 2–4 of “Executing a
Statement String Within the Context of a Cursor,” in this chapter.

Method 4: Query statements with parameters
There are four steps to processing an SQL query statement string with placeholder
parameters:

DSQL PROGRAMMING METHODS

PROGRAMMER’S GUIDE 289

1. Preparing an input XSQLDA to process a statement string’s parameters.

2. Preparing an output XSQLDA to process the select-list items returned when the
query is executed.

3. Preparing the statement string and its parameters.

4. Using a cursor to execute the statement using input parameter values from
an input XSQLDA, and to retrieve select-list items from the output XSQLDA.

4 Preparing the input XSQLDA

Placeholder parameters are replaced with actual data before a prepared SQL statement
string is executed. Because those parameters are unknown when the statement string is
created, an input XSQLDA must be created to supply parameter values at run time. To
prepare the XSQLDA, follow these steps:

1. Declare a variable to hold the XSQLDA needed to process parameters. For
example, the following declaration creates an XSQLDA called in_sqlda:

XSQLDA *in_sqlda;

2. Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:

XSQLVAR *var;

Declaring a pointer to the XSQLVAR structure is not necessary, but can simplify
referencing the structure in subsequent statements.

3. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
following statement allocates storage for in_slqda:

in_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(10));

In this statement, space for 10 XSQLVAR structures is allocated, allowing the XSQLDA to
accommodate up to 10 input parameters. Once structures are allocated, assign values
to the sqldata field in each XSQLVAR.

4. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the sqln field
of the XSQLDA to indicate the number of XSQLVAR structures allocated:

in_sqlda->version = SQLDA_VERSION1;

in_sqlda->sqln = 10;

4 Preparing the output XSQLDA

Because the number and kind of items returned are unknown when a statement string is
executed, an output XSQLDA must be created to store select-list items that are returned at
run time. To prepare the XSQLDA, follow these steps:

CHAPTER 14 USING DYNAMIC SQL

290 INTERBASE 5

1. Declare a variable to hold the XSQLDA needed to process parameters. For
example, the following declaration creates an XSQLDA called out_sqlda:

XSQLDA *out_sqlda;

2. Optionally declare a variable for accessing the XSQLVAR structure of the
XSQLDA:

XSQLVAR *var;

Declaring a pointer to the XSQLVAR structure is not necessary, but can simplify
referencing the structure in subsequent statements.

3. Allocate memory for the XSQLDA using the XSQLDA_LENGTH macro. The
following statement allocates storage for out_sqlda:

out_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(10));

Space for 10 XSQLVAR structures is allocated in this statement, enabling the XSQLDA to
accommodate up to 10 select-list items.

4. Set the version field of the XSQLDA to SQLDA_VERSION1, and set the sqln field
of the XSQLDA to indicate the number of XSQLVAR structures allocated:

out_sqlda->version = SQLDA_VERSION1;

out_sqlda->sqln = 10;

4 Preparing a query statement string with parameters
After an input and an output XSQLDA are created for holding a statement string’s
parameters, and the select-list items returned when the statement is executed, the
statement string can be created and prepared. When a statement string is prepared,
InterBase replaces the placeholder parameters in the string with information about the
actual parameters used. The information about the parameters must be assigned to the
input XSQLDA (and perhaps adjusted) before the statement can be executed. When the
statement string is executed, InterBase stores select-list items in the output XSQLDA.

To prepare a query statement string with parameters, follow these steps:

1. Elicit a statement string from the user or create one that contains the SQL
statement to be processed. For example, the following statement creates an
SQL statement string with placeholder parameters:

char *str = "SELECT * FROM DEPARTMENT WHERE BUDGET = ?, LOCATION =

?";

This statement string contains two parameters: a value to be assigned to the BUDGET
field and a value to be assigned to the LOCATION field.

DSQL PROGRAMMING METHODS

PROGRAMMER’S GUIDE 291

2. Prepare and name the statement string with PREPARE. The name is used in
subsequent calls to DESCRIBE and EXECUTE:

EXEC SQL

PREPARE SQL_STMT FROM :str;

SQL_STMT is the name assigned to the prepared statement string.

3. Use DESCRIBE INPUT to fill the input XSQLDA with information about the
parameters contained in the SQL statement:

EXEC SQL

DESCRIBE INPUT SQL_STMT USING SQL DESCRIPTOR in_sqlda;

4. Compare the sqln field of the XSQLDA to the sqld field to determine if the
input descriptor can accommodate the number of parameters contained in
the statement. If not, free the storage previously allocated to the input
descriptor, reallocate storage to reflect the number of parameters specified by
sqld, reset sqln and version, then execute DESCRIBE INPUT again:

if (in_sqlda->sqld > in_sqlda->sqln)

{

n = in_sqlda->sqld;

free(in_sqlda);

in_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(n));

in_sqlda->sqln = n;

in_sqlda->version = SQLDA_VERSION1;

EXEC SQL

DESCRIBE INPUT SQL_STMT USING SQL DESCRIPTOR in_sqlda;

}

5. Process each XSQLVAR parameter structure in the input XSQLDA. Processing a
parameter structure involves up to four steps:

- Coercing a parameter’s datatype (optional).

- Allocating local storage for the data pointed to by the sqldata field of the XSQLVAR.
This step is only required if space for local variables is not allocated until run time.
The following example illustrates dynamic allocation of local variable storage space.

- Providing a value for the parameter consistent with its datatype (required).

- Providing a NULL value indicator for the parameter.

These steps must be followed in the order presented. The following code example
illustrates these steps, looping through each XSQLVAR structure in the in_sqlda
XSQLDA:

for (i=0, var = in_sqlda->sqlvar; i < in_sqlda->sqld; i++, var++)

CHAPTER 14 USING DYNAMIC SQL

292 INTERBASE 5

{

/* Process each XSQLVAR parameter structure here.

The parameter structure is pointed to by var.*/

dtype = (var->sqltype & ~1) /* drop flag bit for now */

switch (dtype)

{

case SQL_VARYING: /* coerce to SQL_TEXT */

var->sqltype = SQL_TEXT;

/* allocate proper storage */

var->sqldata = (char *)malloc(sizeof(char)*var->sqllen);

/* provide a value for the parameter. See case SQL_LONG */

. . .

break;

case SQL_TEXT:

var->sqldata = (char *)malloc(sizeof(char)*var->sqllen);

/* provide a value for the parameter. See case SQL_LONG */

. . .

break;

case SQL_LONG:

var->sqldata = (char *)malloc(sizeof(long));

/* provide a value for the parameter */

*(long *)(var->sqldata) = 17;

break;

. . .

} /* end of switch statement */

if (sqltype & 1)

{

/* allocate variable to hold NULL status */

var->sqlind = (short *)malloc(sizeof(short));

}

} /* end of for loop */

For more information about datatype coercion and NULL indicators, see “Coercing
datatypes” on page 277.

6. Use DESCRIBE OUTPUT to fill the output XSQLDA with information about the
select-list items returned by the statement:

EXEC SQL

DESCRIBE OUTPUT SQL_STMT INTO SQL DESCRIPTOR out_sqlda;

DSQL PROGRAMMING METHODS

PROGRAMMER’S GUIDE 293

7. Compare the sqln field of the XSQLDA to the sqld field to determine if the
output descriptor can accommodate the number of select-list items specified
in the statement. If not, free the storage previously allocated to the output
descriptor, reallocate storage to reflect the number of select-list items
specified by sqld, reset sqln and version, and execute DESCRIBE OUTPUT again:

if (out_sqlda->sqld > out_sqlda->sqln)

{

n = out_sqlda->sqld;

free(out_sqlda);

out_sqlda = (XSQLDA *)malloc(XSQLDA_LENGTH(n));

out_sqlda->sqln = n;

out_sqlda->version = SQLDA_VERSION1;

EXEC SQL

DESCRIBE OUTPUT SQL_STMT INTO SQL DESCRIPTOR out_sqlda;

}

8. Set up an XSQLVAR structure for each item returned. Setting up an item
structure involves the following steps:

- Coercing an item’s datatype (optional).

- Allocating local storage for the data pointed to by the sqldata field of the XSQLVAR.
This step is only required if space for local variables is not allocated until run time.
The following example illustrates dynamic allocation of local variable storage space.

- Providing a NULL value indicator for the parameter (optional).

The following code example illustrates these steps, looping through each XSQLVAR
structure in the out_sqlda XSQLDA:

for (i=0, var = out_sqlda->sqlvar; i < out_sqlda->sqld; i++, var++)

{

dtype = (var->sqltype & ~1) /* drop flag bit for now */

switch (dtype)

{

case SQL_VARYING:

var->sqltype = SQL_TEXT;

break;

case SQL_TEXT:

var->sqldata = (char *)malloc(sizeof(char)*var->sqllen);

break;

case SQL_LONG:

var->sqldata = (char *)malloc(sizeof(long));

break;

/* process remaining types */

CHAPTER 14 USING DYNAMIC SQL

294 INTERBASE 5

} /* end of switch statements */

if (sqltype & 1)

{

/* allocate variable to hold NULL status */

var->sqlind = (short *)malloc(sizeof(short));

}

} /* end of for loop */

For more information about datatype coercion and NULL indicators, see “Coercing
datatypes” on page 277.

4 Executing a query statement string within the context of a cursor
To retrieve select-list items from a statement string, the string must be executed within
the context of a cursor. All cursor declarations in InterBase are fixed, embedded
statements inserted into the application before it is compiled. DSQL application
developers must anticipate the need for cursors when writing the application and declare
them ahead of time.

A looping construct is used to fetch a single row at a time from the cursor and to process
each select-list item (column) in that row before the next row is fetched.

To execute a statement string within the context of a cursor and retrieve rows of select-list
items, follow these steps:

1. Declare a cursor for the statement string. For example, the following
statement declares a cursor, DYN_CURSOR, for the prepared SQL statement
string, SQL_STMT:

EXEC SQL

DECLARE DYN_CURSOR CURSOR FOR SQL_STMT;

2. Open the cursor, specifying the input descriptor:

EXEC SQL

OPEN DYN_CURSOR USING SQL DESCRIPTOR in_sqlda;

Opening the cursor causes the statement string to be executed, and an active set of
rows to be retrieved. For more information about cursors and active sets, see Chapter
6, “Working with Data.”

3. Fetch one row at a time and process the select-list items (columns) it
contains. For example, the following loops retrieve one row at a time from
DYN_CURSOR and process each item in the retrieved row with an
application-specific function (here called process_column()):

while (SQLCODE == 0)

{

DSQL PROGRAMMING METHODS

PROGRAMMER’S GUIDE 295

EXEC SQL

FETCH DYN_CURSOR USING SQL DESCRIPTOR out_sqlda;

if (SQLCODE == 100)

break;

for (i = 0; i < out_sqlda->sqld; i++)

{

process_column(out_sqlda->sqlvar[i]);

}

}

4. When all the rows are fetched, close the cursor:

EXEC SQL

CLOSE DYN_CURSOR;

4 Re-executing a query statement string with parameters
Once a query statement string with parameters is prepared, it can be used as often as
required in an application. Before each subsequent use, the input XSQLDA can be supplied
with new parameter and NULL indicator data. The cursor must be closed and reopened
before processing can occur.

To provide new parameters to the input XSQLDA, follow steps 3–5 of “Preparing a Query
Statement String with Parameters,” in this chapter.

To provide new information to the output XSQLDA, follow steps 6–8 of “Preparing a Query
Statement String with Parameters,” in this chapter.

To reopen a cursor and process select-list items, repeat steps 2–4 of “Executing a Query
Statement String Within the Context of a Cursor,” in this chapter.

CHAPTER 14 USING DYNAMIC SQL

296 INTERBASE 5

PROGRAMMER’S GUIDE 297

CHAPTER

15
Chapter 15Preprocessing, Compiling,

and Linking

This chapter describes how to preprocess a program by using gpre, and how to compile
and link it for execution.

Preprocessing
After coding an SQL or dynamic SQL (DSQL) program, the program must be
preprocessed with gpre before it can be compiled. gpre translates SQL and DSQL
commands into statements the host-language compiler accepts by generating InterBase
library function calls. gpre translates SQL and DSQL database variables into ones the
host-language compiler accepts and declares these variables in host-language format.
gpre also declares certain variables and data structures required by SQL, such as the
SQLCODE variable and the extended SQL descriptor area (XSQLDA) used by DSQL.

CHAPTER 15 PREPROCESSING, COMPILING, AND LINKING

298 INTERBASE 5

Using gpre
The syntax for gpre is:

gpre [-language] [-options] infile [outfile]

The infile argument specifies the name of the input file.

The optional outfile argument specifies the name of the output file. If no file is specified,
gpre sends its output to a file with the same name as the input file, with an extension
depending on the language of the input file.

gpre has switches that allow you to specify the language of the source program and a
number of other options. You can place the switches either before or after the input and
output file specification. Each switch must include at least a hyphen preceded by a space
and a unique character specifying the switch.

4 Language switches
The language switch specifies the language of the source program. C and C++ are
languages available on all platforms. The switches are shown in the following table:

In addition, some platforms support other languages if an additional InterBase license
for the language is purchased. The following table lists the available languages and the
corresponding switches:

Switch Language

-c C

-cxx C++

TABLE 15.1 gpre language switches available on all platforms

Switch Language

-al[sys] Ada (Alsys)

TABLE 15.2 Additional gpre language switches

PREPROCESSING

PROGRAMMER’S GUIDE 299

For example, to preprocess a C program called census.e, type:

gpre -c census.e

-a[da] Ada (VERDIX, VMS, Telesoft)

-ansi ANSI-85 COBOL

-co[bol] COBOL

-f[ortran] FORTRAN

-pa[scal] Pascal

Switch Language

TABLE 15.2 Additional gpre language switches

CHAPTER 15 PREPROCESSING, COMPILING, AND LINKING

300 INTERBASE 5

4 Option switches
The option switches specify preprocessing options. The following table describes the
available switches:

Switch Description

-charset name Determines the active character set at compile time, where name is the
character set name.

-d[atabase] filename Declares a database for programs. filename is the file name of the database
to access. Use this option if a program contains SQL statements and does
not attach to the database itself. Do not use this option if the program
includes a database declaration.

-d_float VAX/VMS only. Specifies that double-precision data will be passed from the
application in D_FLOAT format and stored in the database in G_FLOAT
format. Data comparisons within the database will be performed in
G_FLOAT format. Data returned to the application from the database will be
in D_FLOAT format.

-e[ither_case] Enables gpre to recognize both uppercase and lowercase. Use the
-either_case switch whenever SQL keywords appear in code in lowercase
letters. If case is mixed, and this switch is not used, gpre cannot process the
input file. This switch is not
necessary with languages other than C, since they are case-insensitive.

-m[anual] Suppresses the automatic generation of transactions. Use the
-m switch for SQL programs that perform their own transaction handling,
and for all DSQL programs that must, by definition, explicitly control their
own transactions.

-n[o_lines] Suppresses line numbers for C programs.

-o[utput] Directs gpre’s output to standard output, rather than to a file.

-password password Specifies password, the database password, if the program connects to a
database that requires one.

TABLE 15.3 gpre option switches

PREPROCESSING

PROGRAMMER’S GUIDE 301

For sites with the appropriate license and are using a language other than C, additional
gpre options can be specified, as described in the following table:

4 Examples
The following command preprocesses a C program in a file named appl1.e. The output
file will be appl1.c. Since no database is specified, the source code must connect to the
database.

gpre -c appl1

The following command is the same as the previous, except that it does not assume the
source code opens a database, instead, explicitly declaring the database, mydb.gdb:

gpre -c appl1 -d mydb.gdb

-r[aw] Prints BLR as raw numbers, rather than as their mnemonic equivalents. This
option cam be useful for making the gpre output file smaller; however, it
will be unreadable.

-sqlda [old | new] Argument old specifies SQLDA, new specifies XSQLDA. If this switch is not
used, the default is XSQLDA.

-user username Specifies username, the database user name, if the program connects to a
database that requires one.

-x handle Gives the database handle identified with the -database option an
external declaration. This option directs the program to pick up a global
declaration from another linked module. Use only if the -d switch is also
used.

-z Prints the version number of gpre and the version number of all declared
databases. These databases can be declared either in the program or with
the -database switch.

Switch Description

-h[andles] pkg Specifies, pkg, an Ada handles package.

TABLE 15.4 Language-specific gpre option switches

Switch Description

TABLE 15.3 gpre option switches (continued)

CHAPTER 15 PREPROCESSING, COMPILING, AND LINKING

302 INTERBASE 5

Using a file extension to specify language
In addition to using a language switch to specify the host language, it is also possible to
indicate the host language with the file-name extension of the source file. The following
table lists the file-name extensions for each language that gpre supports and the default
extension of the output file:

For example, to preprocess a COBOL program called census.ecob, type:

gpre census_report.ecob

This generates an output file called census.cob.

When specifying a file-name extension, it is possible to specify a language switch as well:

gpre -cob census.ecob

Specifying the source file
Because both the language switch and the filename extension are optional, gpre can
encounter three different situations:

g A language switch and input file with no extension

g No language switch, but an input file with extension

g Neither a language switch, nor a file extension

Language
Input file
extension

Default output file
extension

Ada (VERDIX) ea a

Ada (Alsys, Telesoft) eada ada

C e c

C++ exx cxx

COBOL ecob cob

FORTRAN ef f

Pascal epas pas

TABLE 15.5 File extensions for language specification

PREPROCESSING

PROGRAMMER’S GUIDE 303

This section describes gpre’s behavior in each of these cases.

Language switch and no input file extension

If gpre encounters a language switch, but the specified input file has no extension, it does
the following:

1. It looks for the input file without an extension. If gpre finds the file, it
processes it and generates an output file with the appropriate extension.

If gpre does not find the input file, it looks for the file with the extension that
corresponds to the indicated language. If it finds such a file, it generates an output
file with the appropriate extension.

2. If gpre cannot find either the named file or the named file with the appropriate
extension, it returns the following error:

gpre: can’t open filename or filename.extension

filename is the file specified in the gpre command. extension is the language-specific
file extension for the specified program.

For example, suppose the following command is issued:

gpre -c census

gpre performs the following sequence of actions:

1. It looks for a file called census without an extension. If it finds the file, it
processes it and generates census.c.

2. If it cannot find census, it looks for a file called census.e. If it finds census.e,
it processes the file and generates census.c.

3. If it cannot find census or census.e, it returns this error:

gpre: can’t open census or census.e

No language switch and an input file with extension

If a language switch is not specified, but the input file includes a file-name extension,
gpre looks for the specified file and assumes the language is indicated by the extension.

For example, suppose the following command is processed:

gpre census.e

gpre looks for a file called census.e. If gpre finds this file, it processes it as a C program
and generates an output file called census.c. If gpre does not find this file, it returns the
following error:

gpre: can’t open census.e

CHAPTER 15 PREPROCESSING, COMPILING, AND LINKING

304 INTERBASE 5

Neither a language switch nor a file extension

If gpre finds neither a language extension nor a filename extension, it looks for a file in
the following order:

1. filename.e (C)

2. filename.epas (Pascal)

3. filename.ef (FORTRAN)

4. filename.ecob (COBOL)

5. filename.ea (VERDIX Ada)

6. filename.eada (Alsys, and Telesoft Ada)

If gpre finds such a file, it generates an output file with the appropriate extension. If gpre
does not find the file, it returns the following error:

gpre: can’t find filename with any known extension. Giving up.

Compiling and linking
After preprocessing a program, it must be compiled and linked. Compiling creates an
object module from the preprocessed source file. Use a host-language compiler to
compile the program.

The linking process resolves external references and creates an executable object. Use the
tools available on a given platform to link a program’s object module to other object
modules and libraries, based on the platform, operating system and host language used.

Compiling an Ada program
Before compiling an Ada program, be sure the Ada library contains the package
interbase.ada (or interbase.a for VERDIX Ada). This package is in the InterBase include
directory.

To use the programs in the InterBase examples directory, use the package basic_io.ada
(or basic_io.a for VERDIX Ada), also located in the examples directory.

Linking
On Unix platforms, programs can be linked to the following libraries:

COMPILING AND LINKING

PROGRAMMER’S GUIDE 305

g A library that uses pipes, obtained with the -lgds option. This library yields faster links
and smaller images. It also lets your application work with new versions of InterBase
automatically when they are installed.

g A library that does not use pipes, obtained with the -lgds_b option. This library has faster
execution, but binds an application to a specific version of InterBase. When installing a
new version of InterBase, programs must be relinked to use the new features or databases
created with that version.

Under SunOS-4, programs can be linked to a shareable library by using the
-lgdslib option. This creates a dynamic link at run time and yields smaller images with
the execution speed of the full library. This option also provides the ability to upgrade
InterBase versions automatically.

For specific information about linking options for InterBase on a particular platform,
consult the online readme in the interbase directory.

CHAPTER 15 PREPROCESSING, COMPILING, AND LINKING

306 INTERBASE 5

PROGRAMMER’S GUIDE 307

APPENDIX

A
Appendix AInterBase Document

Conventions

This appendix describes the InterBase 5 documentation set, the printing conventions
used to display information in text and in code examples, and conventions for naming
database objects and files in applications.

APPENDIX A INTERBASE DOCUMENT CONVENTIONS

308 INTERBASE 5

The InterBase documentation set
The InterBase documentation set is an integrated package designed for all levels of users.
It consists of five printed books. Each of these books is also provided in Adobe Acrobat
PDF format and is accessible on line through the Help menu. If Adobe Acrobat is not
already installed on your system, you can find it on the InterBase distribution CD-ROM
or at http//www.adobe.com/prodindex/acrobat/readstep.html. Acrobat is available for
Windows NT, Windows 95, and most flavors of UNIX. Windows users also have help
available through the WinHelp system.

Book Description

Operations Guide Provides an introduction to InterBase and an explanation of tools and
procedures for performing administrative tasks on databases and database
servers. Also includes full reference on InterBase utilities, including isql,
gbak, Server Manager for Windows, and others.

Data Definition Guide Explains how to create, alter, and delete database objects through ISQL.

Language Reference Describes SQL and DSQL syntax and usage.

Programmer’s Guide Describes how to write embedded SQL and DSQL database applications in
a host language, precompiled through gpre.

API Guide Explains how to write database applications using the InterBase API.

TABLE A.1 Books in the InterBase 5 documentation set

PRINTING CONVENTIONS

PROGRAMMER’S GUIDE 309

Printing conventions
The InterBase documentation set uses various typographic conventions to identify objects
and syntactic elements.

The following table lists typographic conventions used in text, and provides examples of
their use:

Convention Purpose Example

UPPERCASE SQL keywords, SQL functions, and names of
all database objects such as tables, columns,
indexes, and stored procedures.

The following SELECT statement retrieves data from
the CITY column in the CITIES table.

italic New terms, emphasized words, file names,
and host- language variables.

The isc4.gdb security database is not accessible
without a valid user name and password.

bold Utility names, user-defined functions, and
host-language function names. Function
names are always followed by parentheses to
distinguish them from utility names.

Use gbak to back up and restore a database.

Use the datediff() function to calculate the
number of days between two dates.

TABLE A.2 Text conventions

APPENDIX A INTERBASE DOCUMENT CONVENTIONS

310 INTERBASE 5

Syntax conventions
The following table lists the conventions used in syntax statements and sample code, and
provides examples of their use:

Convention Purpose Example

UPPERCASE Keywords that must be typed exactly as
they appear when used.

SET TERM !!;

italic Parameters that cannot be broken into
smaller units. For example, a table name
cannot be subdivided.

CREATE GENERATOR name;

<italic> Parameters in angle brackets that can be
broken into smaller syntactic units.

WHILE (<condition>) DO <compound_statement>

[] Optional syntax: you do not need to
include anything that is enclosed in
square brackets.

CREATE [UNIQUE][ASCENDING|DESCENDING]

{ } One of the enclosed options must be
included in actual statement use. If the
contents are separated by a pipe symbol
(|), you must choose only one.

{SMALLINT | INTEGER | FLOAT | DOUBLE
PRECISION}

| You can choose only one of a group
whose elements are separated by this
pipe symbol.

When objects separated by this symbol
occur within curly brackets, you must
choose one; when they are within
square brackets you can choose one or
none.

SET {DATABASE | SCHEMA}

SELECT [DISTINCT |ALL]

... The clause enclosed in brackets with the
… symbol can be repeated as many
times as necessary.

(<col> [,<col>…])

TABLE A.3 Syntax conventions

PROGRAMMER’S GUIDE i

* (asterisk), in code 120
* operator 105
+ operator 105
/ operator 105
[] (brackets), arrays 204, 207–208
|| operator 104
– operator 105

A
absolute values 214
access mode parameter 56

default transactions 50
access privileges See security
accessing

arrays 206–212
Blob data 190
data 21, 41, 44

actions See events
active database 29
Ada programs 296
adding

See also inserting
columns 93

addition operator (+) 105
aggregate functions 121

arrays and 206
NULL values 121

alerter (events) 234
aliases

database 32
tables 125

ALIGN macro 270
ALL keyword 44
ALL operator 107, 111
allocating memory 43
ALTER INDEX 97–98
ALTER TABLE 93–96

ADD option 93

DROP option 94
altering

column definitions 95–96
metadata 92–98
views 92, 97

AND operator 105
ANY operator 107, 112
API calls

Blob data 190
appending tables 133
applications 17

See also DSQL applications
building 82
event handling 233, 235–237
porting 18, 246
preprocessing See gpre

arithmetic expressions 211
arithmetic functions See aggregate functions
arithmetic operators 105

precedence 105, 115
array elements 208

defined 203
evaluating 211
porting 204
retrieving 208

array IDs 207
array slices 208–209

adding data 206
defined 206
updating data 209

arrays 101, 217
See also error status array
accessing 206–212
aggregate functions 206
creating 203–205
cursors 206–207, 209
DSQL applications and 206
inserting data 207
multi-dimensional 204, 208

Index

ii INTERBASE 5

referencing 206
search conditions 211
selecting data 206–209
storing data 203
subscripts 205, 211
UDFs and 206
updating 209
views and 206

ASC keyword 129
ascending sort order 89, 129
asterisk (*), in code 120
attaching to databases 23, 37

multiple 33, 39–41
averages 121
AVG() 121

B
BASED ON 20

arrays and 207
basic_io.a 296
basic_io.ada 296
BEGIN DECLARE SECTION 19
BETWEEN operator 107

NOT operator and 107
binary large objects See Blob
Blob API functions 190
Blob data 184–201

deleting 189
filtering 191–201
inserting 187–188
selecting 184–187
storing 180, 182
updating 188–189

Blob filter function 194
action macro definitions 199–200
return values 200–201

Blob filters 191–201
external 191

declaring 192
writing 193

invoking 193
text 191
types 194

Blob segments 182–184
Blob subtypes 181

Blob UDFs 217, 217–219, 223
control structures 217–218
declaring 223

blob_concatenate() 219
blob_get_segment 218
blob_handle 218
blob_put_segment 218
Boolean expressions 126

evaluating 105
Borland C/C++ See C language
brackets ([]), arrays 204, 207–208
buffers

database cache 43–44
BY VALUE keyword 217
byte-matching rules 111

C
C language

character variables 20, 222
host terminator 24
host-language variables 19–21
writing function modules 214

cache buffers 43–44
CACHE keyword 43
calculations 105, 121
calling

UDFs 223–224
case-insensitive comparisons 108
case-sensitive comparisons 109, 111
CAST keyword 106
CAST() 116, 176
CHAR datatype

converting to DATE 176
description 100

CHAR VARYING keyword 101
CHARACTER keyword 100
character sets

converting 111
default 82
NONE 82
specifying 36, 82

character strings
characters, trimming 214
comparing 108, 109, 111
literal file names 38–39

PROGRAMMER’S GUIDE iii

CHARACTER VARYING keyword 101
characters

trimming 214
closing

databases 26, 34, 45–46
multiple 34

transactions 24–25
coercing datatypes 269
COLLATE clause 128
collation orders

GROUP BY clause 131
ORDER BY clause 130
WHERE clause 129

column names
qualifying 122
views 87

column-major order 204
columns

adding 93
computed 85, 94
creating 84
defining

altering 95–96
global 83
views 87

dropping 94
selecting 119–122

eliminating duplicates 120
sorting by 130
values, returning 121

COMMIT 25, 46, 48, 67–71
multiple databases 34

comparison operators 106–113
NULL values and 107, 113
precedence 115
subqueries 107, 109–113

COMPILETIME keyword 34
compiling

programs 296–297
UDFs 220

computed columns
creating 85, 94
defined 85

concatenation operator (||) 104
CONNECT 22, 31, 37–44

ALL option 44
CACHE option 43
error handling 42
multiple databases 39–42
omitting 23
SET DATABASE and 37

constraints 84, 91, 92, 93, 94
See also specific constraints
optional 84

CONTAINING operator 108
NOT operator and 108

conversion functions 116–118, 176
converting

datatypes 116
dates 173–177
international character sets 111

COUNT() 121
CREATE DATABASE 81–82

in DSQL 256
specifying character sets 82

CREATE DOMAIN 83
arrays 203

CREATE GENERATOR 90
CREATE INDEX 89–90

DESCENDING option 89
UNIQUE option 89

CREATE PROCEDURE 226
CREATE TABLE 84–86

arrays 203
multiple tables 85

CREATE VIEW 86–88
WITH CHECK OPTION 88

creating
arrays 203–205
columns 84
computed columns 85, 94
integrity constraints 84
metadata 80–90
UDFs 214

CSTRING datatype 222
cursors 136

arrays 206–207, 209
multiple transaction programs 74
select procedures 228

iv INTERBASE 5

D
data 99

accessing 21, 41, 44
DSQL applications 21, 29
host-language variables and 19

changes
committing See COMMIT
rolling back See ROLLBACK

defining 79
protecting See security
retrieving

optimizing 134, 225
selecting 89, 102, 118

multiple tables 122, 124
storing 203

data structures
Blob 217–218
host-language 21

database cache buffers 43–44
database handles 22, 32, 37

DSQL applications 26, 28
global 35
multiple databases 32–34, 40
naming 32
scope 35
transactions and 32, 45

database specification parameter 48, 55
databases

attaching to 23, 37
multiple 33, 39–41

closing 26, 34, 45–46
creating 81–82
declaring multiple 21–23, 32–35
DSQL and attaching 254
initializing 21–23
naming 37
opening 31, 37, 39
remote 81

datatypes 100–101
coercing 269
compatible 117

UDFs and 217, 222
converting 116
DSQL applications 268–270
macro constants 266–268

DATE datatype
converting 176
description 100, 173

date literals 103, 177
dates 214

converting 173–177
inserting 175
selecting 174
updating 176

DECIMAL datatype 100
declarations, changing scope 35
DECLARE CURSOR 74
DECLARE EXTERNAL FUNCTION 221–223
DECLARE TABLE 85
declaring

Blob filters 192
host-language variables 18–21
multiple databases 21–23, 32–35
one database only 23, 31
SQLCODE variable 24
transaction names 53
XSQLDAs 27–28

default character set 82
default transactions

access mode parameter 50
default behavior 50
DSQL applications 51
isolation level parameter 50
lock resolution parameter 50
rolling back 25
starting 49–51

DELETE
UDFs 224

deleting See dropping
DESC keyword 129
DESCENDING keyword 89
descending sort order 89, 129
detaching from databases 34, 45
directories

specifying 32
dirty reads 58
DISCONNECT 26, 45

multiple databases 34, 45
DISTINCT keyword 120
division operator (/) 105

PROGRAMMER’S GUIDE v

DLLs
UDFs and 214, 220

domains
creating 83

DOUBLE PRECISION datatype 100
DROP INDEX 91
DROP TABLE 92
DROP VIEW 91
dropping

columns 94
metadata 90–92

DSQL
CREATE DATABASE 256
limitations 254
macro constants 266–268
programming methods 271–287
requirements 26–28

DSQL applications 17, 253
accessing data 21, 29
arrays and 206
attaching to databases 254
creating databases 256
data definition statements 79
database handles 26, 28
datatypes 268–270
default transactions 51
executing stored procedures 230
multiple transactions 76
porting 18
preprocessing 27, 30, 49, 289
programming requirements 26–30
SQL statements

embedded 29
transaction names 26, 28–30
transactions 28
writing 257
XSQLDAs 260–270

DSQL limitations 28–30
DSQL statements 253
dynamic link libraries See DLLs
dynamic SQL See DSQL

E
END DECLARE SECTION 19
error codes and messages 24, 250

capturing 247–250
displaying 247

error status array 246, 250
error-handling routines 42, 239, 246

changing 242
disabling 245
guidelines 245–246
nesting 245
testing SQLCODE directly 242, 244
WHENEVER and 240–242, 244

errors 24
run-time

recovering from 239
trapping 240, 242, 250
unexpected 245
user-defined See exceptions

ESCAPE keyword 110
EVENT INIT 235

multiple events 236
EVENT WAIT 236–237
events 233–238

See also triggers
alerter 234
defined 233
manager 233
multiple 236–237
notifying applications 235–236
posting 234
responding to 237

executable objects 296
executable procedures 226, 229–231

DSQL 230
input parameters 229–230

EXECUTE 26, 29
EXECUTE IMMEDIATE 27, 29, 77
EXECUTE PROCEDURE 229
EXISTS operator 107, 112

NOT operator and 113
expression-based columns See computed columns
expressions 126

evaluating 105
extended SQL descriptior areas See XSQLDAs
EXTERN keyword 36

vi INTERBASE 5

F
file names

specifying 38–39
files

See also specific files
source, specifying 294

FLOAT datatype 100
fn_abs() 214
fn_datediff() 214
fn_trim() 214
FROM keyword 123–126
functions

aggregate 121
conversion 116–118, 176
error-handling 245
numeric 90
user-defined See UDFs

G
GEN_ID() 90
generators

creating 90
defined 90

global column definitions 83
global database handles 35
gpre 30, 77, 289–296

command-line options 292–293
databases, specifying 34
DSQL applications 27, 49
handling transactions 255
language options 290

file names vs. 294–296
-m switch 49, 81
programming requirements 17
specifying source files 294
-sqlda old switch 27
syntax 290

group aggregates 131
grouping rows 131

restrictions 132

H
hard-coded strings

file names 38–39

HAVING keyword 132
header files See ibase.h
host languages 24

data structures 21
host-language variables 38

arrays 211
declaring 18–21
specifying 123

hosts, specifying 32

I
I/O See input, output
ibase.h 27, 251

including 216
identifiers 32

database handles 32
databases 37
views 86

IN operator 108
NOT operator and 109

INDEX keyword 134
indexes

altering 92, 97–98
creating 89–90
dropping 91
preventing duplicate entries 89
primary keys 90
sort order 89

changing 98
system-defined 89
unique 89

INDICATOR keyword 230
indicator variables 230

NULL values 230
initializing

databases 21–23
transaction names 53

input parameters 227, 229–230
See also stored procedures

INSERT
arrays 207
UDFs 224

inserting
See also adding
Blob data 187–188

PROGRAMMER’S GUIDE vii

dates 175
INTEGER datatype 100
integrity constraints 84

See also specific type
optional 84

Interactive SQL See isql
interbase.a 296
interbase.ada 296
international character sets 111
INTO keyword 123, 135
IS NULL operator 110

NOT operator and 110
isc_blob_ctl 196

field descriptions 197
isc_blob_default_desc() 190
isc_blob_gen_bpb() 190
isc_blob_info() 190
isc_blob_lookup_desc() 190
isc_blob_set_desc() 190
isc_cancel_blob() 190
isc_close_blob() 190
isc_create_blob2() 190
isc_decode_date() 174
isc_encode_date() 175
isc_get_segment() 190
isc_interprete() 247, 248–250
isc_open_blob2() 190
isc_print_sqlerror() 247
isc_put_segment() 190
ISC_QUAD structure 174–175
isc_sql_interprete() 247–248
isc_status 246, 250
isolation level parameter 48, 55, 56

default transactions 50

J
JOIN keyword 134
joins 125

K
key constraints See FOREIGN KEY constraints;

PRIMARY KEY constraints
keys

primary 90

L
language options (gpre) 290

file names vs. 294–296
leading characters 214
libraries

dynamic link See DLLs
UDFs and 214, 220
Unix platforms 296

LIKE operator 109
NOT operator and 110

limbo transactions 24
linking

programs 296–297
literal strings, file names 38–39
literal symbols 110
lock resolution parameter 48, 54, 62

default transactions 50
logical operators 105–106

precedence 106, 116
loops See repetitive statements
lost updates 57

M
-m switch 49
macro constants 266–268
make.lib 220
mathematical operators 105

precedence 105, 115
MAX() 121
max_seglen 218
maximum values 121
memory

allocating 43
metadata 79

altering 92–98
creating 80–90
dropping 90–92

failing 93
Microsoft C/C++ See C language
MIN() 121
minimum values 121
modifying See altering;updating
modules

object 296
UDFs 214

viii INTERBASE 5

multi-column sorts 130
multi-dimensional arrays

creating 204
selecting data 208

multi-module programs 36
multiple databases

attaching to 33, 39–41
closing 34
database handles 32–34, 40
declaring 21–23, 32–35
detaching 34, 45
opening 39
transactions 44

multiple tables
creating 85
selecting data 122, 124

multiple transactions 122
DSQL applications 76
running 73–78

multiplication operator (*) 105
multi-row selects 123, 136–144

N
named transactions 48, 66

starting 51–52
names

column 87, 122
qualifying 32, 33, 45

in SELECT statements 122
specifying at run time 38

naming
database handles 32
databases 37
transactions 52–54
views 86

NATURAL keyword 134
NO RECORD_VERSION 55
NO WAIT 54, 63
NONE character set option 82
non-reproducible reads 58
NOT operator 105

BETWEEN operator and 107
CONTAINING operator and 108
EXISTS operator and 113
IN operator and 109

IS NULL operator and 110
LIKE operator and 110
SINGULAR operator and 113
STARTING WITH operator and 111

NOW 103
NOW date literal 177
NULL values

aggregate functions 121
arrays and 206
comparisons 107, 113
indicator variables 230

number_segments 218
numbers

absolute values 214
generating 90

NUMERIC datatype 101
converting to DATE 176

numeric function 90
numeric values See values

O
object modules 296
opening

databases 31, 37, 39
multiple 39

operators
arithmetic 105
comparison 106–113
concatenation 104
logical 105–106
precedence 114–116

changing 116
string 104

optimizing
data retrieval 134, 225

OR operator 105, 106
ORDER keyword 135
order of evaluation (operators) 114–116

changing 116
output parameters

See also stored procedures

P
parameters

PROGRAMMER’S GUIDE ix

access mode 50, 56
database specification 48, 55, 65
isolation level 48, 50, 55, 56
lock resolution 48, 50, 54, 62
table reservation 48, 55, 64
UDFs 217
unknown 230

phantom rows 58
PLAN keyword 134
porting

applications 18, 246
arrays 204

POST_EVENT 234
precedence of operators 114–116

changing 116
PREPARE 26, 77
preprocessor See gpre
PRIMARY KEY constraints 89
primary keys 90
privileges See security
procedures See stored procedures
programming

DSQL applications 26–30
gpre 17

programs
compiling and linking 296–297

projection (defined) 118
PROTECTED READ 64
PROTECTED WRITE 64
protecting data See security

Q
qualify (defined) 32, 45
queries 89, 118

See also SQL
eliminating duplicate columns 120
grouping rows 131
multi-column sorts 130
restricting row selection 126, 132
search conditions 102–113, 126–129

arrays and 211
combining simple 106
reversing 106

selecting multiple rows 123, 136–144
selecting single rows 135

sorting rows 129
specific tables 123–126
with joins 125, 134

query optimizer 134

R
READ COMMITTED 55, 57, 59
read-only views 87
RECORD_VERSION 55
remote databases 81
RESERVING clause 55, 63

table reservation options 64
result tables 136

See also joins
ROLLBACK 25, 46, 48, 67, 71–72

multiple databases 34
rollbacks 25
routines 226

See also error-handling routines
row-major order 204
rows

counting 121
grouping 131

restrictions 132
selecting 126

multiple 123, 136–144
single 135

sorting 129
run-time errors

recovering from 239
RUNTIME keyword 34

S
scientific notation 100
scope

changing 35
database handles 35
WHENEVER 241

search conditions (queries) 102–113, 126–129
arrays and 211
combining simple 106
reversing 106

SELECT 102–113, 118–135, 227
arrays 206–209

x INTERBASE 5

CAST clause 106
CREATE VIEW and 87
DISTINCT option 120
FROM clause 123–126
GROUP BY clause 131–132

collation order 131
HAVING clause 132
INTO option 123, 135
ORDER BY clause 129

collation order 130
PLAN clause 134
TRANSACTION option 122
UDFs 223
WHERE clause 102–117, 126–129, 135

ALL operator 111
ANY operator 112
BETWEEN operator 107
CAST option 116, 176
collation order 129
CONTAINING operator 108
EXISTS operator 112
IN operator 108
IS NULL operator 110
LIKE operator 109
SINGULAR operator 113
SOME operator 112
STARTING WITH operator 111

select procedures 226, 227–229
calling 228
cursors 228
input parameters 227
selecting 124
tables vs. 227
views vs. 227

SELECT statements
singleton SELECTs 118, 123, 135

selecting
Blob data 184–187
columns 119–122
data 89, 102, 118

See also SELECT
dates 174
multiple rows 123, 136–144
single rows 135
views 124

SET DATABASE 22, 31
COMPILETIME option 34
CONNECT and 37
DSQL applications 28
EXTERN option 36
multiple databases and 33, 40
omitting 23, 39
RUNTIME option 34
STATIC option 35–36

SET NAMES 31
SET TRANSACTION 48, 50, 54–65

access mode parameter 48
parameters 54
syntax 55

SHARED READ 64
SHARED WRITE 64
singleton SELECTs 118, 123

defined 135
SINGULAR operator 107, 113

NOT operator and 113
SMALLINT datatype 101
SNAPSHOT 55, 57, 59
SNAPSHOT TABLE STABILITY 55, 57, 62
SOME operator 107, 112
SORT MERGE keywords 134
sort order

ascending 89, 129
descending 89, 129
indexes 89, 98
queries 129
sticky 130

sorting
multiple columns 130
rows 129

source files 294
specifying

character sets 36, 82
directories 32
file names 38–39
host-language variables 123
hosts 32

SQL statements
DSQL applications 29
strings 259

SQLCODE variable

PROGRAMMER’S GUIDE xi

declaring 24
examining 240
return values 239, 246, 250

displaying 247
testing 242, 244

SQLDAs 27
porting applications and 18

starting default transactions 49–51
STARTING WITH operator 111

NOT operator and 111
statements

See also DSQL statements; SQL statements
data definition 79
data structures and 21
embedded 24, 99
error-handling 245
transaction management 47, 48

STATIC keyword 35–36
status array See error status array
sticky sort order 130
stored procedures 225–231, 233

defined 225
return values 226, 230
values 226, 230
XSQLDAs and 230

string operator (||) 104
subqueries

comparison operators 107, 109–113
defined 153

subscripts (arrays) 205, 211
subtraction operator (-) 105
SUM() 121
SunOS-4 platforms 297
system tables 81
system-defined indexes 89

T
table names

aliases 125
duplicating 85
identical 32, 33, 45

table reservation parameter 48, 55
tables

altering 93–96
appending with UNION 133

creating 84–86
multiple 85

declaring 85
dropping 92
qualifying 32, 33, 45
querying specific 123–126
select procedures vs. 227

time structures 174
time.h 174
TODAY 103
TODAY date literal 177
TOMORROW 103
total_size 218
totals, calculating 121
trailing characters 214
TRANSACTION keyword 122
transaction management statements 47, 48
transaction names 51, 255

declaring 53
DSQL applications 26, 28–30
initializing 53
multi-table SELECTs 122

transactions 226
accessing data 44
closing 24–25
committing 25
database handles and 32, 45
default 49–51

rolling back 25
DSQL applications 28
ending 67
multiple databases 44
named 48, 66

starting 51–52
naming 52–54
rolling back 25
running multiple 73–78, 122
unnamed 25

trapping
errors 240, 242, 250

triggers 233
TRIM() 214

U
udflib.c 214

xii INTERBASE 5

UDFs
arrays and 206
Blob 217, 217–219, 223
calling 223–224
compiling 220
creating 214, 217
declaring 221–223
defined 213
inserting 224
libraries 214, 220

changing 220
modules 214
parameters 217
return values 217
selecting 223
updating 224

unexpected errors 245
UNION

appending tables 133
in SELECT statements 119

unique indexes 89
UNIQUE keyword 89
unique values 90
Unix platforms 296
unknown values

testing for 110
unrecoverable errors 245
updatable views 88
UPDATE

arrays 210
dates 176
UDFs 224

update side effects 58
updating

See also altering
Blob data 188–189

UPPER() 117
user-defined functions See UDFs
USING clause 55, 65

V
values

See also NULL values
absolute 214
comparing 106

manipulating 105
matching 108, 112
maximum 121
minimum 121
selecting 121
stored procedures 226, 230
UDFs 217
unique 90
unknown, testing for 110

VARCHAR datatype 101
variables

host-language 38
arrays 211
declaring 18–21
specifying 123

indicator 230
NULL values 230

views 86
altering 92, 97
arrays and 206
creating 86–88
defining columns 87
dropping 91
naming 86
read-only 87
select procedures vs. 227
selecting 124
updatable 88

virtual tables 86

W
WAIT 54, 63
WHENEVER 240–242, 244

embedding 242
limitations 242
scope 241

WHERE clause See SELECT
WHERE keyword 126
wildcards

string comparisons 109
writing external Blob filters 193

X
XSQLDA_LENGTH macro 265

PROGRAMMER’S GUIDE xiii

XSQLDAs 260–270
declaring 27–28
fields 262
input descriptors 264
output descriptors 264
porting applications and 18
stored procedures and 230
structures 27

XSQLVAR structure 260
fields 263

Y
YESTERDAY 103

xiv INTERBASE 5

	Programmer’s Guide
	Table of Contents
	List of Tables
	List of Figures
	Using the Programmer’s�Guide
	Who should use this guide
	Topics covered in this guide
	Sample database and applications

	Application Requirements
	Requirements for all applications
	Porting considerations for SQL
	Porting considerations for DSQL
	Declaring host variables
	Section declarations
	Using BASED ON to declare variables
	Host-language data structures

	Declaring and initializing databases
	Using SET DATABASE
	Using CONNECT
	Working with a single database

	SQL statements
	Error handling and recovery
	Closing transactions
	Accepting changes
	Undoing changes

	Closing databases
	DSQL requirements
	Declaring an XSQLDA

	DSQL limitations
	Using database handles
	Using the active database
	Using transaction names

	Preprocessing programs

	Working with Databases
	Declaring a database
	Declaring multiple databases
	Using handles for table names
	Using handles with operations

	Preprocessing and run time databases
	Using the COMPILETIME clause
	Using the RUNTIME clause

	Controlling SET DATABASE scope

	Specifying a connection character set
	Opening a database
	Using simple CONNECT statements
	Using a database handle
	Using strings or host-language variables
	Using a hard-coded database names

	Additional CONNECT syntax
	Attaching to multiple databases
	Handling CONNECT errors
	Setting database cache buffers
	Setting individual database buffers
	Specifying buffers for all databases

	Accessing an open database
	Differentiating table names
	Closing a database
	With DISCONNECT
	With COMMIT and ROLLBACK

	Working with Transactions
	Starting the default transaction
	Starting without SET TRANSACTION
	Starting with SET TRANSACTION

	Starting a named transaction
	Naming transactions
	Declaring transaction names
	Initializing transaction names

	Specifying SET TRANSACTION behavior
	Access mode
	Isolation level
	Lock resolution
	RESERVING clause
	USING clause

	Using transaction names in data statements
	Ending a transaction
	Using COMMIT
	Specifying transaction names
	Committing without freeing a transaction�

	Using ROLLBACK

	Working with multiple transactions
	The default transaction
	Using cursors
	A multi-transaction example

	Working with multiple transactions in DSQL
	Modifying transaction behavior with�“?”

	Working with Data Definition Statements
	Creating metadata
	Creating a database
	Optional parameters
	Specifying a default character set

	Creating a domain
	Creating a table
	Creating a computed column
	Declaring and creating a table

	Creating a view
	Creating a view for SELECT
	Creating a view for update

	Creating an index
	Preventing duplicate index entries
	Specifying index sort order

	Creating generators

	Dropping metadata
	Dropping an index
	Dropping a view
	Dropping a table

	Altering metadata
	Altering a table
	Adding a new column to a table
	Dropping an existing column
	Modifying a column

	Altering a view
	Altering an index

	Working with Data
	Supported datatypes
	Understanding SQL expressions
	Using the string operator in expressions
	Using arithmetic operators in expressions
	Using logical operators in expressions
	Using comparison operators in expressions
	Using BETWEEN
	Using CONTAINING
	Using IN
	Using LIKE
	Using IS NULL
	Using STARTING WITH
	Using ALL
	Using ANY and SOME
	Using EXISTS
	Using SINGULAR

	Determining precedence of operators
	Precedence among operators
	Changing evaluation order of operators

	Using CAST() for datatype conversions
	Using UPPER() on text data

	Understanding data retrieval with SELECT
	Listing columns to retrieve with SELECT
	Retrieving a list of columns
	Retrieving all columns
	Retrieving aggregate column information
	Multi-table SELECT statements
	Specifying transaction names

	Specifying host variables with INTO
	Listing tables to search with FROM
	Listing a single table or view
	Listing multiple tables
	Declaring and using correlation names

	Restricting row retrieval with WHERE
	What is a search condition?
	Structure of a search condition
	Collation order in comparisons

	Sorting rows with ORDER BY
	ORDER BY with multiple columns
	Collation order in an ORDER BY clause

	Grouping rows with GROUP BY
	Collation order in a GROUP BY clause
	Limitations of GROUP BY

	Restricting grouped rows with HAVING
	Appending tables with UNION
	Specifying a query plan with PLAN

	Selecting a single row
	Selecting multiple rows
	Declaring a cursor
	Updating through cursors

	Opening a cursor
	Fetching rows with a cursor
	Retrieving indicator status
	Refetching rows with a cursor

	Closing the cursor
	A complete cursor example
	Selecting rows with NULL values
	Limitations on NULL values

	Selecting rows through a view

	Selecting multiple rows in DSQL
	Declaring a DSQL cursor
	Opening a DSQL cursor
	Fetching rows with a DSQL cursor

	Joining tables
	Choosing join columns
	Using inner joins
	Creating equi-joins
	Joins based on comparison operators
	Creating self-joins

	Using outer joins
	Using a left outer join
	Using a right outer join
	Using a full outer join

	Using nested joins

	Using subqueries
	Simple subqueries
	Correlated subqueries

	Inserting data
	Using VALUES to insert columns
	Using SELECT to insert columns
	Inserting rows with NULL column values
	Ignoring a column
	Assigning a NULL value to a column
	Using indicator variables

	Inserting data through a view
	Specifying transaction names in an INSERT

	Updating data
	Updating multiple rows
	Using a searched update
	Using a positioned update

	NULLing columns with UPDATE
	Updating through a view
	Specifying transaction names in UPDATE

	Deleting data
	Deleting multiple rows
	Using a searched delete
	Using a positioned delete

	Deleting through a view
	Specifying transaction names in a DELETE

	Working with Dates
	Selecting dates
	Inserting dates
	Updating dates
	Using CAST() to convert dates
	Using date literals

	Working with Blob Data
	What is a Blob?
	How are Blob data stored?
	Blob subtypes
	Blob database storage
	Blob segment length
	Overriding segment length

	Accessing Blob data with SQL
	Selecting Blob data
	Inserting Blob data
	Updating Blob data
	Deleting Blob data

	Accessing Blob data with API calls
	Filtering Blob data
	Using the standard InterBase text filters
	Using an external Blob filter
	Declaring an external filter to the database
	Using a filter to read and write Blob data
	Invoking a filter in an application

	Writing an external Blob filter
	Filter types
	Read-only and write-only filters
	Defining the filter function
	Defining the Blob control structure
	Programming filter function actions
	Testing the function return value

	Using Arrays
	Creating arrays
	Multi-dimensional arrays
	Specifying subscript ranges

	Accessing arrays
	Selecting data from an array
	Inserting data into an array
	Selecting from an array slice
	Updating data in an array slice
	Testing a value in a search condition
	Using host variables in array subscripts
	Using arithmetic expressions with arrays

	Working with User-Defined�Functions
	Creating a UDF
	Writing a function module
	Specifying parameters
	Specifying a return value

	Handling memory for return values
	Compiling a function module

	Creating a UDF library
	Modifying a UDF library
	Placing the UDF library

	Declaring a UDF to a database
	Calling a UDF
	Calling a UDF with SELECT
	Calling a UDF with INSERT
	Calling a UDF with UPDATE
	Calling a UDF with DELETE

	Writing a Blob UDF
	Creating a Blob control structure
	Declaring a Blob UDF
	A Blob UDF example

	Working with Stored�Procedures
	Using stored procedures
	Procedures and transactions
	Security for procedures

	Using select procedures
	Calling a select procedure
	Using a select procedure with cursors

	Using executable procedures
	Executing a procedure
	Indicator variables

	Executing a procedure in a DSQL application

	Working with Events
	Understanding the event mechanism
	Signaling event occurrences
	Registering interest in events
	Registering interest in multiple events
	Waiting for events with EVENT WAIT
	Responding to events

	Error Handling and Recovery
	Standard error handling
	WHENEVER statements
	Testing SQLCODE directly
	Combining error-handling techniques
	Guidelines for error handling

	Additional InterBase error handling
	Displaying error messages
	Capturing SQL error messages
	Capturing InterBase error messages
	Handling InterBase error codes

	Using Dynamic SQL
	Overview of the DSQL programming process
	DSQL limitations
	Accessing databases
	Handling transactions
	Creating a database
	Processing Blob data
	Processing array data

	Writing a DSQL application
	SQL statements that DSQL can process
	SQL character strings
	Value parameters in statement strings

	Understanding the XSQLDA
	XSQLDA field descriptions
	XSQLVAR field descriptions
	Input descriptors
	Output descriptors
	Using the XSQLDA_LENGTH macro
	SQL datatype macro constants
	Handling varying string datatypes
	NUMERIC and DECIMAL datatypes
	Coercing datatypes
	Coercing character datatypes
	Coercing numeric datatypes
	Setting a NULL indicator

	Aligning numerical data

	DSQL programming methods
	Method 1: Non-query statements without parameters
	Using EXECUTE IMMEDIATE
	Using PREPARE and EXECUTE

	Method 2: Non-query statements with parameters�
	Creating the input XSQLDA
	Preparing and executing a statement string with parameters
	Re-executing the statement string

	Method 3: Query statements without parameters
	Preparing the output XSQLDA
	Preparing a query statement string
	Executing a statement string within the context�of a cursor
	Re-executing a query statement string

	Method 4: Query statements with parameters
	Preparing the input XSQLDA
	Preparing the output XSQLDA
	Preparing a query statement string with parameters
	Executing a query statement string within the context of a cursor
	Re-executing a query statement string with parameters

	Preprocessing, Compiling, and�Linking
	Preprocessing
	Using gpre
	Language switches
	Option switches
	Examples

	Using a file extension to specify language
	Specifying the source file

	Compiling and linking
	Compiling an Ada program
	Linking

	InterBase Document Conventions
	The InterBase documentation set
	Printing conventions
	Syntax conventions

	Index

